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Abstract

It is found that high β in low-aspect-ratio tori tends to stabilize the

fishbone instability in a plasma with energetic circulating ions. The

stabilization results from enhancement of the toroidal drift motion by

large Shafranov shift, which makes it difficult to reconcile the condi-

tion of considerable energy exchange between the ions and the internal

kink perturbation with the condition of the resonant wave-particle in-

teraction.
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It is known that a considerable loss of the energetic ions in tokamaks can result

from the fishbone instability [1,2]. Most of works on this topic deal with the insta-

bility associated with the trapped particles. However, experiments show that the

fishbone mode can be also destabilized by the circulating particles, and a theory

developed in Ref. [3] predicts that the growth rate of such an instability is of the

same order as that of the trapped-particle-induced instability. On the other hand,

experiments where circulating particles dominate in the energetic ion population

indicate that the fishbone instability tends to be stabilized when β (the ratio of

the plasma pressure to the magnetic field pressure) is high [5], which was observed

on Small Tight Aspect Ratio Tokamak (START) [4] Spherical Torus (ST). The

stabilizing effect of high β in STs was discovered theoretically in Ref. [6] (see also

Ref. [7]) where, however, the trapped-particle-induced fishbone mode was consid-

ered. No attempt has been done yet to develop a theory relevant to the fishbone

instability in a high-β plasma with the circulating energetic ions. This issue is

addressed in the present Letter.

There are two fishbone branches: the high frequency and low frequency ones

[8,9]. The fishbone instability considered in Ref. [3] is relevant to the latter. We

will also consider this branch assuming, as in Ref. [3], that the safety factor q(r)

is a monotonic function and that m = n = 1 kink perturbation dominates, where

m and n are the poloidal and toroidal mode number, respectively. However, in

contrast to Ref. [3], we assume that the diamagnetic frequency of the bulk ions,

ω∗i, is much less than the frequency of the toroidal drift motion of the energetic

ions, ωD, which implies that Eb/T � A2, where E is the particle energy, subscript

”b” labels the beam ions, T is the plasma temperature, A is the aspect ratio of

the torus (we used the estimate ωD ∼ ρ‖vb/R
2
0 with ρ‖ = |v‖|/Ωb the ”parallel

Larmor radius”, Ω the gyrofrequency, v the particle velocity, and R0 the radius

of the magnetic axis). Note that the latter condition is well satisfied in STs and

can be fulfilled even in conventional tokamaks. When it is satisfied, the circulating

energetic ions interact with the mode through the resonance k‖v‖ ≈ ωD (rather
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than through the resonance ω ≈ k‖v‖ considered in Ref. [3]). Because v‖/R0 � ωD

and k‖R0 = q−1 − 1, this resonance takes place only at a certain radius (r∗) in the

vicinity of the radius of the q = 1 surface (rs), but not so close to rs as in the case

of ωD � ω∗i. Below we will show that ωD grows with β, so that ωD = ξρ‖vb/R
2
0,

where ξ(β) > 1. Taking into account this fact and that k‖ ≈ s1(εs − ε)/rs, where

s1 = s(rs), s is the magnetic shear, εs = rs/R0, we obtain |r∗ − rs| = ξsρ‖εs/s1

with ξs = ξ(rs). On the other hand, only particles crossing the q = 1 surface can

lead to strong instability (the energy exchange between other particles and the

waves is small) [3]. Therefore, the instability arises provided that the resonance

radius satisfies the condition |r∗−rs| < ∆b, where ∆b is the half-width of the orbits

of the beam ions. In order to see whether it is satisfied in STs, we use r∗ found

above and ∆b ∼ ρ‖. Then we obtain the condition s1 > ξs(β)εs, which is difficult to

satisfy in STs when β is sufficiently large. Thus, we conclude that high β and small

aspect ratio of STs are the factors which tend to stabilize the fishbone instability

associated with the circulating particles.

A more detailed analysis is required to find the magnitude of the reduction

of the growth rate due to the described mechanism and the dependence of the

stabilizing effect on the plasma pressure, which will be carried out below. First

of all, we obtain an expression for the frequency of the toroidal drift motion of

the well circulating particles in an equilibrium plasma. We follow the canonical

description of the orbits introduced in Ref. [10]. Using the frame of reference

where the equilibrium electric field is absent, we write:

θ̇ =
v‖
qR

− cmv2
‖

eR

∂R

∂ψ
, (1)

where R is the distance from the major axis of the torus, ψ is the toroidal flux, θ is

the poloidal coordinate related to the corresponding Shafranov coordinate (labeled

by S) in accordance with the expression [10]

