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A fluid-kinetic hybrid electron model for electromagnetic simulations of finite-β plasmas is de-
veloped based on an expansion of the electron response using the electron-ion mass ratio as a small
parameter (Here β is the ratio of plasma pressure to magnetic pressure). The model accurately
recovers low frequency plasma dielectric responses and faithfully preserves nonlinear kinetic effects
(e.g., phase space trapping). Maximum numerical efficiency is achieved by overcoming the electron
Courant condition and suppressing high frequency modes. This method is most useful for nonlin-
ear kinetic (particle-in-cell or Vlasov) simulations of electromagnetic microturbulence and Alfvenic
instabilities in magnetized plasmas.

Magnetic fluctuations in magnetized plasmas have
been shown in linear theories to be key ingredients in
micro-instabilities [1], drift-Alfven wave instabilities [2],
and magnetohydrodynamic instabilities such as toroidal
Alfven eigenmodes [3], energetic particle modes [4] as well
as the generation of magnetic pulsations in magnetosh-
eres [5]. Nonlinear kinetic study of these electromag-
netic fluctuations, meanwhile, is hindered by the diffi-
culty of treating the dynamics of electrons whose char-
acteristic frequency is much faster than that of the low
frequency modes of interest. Specifically, the existence
of high frequency modes and the electron Courant con-
dition [6] place stringent, unnecessary numerical con-
straints in nonlinear kinetic simulations. As a result,
most turbulence simulations have been focused on the
electrostatic limit [7,8]. Recently, major efforts have
been directed to develop working electron models, e.g.,
massless electron model (no dissipation) [9] and gyrofluid
model (linear closure) [10]. A fully kinetic electron model
for gyrokinetic particle simulations has been proposed
which extracts out the adiabatic response and solves dy-
namically only for the nonadiabatic response [11]. Thus,
it removes the numerical noise associated with the adi-
abatic response, which is larger than the nonadiabatic
response by the square-root of electron-ion mass ratio.
However, the difficulties with high frequency modes and
the electron Courant condition remain to be resolved.

In this work, we develop a fluid-kinetic hybrid elec-
tron model for nonlinear kinetic simulations of low fre-
quency turbulence in magnetized plasmas. Both the elec-
tron response and the perturbed parallel electric field are
expanded based on a small electron-ion mass ratio. In
the lowest order, the electrons are adiabatic and can be
described by fluid equations. Thus, the high frequency
modes are removed and no electron Courant condition
needs to be observed. In the higher orders, the nonadi-
abatic response is treated kinetically with all nonlinear
kinetic effects preserved. This model combines the good
numerical properties of the fluid approach and the accu-

rate kinetic effects of the fully kinetic model. It is most
useful for nonlinear kinetic (particle-in-cell or Vlasov)
simulations of low frequency modes, e.g., shear Alfven
waves and ion acoustic waves, in magnetized plasmas.

We consider a shearless slab with uniform magnetic
field B0 = B0b̂0 and equilibrium uniform Maxwellian
ions and electrons,

f0 = n0(2π)−1/2v−1
α e−v

2
‖/2v

2
α

with α = i, e for ion and electron, respectively, qe = −e,
qi = e, and v2

α = Tα/mα. Assuming the usual gyrokinetic
ordering, the gyrokinetic equation [12] for the perturbed
distribution function δfα = fα − f0 is,

D

Dt
δfα = − D

Dt
f0, (1)

where

D

Dt
≡ ∂

∂t
+ (v‖b̂− ∇φ×B

B2
) · ∇ − qα

mα
∇ψ · b̂ ∂

∂v‖
,

b̂ = (B0 + δB)/B, and δB = ∇ × A‖. k‖ � k⊥ is
assumed where the wave vector is k = k‖b̂0 + k⊥k̂⊥
with k̂⊥ · b̂0 = 0. Finite Larmor radius effects in Eq. 1
are omitted for simplicity. The parallel electric field is
E‖ = −∇ψ, where

∇ψ · b̂ = ∇φ · b̂ +
∂A‖
∂t

. (2)

The gyrokinetic Poisson equation in the long wavelength
approximation for the electrostatic potential is,

(
ρs
λD

)2∇2
⊥φ = −qiδni + qeδne

ε0
, (3)

where λ2
D = ε0Te/n0e

2, ρs = cs/Ωi, cs =
√
Te/mi,

Ωi = eB0/mi, and δnα =
∫
δfαdv‖. The Ampere’s law

for the vector potential is,
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∇2
⊥A‖ = −n0(qiδui + qeδue) (4)

with n0δuα =
∫
v‖δfαdv‖. Equations 1–4 form a com-

plete system governing the electromagnetic fluctuations
in our model plasma.

