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Nonlinear charge and current neutralization of an ion beam pulse

in a pre-formed plasma

Igor D. Kaganovich, Gennady Shvets, Edward Startsev and Ronald C. Davidson
Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543
(January 22, 2001)

The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is in-
vestigated. The outcome of the calculation is the quantitative prediction of the degree of charge
and current neutralization of the ion beam pulse by the background plasma. The electric and
magnetic fields generated by the ion beam are studied analytically for the nonlinear case where
the plasma density is comparable in size with the beam density. Particle-in-cell simulations and
fluid calculations of current and charge neutralization have been performed for parameters relevant
to heavy ion fusion assuming long, dense beams with length [ >> V}/wy, where V}, is the beam
velocity, and wy, is the electron plasma frequency evaluated with the ion beam density. An impor-
tant conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical
purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force
dominates the electric force and the beam ions are always pinched during beam propagation in a

background plasma.

I. INTRODUCTION

Understanding the transport of charged particle beams in background plasma is impor-
tant for fundamental physics as well as for a variety of applications. As early as 1939 [1,
2], it was pointed out that the transport of cosmic rays may be governed by the charge and
current neutralization by the ambient plasma. The recent resurgence of interest in charged
particle beam transport in background plasma is brought about by the suggestion that the
plasma can be used as a magnetic lens. Applications of the plasma lens range from heavy ion

fusion to high energy lepton colliders [3-10]. In particular, both heavy ion fusion and high



energy physics applications involve the transport of positive charges in plasma: partially
stripped heavy elements for heavy ion fusion; positrons for electron-positrons colliders [9];
and high-density laser-produced proton beams for the fast ignition of inertial confinement
fusion targets. The emphasis of the present work on positive ions is deliberate because, as
we demonstrate below, the transport of positive ion beams through background plasma is
very different from that of the negatively charged beams. A beam of positively charged
particles attracts plasma electrons into the beam, whereas a beam of negative charges repels
the electrons out of its path. An important consequence, which is one of the findings of
the present calculation, is that a nonrelativistic positive ion beam with density n, can be
neutralized to a very high degree by a large-volume tenuous plasma with ambient density
ny << Mp.

The beam charge and current neutralization by plasma electrons is an important issue for
beam propagation in a background plasma. Beam focusing schemes rely on complete charge
neutralization and partial current neutralization for magnetic focusing in plasma lenses [5],
and for ballistic ion focusing in heavy ion fusion [8]. In these applications, the plasma is
pre-formed by an external plasma source and is independent of the beam characteristics.

The goals of the present calculation are: (a) to derive a system of reduced equations for
the electric and magnetic field generated by an ion beam propagating through background
plasma, and (b) to develop a semi-analytical method for robust and easy assessment of the
effects of these fields on the beam transport. The case where the beam propagates through a
cold unmagnetized plasma, with plasma density large compared with the beam density, can
be studied by use of linear perturbation theory [3, 4]. The transport of relativistic electron
beams was studied in detail in various contexts [4, 5, 11]. The transport of stripped pinched
ion beam has been also discussed in [8], where the assumption of current neutrality was
made to determine self-consistent solutions for the electric and magnetic fields. Here, we
focus on the nonlinear case where the plasma density has an arbitrary value compared with
the beam density, and correspondingly the degree of current neutralization is arbitrary. For

simplicity, we neglect transient effects, and assume steady-state properties in the frame of
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the beam. Rosenbluth, et al. [12] have considered the equilibrium of an isolated, charge-
neutralized, self-pinched ion beam pulse, in the absence of background plasma. In contrast,
we consider the case where ”fresh” uniform plasma is always available in front of the beam.

To simplify the analysis and make the problem tractable, a number of assumptions have
been made. First, we neglect the dynamics of the beam ions and plasma ions. The beam ions
are assumed to be moving in the z direction with constant axial velocity V,. The response
time of the plasma ions is determined by the ion plasma frequency, which is much longer
than the electron response time. Therefore, neglecting the dynamics of the plasma ions is
well justified. Second, the entrance of the beam into the plasma will not be addressed in
the present model. Furthermore, beam ionization effects are neglected, and the background
plasma in front of the beam is assumed to be uniform and stationary. As a result, all field
quantities (electric and magnetic) , and the plasma and beam charge densities and current
densities are stationary in a reference frame moving axially with the beam.