R = R0 −∆ + r cos θS = R0 −∆ + r cos θ + ηr(cos 2θ − 1) +R0O(ε3) (2)
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with η(r) = 0.5(∆′ + r/R0) ∼ ε, ∆′ = d∆/dr, and ∆(r) > 0 is the Shafranov shift,

∆(0) = 0. Combining Eqs. (2), (1) and carrying out the orbit averaging, we obtain:

〈θ̇〉 =
v‖
qR0

+ ωD, (3)

where

ωD =
ρ‖|v‖|
2rR0

(2ε+ 3∆′ + r∆′′) , (4)

the radial coordinate r is defined by ψ(r) =
∫ r drrB0, B0 is the magnetic field at

the magnetic axis. When deriving this equation, it was assumed that the orbit

width is small compared to the shear length. Theory of the tokamak equilibrium

provides an ordinary differential equation for ∆. Corresponding expressions for ∆′

and r∆′′ are well known [11]:

∆′ = ε(βθ + 0.5li), (5)

r∆′′ = ε [1− (3− 2s) (βθ + 0.5li)] + αp, (6)

where li = 2/(r2B2
θ)
∫ r
0 B

2
θrdr is the internal inductance per unit length, βθ =

(8π/B2
θ)(p̄ − p) with p̄ = (2/r2)

∫ r
0 prdr the average pressure, and αp =

−(8πp′/B2
0)R0q

2. Substituting Eqs (5), (6) into Eq. (4) we find that ωD =

ξρ‖|v‖|/(R2
0), where

ξ =
3

2
+ s

(
βθ +

li
2

)
+
αp

2ε
. (7)

It follows from Eq. (7) that the Shafranov shift strongly increases the frequency of

the toroidal drift motion in STs with high-β plasmas (for parabolic profiles ξ ∼ 3).

However, Eq. (7) was obtained for a plasma with the circular cross section.

To find ωD in a plasma with the arbitrary shape of the cross section, we use the

magnetic coordinates [12,13] and take the magnetic field strength in the form [6,7]:

B = B0[1− ε cos θ + ε2(α+ σ cos2 θ)], (8)
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where α and σ are adjustable parameters, α >> 1, σ >∼ 1 in STs with high β.

Taking into account that the drift velocity is vD ≈ v2
‖b×K/Ω, where K is the field

line curvature, we write:

ωD = −ωb

Ω0

∮
dθ

2π

q|v‖|B3

r

(
∂

∂r

1

B
− 4π

|B|3
∂p

∂r

)
, (9)

where ωb is the transit time frequency, Ω0 = eB0/(Mc), B3 = B3(r) is a covariant

component of B. Eqs. (8), (9) yield:

ξ = 1 + 2α + σ − αp

2εq2
. (10)

Typically, αp/(2εq
2) ∼ 1 or less. Therefore, ξ � 1 in high-β plasmas with any

shape of the flux surfaces.

A general expression for the resonance describing the interaction of the well-

circulating particles and the m = n = 1 perturbation is given by (the time and

angle dependence of the perturbation is taken in the form exp(−iωt− iφ+ iθ)):

ω − (k‖ +
S

qR
)v‖ − ωD = 0, (11)

where S is an integer, k‖ = (q−1 − 1)/R0. Because v/(qR0) well exceeds both ω

and ωD, we have to take S = 0. With this resonance condition, the kinetic part of

the potential energy δWk is given by [3]:

δWk = − π

(Bθs)2
rs

∫ rs

0
rh(r)dr, (12)

h(r) = − 8

π

1

R2
0

∫
dvE2 ∂Fb

∂Pφ

∆b

|∆b|
∫ π

−π
cos θ

H(1− |z|)√1− z2

ω − k‖(rs + z∆b)v‖ − ωD(rs)
dθ, (13)

where z = [r̄(r, θ) − rs]/∆b, r̄ = r + ∆b cos θ, Pφ = Mv‖R + eψ/c is the canonical

angular momentum, H(x) is the Heaviside unit step function. As |z| < 1 and

∆b � rs, the resonance condition (which is determined by the denominator of

Eq. (13)) can be written as follows:

ω + s1

v2
‖z

ΩbR0rs
− ξsv

2
‖

ΩbR2
0

= 0. (14)
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We assume that beam ions are characterized by the vanishing magnetic moment,

µ, and take their distribution function in the following form:

Fb =

√
2m

3/2
b

πEα
pb(r)H(Eα − E)

δ(µB0/E)

E3/2
c + E3/2

[
1

2
(1− ζ) + ζH(±v‖)