Linearizing Eqs. 1–4 and making the ansatz ei(k·x−ωt),
we obtain the linear dispersion relation,

(
ω2

k2
‖v

2
A

− 1)[1 + ζeZ (ζe) + τ + τζiZ (ζi)] = k2
⊥ρ

2
s, (5)

where the Z -function is

Z (ζα) =
1√
π

∫
e−t

2

t − ζα dt

with τ = Te/Ti, ζα = ω/
√

2k‖vα and Alfven speed
vA = B0/

√
µ0n0mi. There are three branches of nor-

mal modes in Eq. 5: a kinetic Alfven wave [13] with
ω = k‖vA

√
1 + k2

⊥ρ2
s for cold ion and adiabatic electron,

an ion acoustic wave with ω = k‖cs for τ � 1, and a
high frequency mode (gyrokinetic version of the plasma
oscillation) [6] with ωH = k‖

k⊥

√
mi
me

Ωi for βe � 1, where
the electron beta is

βe =
n0Te
B2

0/2µ0
.

The restriction on the time step ∆t for kinetic simula-
tions of Eqs. 1–4 is imposed by the ωH mode,

ωH∆t < 1, (6)

and the electron Courant condition,

k‖ve∆t < 1. (7)

These time step restrictions are physically unnecessary
since the modes of interest (shear Alfven waves and
ion acoustic waves) typically have lower frequency ω �
ωH , k‖ve. Recognizing that most of electrons behave
adiabatically for these low frequency modes, a “split-
weight” scheme [11] has been developed for gyrokinetic
particle simulations. Instead of solving for the full per-
turbed distribution function, Eq. 1, this method solves
dynamically the kinetic equation governing the nonadia-
batic part of the electron response. This is much like the
usual analytic formulation [14] and Eqs. 1–4 are solved
exactly. Since the perturbed momentum, pressure, and
even higher order moments need to be calculated from
the electron distribution function which is evolved ki-
netically, this method has to treat very accurately the
dynamics of thermal electrons that contribute predomi-
nantly to these moments. Therefore, while it removes the
numerical noise associated with the adiabatic response,
this scheme still needs to observe [15–17] the time step
restrictions of Eqs. 6 and 7, and is subject to the nu-
merical noise of the undamped ωH mode. Nonetheless,

the concept of treating only the nonadiabatic response
dynamically does inspire the development of the present
hybrid model.

We now formulate a fluid-kinetic hybrid model that
can overcome the electron Courant condition and remove
the unphysical ωH mode by solving approximately, rather
than exactly, Eqs. 1–4. Noting that the phase velocity of
the shear Alfven wave and the ion acoustic wave are typ-
ically much smaller than the electron thermal velocity,
we can expand the linear solution of Eq. 1 for electron,

δfe =
k‖v‖

k‖v‖ − ω
eψ

Te
f0 =

eψ

Te
f0(1 +

ω

k‖v‖
+ · · ·).

In this expansion, the small parameter δm � 1 is the
ratio of the wave phase velocity to the electron thermal
velocity, i.e., for the shear Alfven wave,

ω

k‖v‖
∼ vA√

2ve
= (

me

βemi
)1/2 ≡ δm,

and for the ion acoustic wave, δm ≡ √
me/mi. δm rep-

resents the deviation from the adiabatic response. When
δm < 1, we can expand Eqs. 1–4 based on δm and solve
them order by order. Formally, the parallel electric field
potential ψ and distribution function fe are expanded,

ψ = ψ(0) + ψ(1) + · · · ,

fe = f0e
eψ
Te + δg(1)

e + · · · .