Additional simplifications of the electron fluid equations are possible for long beams
where the beam half length (I,) is much longer than both the beam radius (1) and the
plasma neutralization length, which is equal to the ratio of the beam velocity (V}) to the
electron plasma frequency (w,). The first assumption is used in the Darwin model [13].
The second assumption allows further simplifications. We show that under these conditions
a reduction of the dimensionality of the problem is possible. For an axisymmetric beam,
the longitudinal electron flow velocity is determined by a one-dimensional equation in the
radial direction for each axial slice of the beam. Once the longitudinal electron flow velocity
is determined, the electric and magnetic fields can be calculated from simple analytical
expressions.

As an application of the theoretical model, we study transport of the ion beam pulse in
the target chamber for heavy ion fusion. At the present time, the main approach to heavy
ion fusion is ballistic focusing in the target chamber from an initial beam radius of about 3cm
down to a spot size of about 3mm. The beam traverses the chamber (radius about 3m), in

near vacuum (a few mTorr of flibe vapor). Typical beam parameters are [8]: C's™ ions with
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energy 2.5 GeV, beam velocity V;, = 0.2¢, beam current ~ 4kA, main pulse duration 10ns,
and power in the pulse ~ 3MW. The beam ion density ranges from n, = 10!t — 103 em =3,
depending on the beam radius, providing space-charge potentials of a few MV. This large
ion space charge is to be neutralized by a background plasma. The plasma can be created
in the chamber by an external plasma source, by gas ionization by the beam ions, and
by photoionization from the target, which is bombarded by beam ions preceding the main
pulse. Both electrostatic defocusing and magnetic pinching of the beam have to be avoided
for controlled ballistic focusing. Thus large self-electric and self-magnetic fields have to be
avoided during focusing of the ion beam pulse. Since the beam parameters vary significantly

for different heavy ion fusion scenarios, analytical results are of considerable importance for

parametric studies, benchmarking of numerical codes, and comparison with experiments.

II. BASIC EQUATIONS FOR DESCRIPTION OF ION BEAM PULSE

PROPAGATION IN A PLASMA

We consider all equations in the reference frame of the laboratory plasma, assuming that
all quantities are stationary in the reference frame of the moving beam, i.e. all quantities
depend on ¢ and z exclusively through the variable ( = Vjt — z, which is the distance from
the beam head. The ion response time is assumed to be large compared with the beam pulse
duration, and, therefore, the background plasma ion density remains uniform during beam
propagation. The beam density profile is also assumed to be given. The plasma electron
density n. , however, is a function of both the unperturbed density n,, and the ion beam
density profile. The plasma electrons are assumed to be cold, and electron thermal effects
are neglected. This approach has been widely used to study laser-plasma interactions [4,
5, 11]. These assumptions are well justified for ion beam pulses envisioned for heavy ion
fusion.

The electron fluid equations together with Maxwell’s equations comprise a complete

system of equations describing the electron response to a propagating ion beam pulse. The



electron fluid equations consist of the continuity equation,

one
(V) = 1
ot + V- (nV.) =0, (1)
and the force balance equation,
Ope 1
a‘; + (Ve V)p,= —¢(E+-V.xB), 2)

where —e is the electron charge, m is the electron rest mass, V. is the electron flow velocity,
p = vemV, is the electron momentum, and v, = 1/4/1 — V2/c? is the relativistic mass

factor. Maxwell’s equations for the self-generated electric and magnetic fields, E and B, are

given by
V% B =2 (2 Vy — noV,) + L 2 (3)
_C b'tb ¥V b eVe Cata
10B
E=——-— 4

where Vy, is the ion beam velocity, n. and n, are the number densities of the plasma electrons
and beam ions, respectively, and Z, is the ion beam charge state.