]
, (15)

where pb(r) is the beam ion pressure, Eα the injection energy, Ec ∼ (mi/me)
1/3T the

energy for which the ions and electrons equally contribute to the slowing down of the

beam particles, ζ = 0 for the balanced injection, and ζ = 1 for the co- and counter-

injection. Combining (12)-(14), inverting the order of integration
∫
dr
∫
dθ
∫
dv =

∫
dv
∫
dθ
∫
dr with dr ' ∆bdz, and assuming Reω � Imω, we obtain:

Im δWk = −εs
[
∆α

b

rpb

βbθ

s3

]
rs

I, (16)

where

I ≡
∫ 1

0

√
x

[
1−

( Es

Eαx
− κ

)2
]
H
(
1−

∣∣∣∣ Es

Eαx
− κ

∣∣∣∣
)
dx, (17)

κ ≡ ξsεs/s1, βbθ is the poloidal beta of beam ions, Es ≡ mbΩbωR0rs/(2s1), and

r−1
pb = −d ln pb/dr.

One can see that when ξsεs � s1 (κ � 1), the integral I and, thus, the

instability growth rate are maximum. In this case Eqs. (16) (17) give the result by

Betti and Freidberg (BF) [3]:

Im δWBF
k ≈ − 2εs∆

α
b βbθ

3s3rpb

∣∣∣∣∣
rs

, (18)

Let us consider the case of κ > 1 + Es/Eα, which is of the main interest for STs.

We obtain:

I = 2
( Es

Eα

)3/2
{

2κ√
κ− 1

− 2κ√
κ+ 1

(19)

+
1

3

(
1− κ2

) [
(κ − 1)−3/2 − (κ+ 1)−3/2

]
+
√
κ− 1−√κ+ 1

}
.

We observe that I can be much less than IBF for realistic magnitudes of κ in

STs: I/IBF ∼ (Es/Eα)1.5 ∼ (TR0)
1.5/(Eαs1rpi)

1.5 for κ >∼ 1 and ω = ω∗i, where

r−1
pi = −d ln pi/dr. But it vanishes only for κ → ∞. The reason why Im δWk
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does not vanish for the finite κ is the presence of particles with E � Eα for which

|r∗ − rs| < ∆b due to the resonance ω ≈ k‖v‖.

A simple estimate shows that when Es/Eα ' 0.1, κ = 1.2 is sufficient for more

than the tenfold decrease of the BF response. Using Eq. (7) we find that the

condition κ ≥ 1.2 yields the following restriction on β for the plasma with the

parabolic profile of the pressure (in which case αp = 2εsβ(0)A2, βθ(rs) = β(0)A2/2

with β(0) = 2β̄, β̄ is the volume averaged β):

β̄ ≥ 1

(2 + s1)A2

(
1.2

s1

εs
− 3

2
− s1li

2

)
. (20)

When this condition is satisfied, the amplitude of fishbones is small or the instability

is completely stabilized due to the presence of weak damping mechanisms.

It is of interest to see whether Eq. (20) is satisfied in experiments on

START where fishbone oscillations were weak or disappeared in high-β discharges

with 〈β〉 ∼ 30%) [5]. To make an estimate we take A = 1.5, Eα = 30keV ,

T = 300eV , li = 0.7, s1 ∼ 0.5, and rs ∼ a/3. Then we can write Eq. (20) as

β̄ ≥ 20%. For the used parameters Es/Eα ∼ 0.03, which leads to I/IBF ∼ 10−2.

This result together with the prediction of the complete stabilization of the trapped-

particle-induced fishbone mode at high β [6,7] may explain the disappearance of

fishbones in START.

In conclusion, we considered for the first time the stability of the fishbone mode

associated with the circulating ions in high-β plasmas of spherical tori. We have

shown that well-circulating energetic ions undergo strong toroidal drift motion

when the aspect ratio of the torus is small and the plasma pressure is high. Be-

cause of this enhanced drift motion, the radius r∗ (where the resonance between the

energetic ions crossing the q = 1 surface and the internal kink perturbation occurs)

may be shifted for the distance exceeding the particle orbit width, which stabilizes

the instability. This conclusion together with the prediction of complete stabiliza-

tion of the fishbones associated with the energetic trapped ions [6,7] indicate that

STs with high β have the immunity to the fishbone instability. In order to draw a
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final conclusion on the fishbone oscillations in STs, experimental verification of the

theoretical predictions is required (in particular, this can be done in current NBI

experiments on the National Spherical Torus Experiment, NSTX [14]). In addition,

a theory of the high-frequency fishbone branch in STs with the tangential injection

should be developed.

The research described in this publication was made possible in part by Award
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