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Abstract

Subtleties of implementing the standard perfectly conducting wall bound-

ary condition in a general toroidal geometry are clari�ed for a mixed scalar

magnetic �eld representation. An iterative scheme based on Ohm's law is

given.
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I. INTRODUCTION

Boundary conditions can play a non-trivial role in the solution of the partial di�erential

equations [1] arising from the continuum modeling of fusion plasmas [2,3]. One example

is the perfectly conducting wall, or the ideal, boundary condition for nonlinear resistive

magneto-hydrodynamics (MHD) simulations. A perfectly conducting wall implies the nor-

mal magnetic �eld and the parallel electric �eld both vanish at the boundary. This can

be trivially implemented if the resistive MHD equations are solved in the primitive vari-

ables B and E: In practice, however, this is often not the case due to other considerations.

For example, MH3D [2] has employed a mixed scalar representation for the magnetic �eld,

equation (1),

B = r �r'+
1

R
r?F +

R0

R
I'̂;

in order to decouple the fast, but stable, compressional wave from the shear Alfv�en wave.

F and I are not independent, and are related by the divergence-free constraint for B in the

form of a Poisson equation for F with I an e�ective source term.

Using Faraday's law, we show that axisymmetry presents an unusual and fragile situation

that  = 0 and @F=@n = 0 satisfy the three ideal boundary constraints simultaneously. The

breaking of the axisymmetry convolutes the primitive variables enough that the boundary

condition can only be satis�ed iteratively. The formulation based on Faraday's law becomes

fatally awed if the normal of the outer most magnetic surface is perpendicular to the

toroidal direction anywhere on the boundary, n̂ � r' = 0:

We propose an alternate formulation based on Ohm's law. Ideal boundary condition

implies that the tangential plasma current vanishes on the boundary of a resistive plasma.

The poloidal component of the tangential current is found to provide an inhomogeneous

Neumann boundary condition for the toroidal �eld evolution, equation (22). The toroidal

component of the tangential current naturally gives rise to an inhomogeneous Dirichlet

condition for evolving the Laplacian of  ; equation (24). The ux function is inverted

from its Laplacian with a homogeneous Dirichlet boundary condition, equation (18). This
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formulation is well de�ned for arbitrary toroidal geometry and makes a smooth transition

if the con�guration is axisymmetric. It also clari�es that the optimal strategy to study

magnetic evolution is to follow the toroidal �eld I and the dominant component of the

toroidal current �? � r2

?
 � 1

R

@ 

@R
:

The rest of the paper is organized as follows. In section II we introduce the mixed scalar

representation of the magnetic �eld and discuss the general boundary condition requirement

associated with resistive MHD. The subtleties of implementing the ideal boundary condition

in a general toroidal geometry are clari�ed in section III using Faraday's law. An alternate,

improved, formulation based on Ohm's law is given in section IV.

II. SCALAR MAGNETIC FIELD REPRESENTATION AND MHD

Three dimensional MHD codes such as MH3D use a mixed poloidal ux and toroidal

�eld representation for the magnetic �eld. This can be seen by writing the vector potential

into toroidal and poloidal plane components

A = r?(f + f0)� '̂+  r';

in the standard (R;Z;') cylindrical coordinates with ' the toroidal angle. Here r? �

R̂
@

@R
+ Ẑ @

@Z
is a gradient in the poloidal plane. Taking the curl of the vector potential, one

�nds the magnetic �eld of the form

B = r �r'+
1

R
r?F +

R0

R
I'̂; (1)

with F � @f

@'
and R0 the major radius. The introduction of f0(R;Z) in the vector potential

is to separate out the strong axisymmetric toroidal �eld, for the total toroidal �eld is

R0

R
I = �r2

?
f �r2

?
f0:

The standard choice for f0 is based on the single wire model,

�r2

?
f0(R) =

R0

R
B'0:
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In dimensionless form (scale B by B'0),

I = 1 + �~I with ~I � �
R

a
r2

?
f:

The inverse aspect ratio is � � a=R0 and a is the minor radius.

The standard MHD algorithm is to solve  and ~I from the magnetic induction equation,

and then �nds f from

r2

?
f = �

a

R
~I; (2)

a condition required to enforce divergence-free of the magnetic �eld.

For resistive MHD, the dissipative term �r2
B in the induction equation, which is of

second order, requires boundary conditions for a proper solution. Altogether, the induction

equation and diverge-free constraint demand three separate boundary conditions. These are

exactly satis�ed by the ideal boundary conditions of vanishing normal magnetic �eld and

tangential electric �elds.

There is freedom in converting the vector induction equation into scalar equations, es-

pecially for  : The original spectral MH3D solves the time evolutions for ~I and  of the

form

@ ~I

@t
= lower order terms + �r2

?
~I; (3)

@ 

@t
= lower order terms + �r2

?
 : (4)

By lower order terms we have actually included those second order toroidal derivative terms

that are treated explicitly and require no boundary condition (periodic, to be precise). The

later version of MH3D, which uses real representation for �eld variables, chooses to follow

the time evolution of r2

?
 directly for numerical accuracy considerations of �nite element

representation. The equation is of a familiar form

@

@t
r2

?
 = lower order terms +r2

?
(�r2

?
 ):

A boundary condition for r2

?
 is required in this case.