Considerable simplification can be achieved by applying the conservation of generalized
vorticity. Indeed, operating on the electron momentum equation (2) with Vx, and making

use of Eq.(4), we obtain the equation for the generalized vorticity @ =V x p, —eB/c , i.e.,

oN
E_VX(VeXQ) =0. (5)

The generalized vorticity €2 is equal to zero in front of the beam, and, therefore, it is equal

to zero everywhere. Thus the magnetic field B, is related to the electron flow velocity V.,

by
c
B:;pre, (6)

which has the form of the London equation for superconductivity [14]. Note that Eq.(6)
is an exact result, and is not obtained under linearization assumptions. Making use of the

London equation (6), the electron momentum equation (2) simplifies to become

5



Ope
ot

+ V(K.)= —eE. (7)

where K, = y.mc? is the electron energy. For laser-plasma interactions, the hydrodynamic
equations in this form were displayed in [14].

Note that the inertia terms in Eq. (2) are comparable in size to the Lorentz force term
and cannot be omitted. Estimating the magnetic field from Eq.(11), one concludes that the
electron gyroradius, p, = V.,mec/eB, is of order the beam radius. This is a consequence of
the fact that the electrons originate from the region of zero magnetic field in front of the
beam. If most electrons are dragged along with the beam and originate from the region of

large magnetic field, the situation may be different [12].

A. Electrostatic and vector potentials

Various gauges are available to address the present problem. These include: the Coulomb
gauge [4], the transverse Coulomb gauge, zero electrostatic potential [15], and even more
complicated gauges designed to cancel specific terms in Maxwell’s equations [3]. For com-
pletness, we note that representing B = Vx A;and E = —V¢ — cflaA/Gt, the form of

Eq.(7) suggests that the natural choice of gauge is
e¢ = K., (8)
which automatically yields
e
-A = p.. 9
A=p (9)

All other gauges require that the vector potential A would differ from the momentum cp./e
by the gradient of an arbitrary function, which follows from (6). For example, in the present
analysis, the full Coulomb gauge is not convenient because of the necessity to make the
vector potential divergence free V- A = 0.

For cylindrically symmetric beams, it is convenient to use the transverse Coulomb gauge

Vi-A = 0. In cylindrical geometry, assuming axisymmetry in the azimuthal direction, it
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follows that A = 0, and the fields are completely described by the electrostatic potential
¢, and the z— component of the vector potential A = A_e,, where €, is a unit vector along

the z—axis. Therefore, the fields can be expressed as

B=VAx6, E=-Vo-22g, (10)
C

Integration of the London equation (6) gives an explicit equation for the vector potential

R 2 (11)
C

where s is an unknown function. From the radial component of Eq.(11) it follows that

#((,r) = —/Tooperdn

and the longitudinal component of the vector potential can be expressed as

O

e
_Az: ez a0 12
y P+ 56 (12)

where ( = Vit — z. Finally, the electrostatic potential ¢ can be determined by integrating

the radial component of Eq.(7), which gives

0
€¢: Ke+‘/ba—<. (]‘3)

III. APPROXIMATE SYSTEM OF EQUATIONS FOR LONG BEAMS

In this section, an approximate set of equations is derived for a long, cylindrically sym-

metric beam satisfying

Iy >> Vi Jwy, lh >> 1,

1/2 is the electron plasma frequency. We also assume that the fields

where w, = (4me*n./m)
and electron flow velocity and density are in steady-state in the reference frame moving
with the beam. The electron flow velocity is found by substituting Eq. (6) into the V x B

Maxwell equation (3), which yields



_% {r (dfl’;z + ag C)] :47:2 (ZomoVi = neVez) + ec—‘f’aa% . (14)
For long beams with [, >> V;/w,, the displacement current [the final term on the right-
hand side of Eq. (14)] is of order (Vj/wyly)® << 1 compared with electron current. Be-
cause [, >> r, is assumed, the second term on the left-hand side of Eq. (14) is of order
(ry/1p)*(<< 1) smaller than the first term on the left-hand side. As we shall prove below, the
electron flow velocity does not approach ultrarelativistic values even for (3, — 1, therefore,
ultrarelativistic effects are not important.