In the lowest order, ψ = ψ(0) and fe = f0e
eψ(0)/Te ,

and all electrons are adiabatic and can be described by a
fluid model. In particular, the density is governed by the
continuity equation which can be obtained from Eq. 1,

∂δne
∂t

= −B · ∇n0δue
B

. (8)

The vector potential evolves according to Eq. 2,

∂A‖
∂t

= b̂ · ∇(ψ − φ). (9)

These two dynamical equations are closed by field equa-
tions, i.e., the Poisson equation,

(
ρs
λD

)2∇2
⊥φ = −qiδni + qeδne

ε0
, (10)

and the Ampere’s law,

n0qeδue = −∇2
⊥A‖ − n0qiδui. (11)

The lowest order solution for the parallel electric field is,

e
eψ(0)

Te − 1 =
δne
n0

. (12)
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Equations 8–12 are a complete set for the fluid electron
model in the lowest order in δm.

In the first order in δm, we treat the nonadiabatic re-
sponse using the electron kinetic equation, Eq. 1, with
the perturbed field from the lowest order solution,

D

Dt
δg(1)
e = f0

e

Te
e
eψ(0)

Te (−ψ(0)
t +

∇φ×B
B2

· ∇ψ) (13)

With ψ
(0)
t = ∂ψ(0)/∂t which can be evaluated from the

lowest order solution of Eqs. 8 and 12,

e

Te
ψ

(0)
t = −B · ∇δue

B
. (14)

The parallel electric field with the first order correction
ψ = ψ(0) + ψ(1) can be obtained from the fe expansion,

e
eψ
Te − 1 =

δne
n0

− δn
(1)
e

n0
(15)

with δn
(1)
e =

∫
δg

(1)
e dv‖. Equations 13–15 form a com-

plete system for the first order correction of the nona-
diabatic response. This procedure can be repeated to
achieve accuracy to higher order in δm.

We now examine the linear dielectric properties of the
hybrid electron model with first order accuracy in δm,
Eqs. 8–15. Ion dynamics are treated using the usual gy-
rokinetic equation, Eq. 1. Linearizing these equations,
we obtain the dispersion relation,

(
ω2

k2
‖v

2
A

− 1)[
1

1− ζeZ (ζe)
+ τ + τζiZ (ζi)] = k2

⊥ρ
2
s. (16)

As expected, this dispersion relation of the hybrid model
is a result of a small parameter expansion of the drift
kinetic dispersion relation, Eq. 5,

1
1 + ζeZ (ζe)

= 1− ζeZ (ζe) + · · · , for ζe ∼ δm � 1.

Note that the crucial kinetic effect, Landau damping, is
retained rigorously in this expansion. This hybrid model
can be regarded as a nonlinear closure scheme. Unlike
the gyrofluid closure [10] which only treats linear wave-
particle interactions, i.e., phase mixing, the hybrid model
preserves faithfully nonlinear kinetic effects, e.g., particle
trapping by waves. In the limit of small δm, the hybrid
model recovers the exact kinetic results. What is more,
it has superior numerical properties as compared to the
fully kinetic model. First, there are only two branches
of normal modes in Eq. 16: the shear Alfven wave and
the ion acoustic wave. The unphysical high frequency
ωH mode is explicitly removed from the hybrid model
because of the adiabatic electron response in the lowest
order of expansion. Thus, the numerical noise and the
time step restriction (Eq. 6) associated with this mode
are removed analytically. This results in a lesser required

number of particles and a larger time step in the simu-
lations. Secondly, the hybrid model overcomes the elec-
tron Courant condition of Eq. 7. In the lowest order with
the fluid equations, the time step restriction is the shear
Alfven wave or the ion acoustic wave frequency ωA,

ωA∆t < 1. (17)

In the higher order with kinetic corrections, the time step
restriction is the transit time of resonant electrons with
a low velocity v‖ ∼ vA, cs. This is identical with the
time step of Eq. 17. Therefore, unlike the fully kinetic
approach [15–17] where numerical accuracy requires the
observation of Courant condition, our hybrid model pre-
serves accurate electron response without the constraint
of the Courant condition for both kinetic Alfven wave
and ion acoustic wave.