4



III. SUBTLETIES OF BOUNDARY CONDITION IMPLEMENTATION IN A

GENERAL TOROIDAL GEOMETRY

A. General consideration using Faraday's law

For a perfectly conducting wall, the E&M boundary condition is

B � n̂jbdy = 0 and n̂�Ejbdy = 0: (5)

The electric potential � is a constant on the wall, which is usually set to be zero

�jbdy = 0:

The wall is rigid so no plasma can ow out

v � n̂jbdy = 0:

Translating these physical boundary condition into constraints for the scalar variables

can be problematic. To illustrate the subtleties involved, let's introduce a new set of, VMEC-

like, coordinates (s; �; ') [4]. The s is an equilibrium toroidal magnetic ux label, s being

one on the outer-most magnetic surface (where the ideal wall resides) and vanishing at the

equilibriummagnetic axis. We have assumed that the reference equilibrium is made of closed

magnetic surfaces. The � is a poloidal angle, which can be the VMEC poloidal angle, or

a magnetic one. The toroidal angle ' is a geometrical one, coincides with the cylindrical

coordinates.

The magnetic �eld is

B = r �r'+
1

R
r?F +R0Ir':

The normal component of the �eld can be found, with a scaling factor, by dotting B with

rs;

B � rs = r �r' � rs+
1

R
r?F � rs+R0Ir' � rs:
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Setting it to be zero, one has

r �r' � rs+
1

R
r?F � rs+R0Ir' � rs = 0:

The form of this equation implies that it can either serve as an inhomogeneous Dirichlet

boundary condition for I or as an inhomogeneous Neumann boundary condition for F:

The boundary condition on the tangential electric �eld can be straightforwardly applied

on Faraday's law. Faraday's law can be written as

@A

@t
= �E+r�

with

A = r?(f + f0)�Rr'+  r':

Applying rs� on this equation, one has

@

@t
rs�A = �rs�E+rs�r�:

On the boundary, both rs�E and rs�r� vanish, so

rs�Ajbdy = rs�A0jbdy;

with A0 the initial vector potential. This vector equation can be broken into poloidal and

toroidal components by dotting it with r� and r':

r� � rs�Ajbdy = r� � rs�A0jbdy; (6)

r' � rs�Ajbdy = r' � rs�A0jbdy (7)

The result is

r� � rs�A = r� � rs� [r?(f + f0)�Rr'] +r� � rs� ( r')

= R(rs � r')[r?(f + f0) � r�]�R[rs � r?(f + f0)](r� � r')

+(r� � rs�r') (8)

r' � rs�A = r' � rs� [r?(f + f0)�Rr'] +r' � rs� ( r')

= �
1

R
rs � r?(f + f0) (9)
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Hence the E&M boundary condition for a three dimensional device is

r �r' � rs+
1

R
r?F � rs+R0(1 + �~I)r' � rs = 0; (10)

R(rs � r')(r?f � r�)�R(rs � r?f)(r� � r') + (r� � rs�r') = C ; (11)

rs � r?f = Cf ; (12)

where C and Cf are time independent functions set by the initial condition.

B. Axisymmetric con�guration

Axisymmetric toroidal con�guration, like that of a Tokamak, simpli�es the boundary

constraints remarkably, and that is also where numerical computation had its greatest success

[2,3]. Axisymmetry implies r' � rs identically vanishes. The most important consequence

is that equations (10, 11, 12) become over-determined,

r �r' � rs+
1

R
r?F � rs = 0; (13)

�R(rs � r?f)(r� � r') + (r� � rs�r') = C ; (14)

rs � r?f = Cf : (15)

The choice of

 = 0 and rs � r?F = 0; (16)

would satisfy the three constraints of the ideal boundary condition simultaneously. We note

that rs �r?F = 0 impliesrs �r?f = Cf (R;Z) since F � @f=@': Equation (16) is nothing

but a homogeneous Dirichlet condition for  and a homogeneous Neumann condition for F:

Despite this simplicity, the boundary condition for ~I is undetermined from this derivation. In

earlier practice [5], the time evolution equation for ~I is supplemented by an inhomogeneous

Dirichlet condition ~I = ~I0 if � is �nite, or a homogeneous Neumann boundary condition if

� vanishes on the edge.
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C. Non-axisymmetric con�guration

Non-Axisymmetry, in principle, removes the over-determinedness or ill-poseness in the

axisymmetric case, of the boundary constraints given in equations (10, 11, 12). In reality, the

possibility of rs � r' 6= 0 makes the matter much trickier. Due to the convoluted nature

of the boundary condition in our scalar variables, it is impossible to satisfy all of them

simultaneously while decoupling the various degrees of freedom (means solving equations

separately). An iterative approach is required, resembling that of feedback control. In

addition, reconstructing an initial pro�le in our scalar variables from other equilibrium

solvers, would require special consideration for satisfying the boundary conditions.