For sufficiently long beams ( [, >> V;/w, and [, >> r, ), the system of nonstationary

two-dimensional equations (1)-(4) reduces to a one-dimensional equation for the longitudinal

electron flow velocity V.., and Eq. (14) can be approximated by

d Apes Ame?
- {r( Z )} = (ZimVi, = Vi) (15)

Note that Eq.(15) is valid in the nonlinear regime for arbitrary values of the plasma density.
Equation (15) shows that degree of current neutralization is determined by the ratio of the
beam radius 7, to the skin depth ¢/w, , similar to the what is found in linear theory [3].
If 7, >> ¢/w,, the ion current is well neutralized by the electron return current, i.e., the
longitudinal electron velocity is reciprocal to plasma density (V.. = Z,Vyny/n.) and is small
for plasma density much larger than the beam density. In the opposite limit (1, << ¢/wy),
the ion beam current is not neutralized, and the electron longitudinal velocity is determined
entirely by the ion beam current and does not depend on the plasma density.

The radial electron flow velocity may be determined from the electron continuity equation
(1). We obtain

_tor
rne. 0C Jo

‘/e'r = [ne(‘/b - VYez) - np‘/l)]rdr7 (]-6)

where n,, is the uniform background plasma density without the beam present. If quasineu-

trality is assumed, Eq. (16) simplifies to become

1 o0 [
er — — " ‘Zda 1
% erneaC/oer (17)
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where j, = e(nyV, — n.V.,) is the longitudinal current. The radial electron velocity is of
order (V, — V., )ry/ly, and is small compared with the beam velocity V,. Substituting V,, and

Ve, into Eq.(7) then yields the electric field

1/ Ope
E=_- K, ). 1
e(VbaC +V > (18)

Substituting Ve, and V., into Eq.(6) yields the azimuthal magnetic field

B _ _E (dpez . dper> (19)

e \ dr dz
As can be seen from Egs.(18) and (19), the values of electric and magnetic fields are strongly
reduced in the case of dense plasma (1, >> ¢/wy, n, >> n;) where the electron flow velocity
is much smaller than beam velocity.
Finally, the degree of charge neutralization can be estimated directly from the Poisson’s

equation,

1

where p = e(Zyn, —n.). Using Eqgs.(15), (18), and (20) it can be shown that the maximum
deviation from quasineutrality, occurs when r, ~ c/w,, and |p| < eB2Zyny. Therefore,
for nonrelativistic long ion pulses, |p|/eZyn, << 1 and there is almost complete charge

neutralization. For calculational purposes exact charge neutralization
Ne = Ny + n/p (21)

can be assumed and deviations from quasineutrality can be calculated from Eq.(20) in a
subsequent iteration. Section IV provides more quantitative estimates.
The radial force acting on the beam ions can also be determined in terms of the electron

flow velocity. Substituting Eqs. (19) and (18) into the ion force equation yields

1 0
Fy = (B, = =ViB) = — (K. — Vip..). (22)

Because the radial flow velocity is small compared with the longitudinal flow velocity for

long beams, it can be neglected in Eq. (22), which simplifies to become
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= V—E‘/ez (23)

Equation (23) was derived in Ref. 8 in nonrelativistic form. Because V., <V}, and because
V.. is a monotonically decreasing function of radial coordinate r (if Z,n,V} is a monotonically
decreasing function of radial coordinate r), the radial force in Eq.(22) acting on the beam
ions is always inward (F, < 0), i.e., it pinches the ion pulse. The radial force in Eq.(22) is
greatly reduced for V., ~ Vj, which corresponds to the case of good current neutralization,
and background plasma density small compared to the beam density. The value of radial
force acting on the beam ions is strongly reduced in the case of dense plasma (r, >>

¢/wp, ny, >> ny) where the electron flow velocity is much smaller than beam velocity.

IV. EXAMPLES OF CALCULATIONS FOR HEAVY ION FUSION

PARAMETERS

We have performed self-consistent calculations of the electric and magnetic fields and
the electron flow velocity according to Egs. (13)-(16). In the first iteration, complete charge
neutrality (21) is assumed. The corrections, including small departures from quasineutrality
and the effects of displacement current and radial components of velocity [Eq.(14) compared
to Eq. (15)], are then obtained in the second iteration. The electron velocity does not
approach ultrarelativistic values even for 3, — 1, and therefore, ultrarelativistic effects are
not important.