βe

kinetic

hybrid

ω

−γ

r
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10-2
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FIG. 1. Kinetic Alfven wave real frequencies ωr/Ωi (upper
curves) and damping rates −γ/Ωi (lower curves) vs. electron
beta. Solid lines are kinetic results, dashed lines are hybrid
model results, and “+” points are simulation results.

While the hybrid electron model is valid for any low
frequency modes including kinetic Alfven waves and ion
acoustic waves, here we study the kinetic shear Alfven
wave in a shearless slab to demonstrate the utility of the
hybrid model. In these gyrokinetic particle simulations,
the electron dynamics is treated using Eqs. 8–15 and the
ion contribution is omitted for simplicity (the ion acoustic
wave is suppressed). The corresponding analytic disper-
sion relations of Eqs. 5 and 16 are shown in Fig. 1. The
hybrid model results (dashed line) agree with the exact
kinetic results (solid lines) for βe > me/mi, i.e., δm < 1.
The simulation results (“+”) also agree very well with the
analytic results of the hybrid model. The simulation pa-
rameters are mi/me = 1837, k⊥ρs = 0.4, k‖/k⊥ = 0.01,
and 0.001 < βe < 0.2. The number of spatial grids is
Ng = 64, the number of electrons is Np = 10000, and
time step is ωA∆t = 0.1 (which is required for integration
of a simple oscillator with frequency ωA using a second
order Runge-Kutta method). For the high-βe cases, this

3



time step violates the electron Courant condition of Eq. 7
and the grid size is also larger than the collisionless elec-
tron skin depth, yet accurate results are obtained. Thus
the issue of resolving the skin depth in a fully kinetic
model [16,17] is removed from our hybrid model.

The nonlinear simulation result for βe = 0.0125 is
shown in Fig. 2. The amplitude of the magnetic per-
turbation is oscillatory (solid line) due to the trapping of
resonant electrons. The bounce frequency ωb in Fig. 2 is
close to the theoretical estimate of ωb = k‖ve

√
eψ/Te (in

the simulation eψ/Te = 0.0025). At the minimum of the
field perturbation, the electron distribution function also
exhibits population inversion around the resonant point.
In an otherwise identical linear simulation (dashed line)
the magnetic perturbation decays exponentially. The ob-
servation of particle trapping in the nonlinear simulation
shows that the hybrid model faithfully preserves this im-
portant nonlinear kinetic effect.

δB
/B

0

0.0006

-0.0006

0

0 20001000

Ω  ti
FIG. 2. Nonlinear simulation of kinetic Alfven wave ex-

hibits oscillation in amplitude of perturbed magnetic field
(solid line), while linear simulation shows exponential decay
(dashed line).

It is clear from Fig. 1 that the electromagnetic version
of the hybrid electron model is not valid for βe ≤me/mi.
In this regime, the shear Alfven wave has a phase ve-
locity faster than the electron thermal velocity. Since
simulations need to resolve the fast time scale of this in-
ertial Alfven wave anyway, electrons do not place any ad-
ditional numerical constrain. Therefore, a conventional
fully kinetic treatment is warrant. In such low beta plas-
mas, we can also extend the hybrid model to the electro-
static limit which is of more practical interest. Here,
the magnetic perturbation is negligible in most cases
because the fluctuating current is very small and elec-
trostatic fluctuations dominate the dynamics. Thus for

βe ≤ me/mi, simulations can be reduced to an electro-
static one (effectively βe ∼ 0). Here the smallness param-
eter is the ratio of sound speed to electron thermal speed,
δm ≡

√
me/mi. In the lowest order in δm, electrons are

adiabatic and we only need Eq. 10. The next order nona-
diabatic correction is governed by Eq. 13. As expected,
the linear dispersion relation of this electrostatic system
has only one normal mode: the ion acoustic wave. The
unphysical ωH mode, which has a thermal fluctuation
level much higher than that of the ion acoustic wave [6],
is again explicitly removed. Furthermore, the electron
Courant condition can be violated. These are the ad-
vantages of the hybrid model in the electrostatic limit
as compared to the electrostatic split-weight scheme [11]
which is fully kinetic.
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