A straightforward iterative scheme to satisfy equations (10, 11, 12) within a time step

is as follows. One �rst applies equation (12) as an inhomogeneous Neumann boundary

condition to �nd f given ~I at previous time step. The obtained f is then substituted into

equation (11) and turns this equation into an inhomogeneous Dirichlet condition to advance

 : With the knowledge of  and f(F ); equation (10) provides an inhomogeneous Dirichlet

condition to advance ~I: In principle, the new ~I can be used as a new source in the Poisson

equation for f to iterate the f;  ; and ~I to desired accuracy within one time step. This is

probably not necessary in practice, since the wall mode is of considerable longer time scale

than the time step that is limited by the Courant-Friedrichs-Lewy condition of the shear

Alfv�en wave. The small discrepancy in the iterative scheme resembles a feed back control

scheme.

The main diÆculties with this iterative scheme are related to the initial pro�le calcula-

tion, i.e. the determination of C and Cf ; and the fatal aw if rs � r' vanishes anywhere

on the boundary. There is also no physical boundary constraint for advancing r2

?
 :

8



IV. ALTERNATE FORMULATION BASED ON OHM'S LAW

A far more robust approach is based on Ohm's law, which also has the merit of a

smooth transition to the reduced boundary conditions of equation (16) for axisymmetric

con�gurations. Recall that the normal magnetic �eld is proportional to

B � rs = r �r' � rs+
1

R
r?F � rs+R0Ir' � rs:

Perfectly conducting wall implies B � rs = 0 so

r �r' � rs+
1

R
r?F � rs+R0Ir' � rs = 0:

This will serve as an inhomogeneous Neumann boundary condition

rs � r?F = �R0RIr' � rs (17)

for solving

r2

?
F = �~I 0=R;

after imposing  a constant on the surface, for example,

 = 0; (18)

which preserves half of the constraints for the axisymmetric case.

The boundary conditions for ~I and �? are provided by E � rs = 0 in the case of

resistive MHD, albeit they have to be implemented iteratively, which is equivalent to the

feedback control of ux leakage through a resistive wall. The reason to advance �? instead

of other variants of r2

?
 will become clear later. Recall the Ohm's law for a resistive plasma,

E+ v �B = �J:

Apply rs� on the Ohm's law, one has

rs�E+rs� (v�B) = �rs� J:

For a perfectly conducting wall,
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rs�E = 0;

rs � v = 0;

rs �B = 0:

This implies

rs� J = 0:

The boundary conditions for ~I and �� are obtained by dotting rs� J with r' and

r'�rs: Recall that the displacement current is ignored in the usual MHD approximation,

so

J = r�B = J''̂+r~I �r'�
1

R
r?F

0 �r'+
1

R2
r? 

0:

Here a prime denotes toroidal derivative, for example, F 0 = @F=@': The toroidal current J'

is related to  and F via

RJ' = ��? �
1

R

@F

@Z
:

The tangential current is

rs� J = RJ'rs�r'+ (rs � r')r?
~I � (rs � r?

~I)r'

�
1

R
(rs � r')r?F

0 +
1

R
(rs � rF 0)r'+

1

R2
rs�r? 

0: (19)

Hence

rs� J � r' = �
1

R2
rs � r?

~I +
1

R3
rs � r?F

0 +
1

R2
r? 

0 � (r'�rs) (20)

rs� J � (r'�rs) = �RJ'(rs�r')2 + (rs � r')r?
~I � (r'�rs)

�
1

R
(rs � r')r?F

0 � (r'�rs) (21)

rs� J � r' = 0 gives an inhomogeneous Neumann boundary condition for ~I

rs � r?
~I =

1

R
rs � r?F

0 +r? 
0 � (r'�rs): (22)

rs� J � (r'�rs) = 0 provides an inhomogeneous Dirichlet boundary condition for �� ;

which is related to RJ' by �� = �RJ' �
1

R

@F

@Z
:
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�� = �
1

R

@F

@Z
�

1

(rs�r')2
[(rs � r')r?

~I � (r'�rs)

�
1

R
(rs � r')r?F

0 � (r'�rs)]: (23)

Equation (23) is just of the right form upon examining the time evolution of �? ;

@

@t
�? = lower order terms + �?[�(�? +

1

R

@F

@Z
)]:

The exact boundary condition requirement of this equation is satis�ed by a rearrangement

of equation (23),

�� +
1

R

@F

@Z
= �

1

(rs�r')2
[(rs � r')r?

~I � (r'�rs)

�
1

R
(rs � r')r?F

0 � (r'�rs)]: (24)

In the limit of axisymmetry (rs � r' = 0), the general boundary condition, equa-

tions (17,18,22,24), recovers the reduced ideal boundary condition discussed in section III

using Faraday's law, and supplements two additional boundary conditions, from �rst prin-

ciple, to the solution of ~I and �? :

In conclusion, a complete set of physics-based boundary conditions are in place to follow

the magnetic evolution in a general toroidal geometry with a perfectly conducting wall [6].
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