Typical results of the calculations are shown in Fig.1. The ion pulse is formed in the
drift compression region of the accelerator and is assumed to have a density distribution
corresponding to the self-similar solution in the drift compression region, i.e., a uniform ion
density up to radius 7(z) = m,y/1 — (2/1)? [16], and zero density for larger radius | Fig.1(a)].
For the conditions in Fig.1, the plasma density is chosen to be comparable to the ion beam
density. The skin depth is assumed to be smaller than the beam radius, so the beam current
is neutralized, and the longitudinal electron velocity is V., ~ Vjny/(n, + np) in the beam

region, and decays exponentially outside the beam over distances of order the skin depth
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[Fig. 1(b)]. The current is neutralized in the beam center up to about 80% , and because
the electron flow velocity is monotonically decreasing with radial coordinate r [Fig.1(b)], the
degree of current neutralization decreases towards the beam edge and approaches 50% at
the boundary. Outside the beam, only the electron return current is present, and, therefore,
the current is negative. [Fig.1(c)]. The longitudinal electric field E, is located mainly in
front and in back of the beam to accelerate and decelerate electrons to the velocities required
to assure that the electron return current neutralizes the ion beam current. Consequently,
the longitudinal electric field E, is of order mV2 /(ely) [Fig.1(d)]. This electric field is small
compared to the electric field of an unneutralized ion beam, and correspondingly the charge
neutralization is close to unity, (typically about 98% in the head and tail of the beam in
the regions of large gradients, and about 99.5% in the main body of the beam). The ra-
dial flow velocity calculated from Eq.(17) is depicted in Fig.1(e). As the beam enters the
plasma, the integral fOT j.rdr increases, and the radial flow velocity is negative, i.e., the
beam attracts the background plasma electrons. Further from the beam head, the current
neutralization is better, and fOT J.rdr decreases and the radial flow velocity is positive. The
radial electric field is calculated from the radial velocity in Eq.(18). Relativistic effects are
not important for the conditions of Figl, and the radial flow velocity is much smaller than
the longitudinal velocity. Therefore, the radial electric field is determined approximately
from E,~ —m/(2e) (0V2/dr) > 0, which is positive in the beam region [Fig.1(f)]. Simi-
larly, from Eq.(19), the magnetic field is B ~ —cm/e (0V,,/0r), and is shown in Fig.1(g).
Correspondingly, the longitudinal flow velocity is V., ~cE,/B. The situation is different in
the radial direction, because the inertia and Lorentz force terms are comparable in size in the
longitudinal projection of the momentum balance equation (2), and therefore V., #cE,/B.
The radial force acting on the beam ions is always negative as discussed above [Fig.1(h)].
Figure 2 depicts the longitudinal electron velocity and the electron streamlines for similar
conditions to Fig.1, but for much smaller background plasma density. Under these condi-
tions, the skin depth is much larger than the beam radius (5.6 times larger) outside the

beam. Therefore, the electron velocity decays slowly outside the beam over distances of
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order the skin depth [Fig.2(a)]. Correspondingly, there is a sizeable radial electric field at
distances much larger than the beam radius [Fig.2(b)]. Although the background plasma
density is hundred of times smaller than the beam density, note that it effectively neutralizes
both the beam current and charge. Because the electron longitudinal velocity is comparable
in both cases [ n, ~ n, in Figl(b) and n, << n, in Fig. 2(a)], the electric fields are
comparable for both cases and the degree of charge neutralization is similar.

In Fig. 3, the longitudinal electron flow velocity, azimuthal magnetic field, radial electric
field, and radial force acting on the beam ions are shown at the midplane of the beam pulse
for three values of plasma density. In a dense plasma (n, >> n;), the electron velocity V.
is inversely proportional to the plasma density, in order to support the same return current
and provide current neutrality. Therefore, the electric and magnetic fields also decrease with
increasing plasma density. Figures 3(a) and 3(b) show that the radial force acting on the
beam ions is less for small plasma density (n, < n,), compared to the case where n, ~ n,.
This is because the radial electric field nearly compensates the self-magnetic force [V,, ~ V}
in Eq.(22)]. For large plasma density (n, >> n;), both the azimuthal magnetic field and
the radial electric field are small due to the better current neutralization [Fig.3(c)]. During
ballistic focusing, the beam reduces in radius by about a factor of ten, and the radial electric
field and azimuthal magnetic field increase by a similar factor, which follows from Eq.(19).

Figure 4 shows the degree of fractional charge nonneutralization, f = p/(eny), at the
midplane of the beam for three values of the beam velocity. We have chosen parameters
such that the departure from quasineutrality is approximately a maximum, corresponding
to 1, = ¢/wyp, where wg = 4dme’ny /me is the electron plasma frequency calculated using the
beam ion density. Moreover, small plasma density with n, = 0.1n,, is also assumed in Fig.4.
For the conditions in Fig.4, the maximum value of f is about 0.23? , which is much smaller
than unity. Therefore, quasineutrality is very well satisfied.

To check the theoretical predictions, we developed a two-dimensional (2D) electromag-
netic particle-in-cell (PIC) code [17]. In developing this PIC code, we followed the approach

of Morse and Nelson [19]. The code uses a leap-frog, finite-difference scheme [18] to solve
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Maxwell’s equations (3) and (4) on a two-dimensional rectangular grid in the frame moving
with the beam. The current deposition scheme is designed to conserve charge exactly [19],
so there is no need to solve Poisson’s equation. Since the plasma ahead of the pulse is neu-
tral, the boundary condition for the fields on the front boundary are trivial (E = B = 0).
The dynamics of the (stationary) background ions is neglected, and the plasma electrons
are treated as cold. The beam ions are represented by a stationary (in the moving frame)
current density on the simulation grid. To advance the electrons, we use the time-centered
leap-frog scheme first introduced in Ref. 19. In practice, the plasma is introduced at the
front boundary, and difference equations are solved for several time steps in the laboratory
frame. Then the electrons and fields are shifted backwards, and new plasma in introduced
at the beam front. Periodic boundary conditions are used for the fields in the transverse di-
rection. Electrons leaving through the side boundaries are reintroduced into the simulation
box at the opposite sides. Electrons leaving the simulation box through the back boundary
are removed from the simulation.

Figures 5 and 6 show the results of self-consistent electromagnetic two-dimensional
particle-in-cell (PIC) simulations in slab geometry. The simulation results in Fig.5 show
some phenomena associated with the finite neutralization length, neglected in the analytical
theory, particularly the excitation of plasma waves by the beam front. The sharp ion beam
front excites plasma waves. In linear theory, the plasma waves trail the beam front with
period [, = 27V} /w, and the elctron density is given by [4]

< Wp / N PP
nlC) =y = [ sin (FC=0)) mlC) R (24)
Assuming a step function profile for n,({’, y), linear theory predicts electron density oscilla-
tions with amplitude n, inside the beam, i.e.,

nulevn) =y = 1= o5 (SECal0) = 2)) | (25)

b
where z,(y) is the coordinate of beam front. Figure 5 (a) shows that the linear results are

not valid, and the amplitude of oscillations can be as much as six times larger than the linear
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results. Nonlinear effects can also account for large increases in wave amplitude [21], even
in a cold plasma model. Figure 5 also shows the importance of two-dimensional effects. The
linear result in Eq.(24) predicts that the plasma waves trail the beam front independently
for any given y, and should not decay. Clearly, linear theory cannot predict the features
of the plasma waves in Fig.5, even qualitatively. The plasma waves in Fig.5 have a two-
dimensional structure. Furthermore, the plasma waves are excited before the beam front at
the radial edge of the beam [see Fig.5(c)] and decay away from the front, in contrast to the
predictions of linear theory. The accurate description of plasma waves has to be performed
using a nonlinear two-dimensional model and is beyond the scope of present paper.

To minimize the excitation of plasma waves, a smooth ion beam profile is used in the

simulations shown in Fig.6. We choose the profile

oy, 2) = f \/<i>2+<%>2 , (26)

where
0, s> 1,
fls)=9g(%), 1-a<s<]1, (27)
1 s<1—a.

Y

Here, g(t) = 10t3 — 15t* + 6t5, and a is a parameter characterizing the width of profile
smoothing. Plasma waves are not excited if the width of the beam front is much longer than
the plasma period, i.e., al, >> [,. For example, plasma waves are very weakly excited for
the conditions chosen in Fig.6, where al, = 61,/m, and the electron density is equal to the
ion density within noise errors [Fig.6(a)].

Figure 6 shows good agreement between results of the PIC simulations and the fluid
calculations, both performed in slab geometry. The establishment of quasineutrality is
clearly evident in Fig.6(a). Small deviations from quasineutrality are due to numerical noise
and excitation of plasma waves by the beam front. Figure 6(b) shows the difference in the

current, profile at two different beam cross-sections. In the region of the beam head (z =
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25¢/wy) the beam radius r, = 1.6¢/w, is comparable to the skin depth, and correspondingly
the electron current neutralizes about 80% of the ion current. In the midplane of the beam
(z = 0), the beam radius r, = 3c/w, is larger than the skin depth, and correspondingly
the electron current neutralizes more than 90% of the ion current in the beam center. The
degree of current neutralization is smaller at the beam edge due to the sharp variation of the
ion current profile. According to Eq.(15), the electron return current is a smooth decreasing
function of radial coordinate r, and cannot neutralize (the nearly discontinuous) ion current.
The magnetic field shows very good agreement between the analytic formulas [Eqgs.(15) and
(19)] and the PIC simulation results. The amplitude of the electric field is much smaller
than the magnetic field. Therefore, the contributions due to numerical noise and plasma
waves are more pronounced in Fig.6 (d) and Fig.6 (e) compared with Fig.6 (c¢). For the
conditions in Fig.6, the spatial resolution was 932 x 198 with 9 particles per cell, which
totals more than one and one-half million particles and requires a few hours of calculations on
a one-processor Dell Pentium 1G H z workstation. it is evident that an accurate calculation
of the electric field using PIC simulations is very cumbersome in contrast with the semi-
analytical approach described above. In summary, the very good agreement of the electric

and magnetic fields validates the proposed theory.

V. CONCLUSIONS AND OUTLOOK

The propagation of a finite-length ion beam pulse through a uniform, stationary back-
ground plasma has been studied. The analytical solutions for the electric and magnetic
fields generated by an ion beam pulse have been determined in the nonlinear case for arbi-
trary values of n,/n, under the assumption of a long beam, where the beam length is much
longer than the beam radius and the plasma neutralization length (V,/ws). Under these
conditions, a reduction in the dimensionality of the problem is possible. Assuming an ax-
isymmetric beam, the longitudinal electron flow velocity is determined for one-dimensional

variations in the radial direction for each axial slice of the beam. The electric and magnetic
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fields are then readily calculated from the longitudinal electron flow velocity. As a result,
numerical simulations are very fast, even for very long beams with a large ratio of the beam
length to the beam radius. Since the electron response time is much faster than the ion beam
pulse duration, any variations in plasma or beam parameters are adiabatically slow on the
electron time scale. The approach used here can be generalized to the case of nonuniform
plasma density and beam density profiles, and forms the basis for a hybrid semi-analytical
approach to be used for calculations of beam propagation in the target chamber. This work
is now underway.

The assumption of zero generalized vorticity can be broken by plasma generation inside
the beam. Therefore, if a considerable amount of plasma is produced by beam ionization
processes, the approach presented here requires modification.

The assumption of immobile background ions can be incorrect for very long beams.
Indeed, the radial displacement of a plasma ion with mass m; during the beam pulse duration
21,/ V}y caused by the radial electric field in Eq.(18) [which at maximum is of order mV,2/(er)]
is larger than the beam radius whenever (m/m;)(2l,/r,)* > 1. For the beams parameters
considered for heavy ion fusion, the beam aspect ratio (l,/r3) is less than one hundred, and
the background ion dynamics can be neglected for all gases, except possibly for hydrogen.

The analytical formulas derived in this paper can provide an important benchmark for
numerical codes and provide scaling laws for different beam and plasma parameters. The
simulations of current and charge neutralization performed for conditions relevant to heavy
ion fusion typically showed very good charge and current neutralization. Moreover, an im-
portant conclusion of the present analysis is that for long, dense beams (length I, >> V},/wj,
where V, is the beam velocity, and wj, is the electron plasma frequency evaluated with the
ion beam density), the charge neutralization is very good even for a tenuous background
plasma with density much smaller than the beam density. The background plasma is col-
lected radially over the distances of order the electron skin depth, and the small value of
plasma density can be well compensated by the large dimension of the collecting area.

Acknowledgment This research was supported by the U.S. Department of Energy

16



Office of Fusion Energy Sciences and Division of High Energy Physics. It is a pleasure to
acknowledge the benefit of useful discussions with Ed Lee, Marshall Rosenbluth and Wei-li

Lee.

17



Figure captions

Fig.1. Characteristics of the ion beam pulse are: singly-charged Cs™ ions; ion en-
ergy E, = 4GeV; maximum ( in the middle section of the beam) ion current I, = 4kA;
maximum beam radius r, = 3cm; half-length [, = 40cm; and background plasma den-
sity n, = 10"em™3. Shown in the figure are contour plots in (z/l, , r/ry) space of: (a)
ion density n;, in the beam pulse; (b) normalized longitudinal electron velocity V../V4; (c)
normalized electron current 1 — n.V,./(NV,V;), where N, = ny(0,0); (d) normalized lon-
gitudinal electric field E,/E.y, where E,o = mV;?/(el,) = 410V/cm; (e) normalized ra-
dial electron velocity V..l,/rV,; (f) normalized radial electric field in the beam FE,./E,q,
where E,g = mV}?/(er,) = 5.467kV/cm; (g) normalized azimuthal magnetic field B/ B,
where By = mcV,/(ery) = 74G; and (h) normalized radial force acting on the beam ions
(E. — 3,B)/Eyo, where E,o = mV}?/(er,) = 5.467kV /cm.

Fig.2. Characteristics of the ion beam pulse are the same as in Fig.1 but the background
plasma density is n, = 10%m 3. Shown in the figure are contour plots in (z/l, , r/r,) space
of: (a) normalized longitudinal electron velocity V., /V;; and (b) normalized integrated radial
flux of electrons I', = fOT [ne(Vy — Ver) — n,Vi|rdr. The contour plots of I', coincide with the
electron trajectories in a frame moving with the beam.

Fig.3. Radial plots of the normalized electron velocity (V../V}), the radial electric field
in the beam ( E,/FE,), the azimuthal magnetic field in the beam (B/By), and the radial
force acting on the beam ions (F, — 3,B)/FE), shown in the midplane of the ion pulse
for the same conditions as in Fig.1. The three plots correspond to plasma densities: (a)
n, = 0.310"em =3, (b) n, = 10%em =3, (¢) n, = 102em 3.

Fig.4. Radial plots of the degree of fractional charge nonneutralization f = p/(en;) at
the midplane of the ion beam pulse in background plasma assuming three values of beam
velocity Byc. The beam radius is chosen to be r, = c/wy, where w? = 4me?ny/m, is the

electron plasma frequency calculated using the beam ion density. The beam radius chosen

in the figure corresponds to the maximum degree of fractional charge nonneutralization.
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The corresponding beam current is 4.258,kA, and the plasma density is n, = 0.1n,.

Fig.5. The excitation of plasma waves by the beam head is calculated in two-dimensional
slab geometry using the PIC-MC code [17] for the following dimensionless beam parameters:
By = 0.5, 1, = 1.5¢/wp,l, = 15¢/wp,n, = ny, , and Z, = 1. (a) Shown in the figure are
electron charge density contour plots in (w,z/c , wyy/c) parameter space, and . electron
charge density versus (wpz/c) (b) for y = 0 and (c) for y = ¢/w, arrows show beam edge.

Fig.6. Comparison of 2D particle-in-cell simulations with theoretical predictions for
the following dimensionless parameters: 3, = 0.5, 1, = 1.5¢/wy, l, = 30¢/w,, and n, = n,
performed in two beam cross-sections: the midplane at z = 0, and near the beam front
at z = 25¢/w,. The ion profile is smoothed according to Eq.(26), with al, = 6c/w, =
(6/7)l,. Shown are radial plots of (a) normalized electron density n./n,; (b) normalized lon-
gitudinal current (n,V,—neVe,)/(n,¢); (¢) normalized azimuthal magnetic field, e B/(2mwyc);
(d) the normalized radial electric field eE,. /(2mwyc) ; and (e) normalized longitudinal electric

field eE, /(2mwyc).
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