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Numerical Study of Global Stability of

Oblate Field-Reversed Configurations

E. V. Belova, S. C. Jardin, H. Ji, M. Yamada, R. Kulsrud

Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

Abstract

Global stability of the oblate (small elongation, E < 1) Field-Reversed Configuration

(FRC) has been investigated numerically using both three-dimensional magnetohydrody-

namic (MHD) and hybrid (fluid electrons and kinetic ions) simulations. For every non-zero

value of the toroidal mode number n, there are three MHD modes that must be stabilized.

For n = 1, these are the interchange, the tilt and the radial shift; while for n > 1 these are the

interchange and two co-interchange modes with different polarization. It is shown that the

n = 1 tilt mode becomes an external mode when E < 1, and it can be effectively stabilized

by close-fitting conducting shells, even in the small Larmor radii (MHD) regime. The tilt

mode stability improves with increasing oblateness, however at sufficiently small elongations

the radial shift mode becomes more unstable than the tilt mode. The interchange mode

stability is strongly profile dependent, and all n ≥ 1 interchange modes can be stabilized for

a class of pressure profile with separatrix beta larger than 0.035. Our results show that all

three n = 1 modes can be stabilized in the MHD regime, but the stabilization of the n > 1

co-interchange modes still remains an open question.

PACS numbers: 52.35.Py, 52.55.Hc, 52.65.Rr, 52.65.Kj
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I. INTRODUCTION

The Field-Reversed Configuration (FRC) is a compact toroid with negligible toroidal

field, in which plasma is confined by a poloidal magnetic field associated with toroidal dia-

magnetic current carried by the plasma. The unique fusion reactor potential of the FRC

(compact and simple geometry, translation properties and high plasma beta) has motivated

extensive experimental and theoretical research1–11. Most of the work done so far has been

concentrated on elongated (prolate) configurations with elongation E ∼> 2, where elongation

is defined as the ratio of the separatrix half-length to its radius, E = Zs/Rs. One of the im-

portant issues considered is the FRC stability with respect to low n magnetohydrodynamic

(MHD) modes, where n is toroidal mode number.

There is a clear discrepancy between the predictions of standard MHD theory that

many modes should be unstable on the MHD time scale, and the observed macroscopic

resilience of FRCs in experiments, where prolate FRCs have been produced successfully by

several formation techniques with lifetimes on the order of hundreds of Alfvén times1. Since

most FRC experiments have been performed in the kinetic regime, with small values of the

parameter s̄ (s̄ ∼ 1− 4), this discrepancy is commonly attributed to kinetic effects, missing

from the standard MHD model. Here the kinetic parameter s̄ measures the number of ion

Larmor gyroradii in the configuration, and is defined by

s̄ =
∫ Rs

R0

rdr

Rsρi
,

where R0 and Rs are the magnetic null and the separatrix radius at the midplane, and ρi

is the local thermal ion Larmor radius. The parameter s̄ indicates the importance of finite

Larmor radius (FLR) effects, which are strong for s̄ ∼ 1, while the s̄ � 1 limit corresponds

to the MHD regime. Numerous calculations including kinetic effects have been performed

in order to explain the observed stability of prolate FRCs3–7. A theoretical picture is now

emerging of how kinetic effects can stabilize the low n modes for small enough values of s̄,

in particular the n = 1 internal tilt mode8.

While the mechanism providing low s̄ stability to prolate FRCs is of considerable scien-

tific interest, the fusion reactor potential of the FRC is enhanced significantly if this stability
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is extended to the large s̄ (s̄ ∼ 20− 40) MHD-like regime. While the gross stability of pro-

late FRCs at large s̄ cannot be completely ruled out, it has yet to be demonstrated either

experimentally or theoretically. Thus, we are motivated to study an extended class of FRC

configurations for stability at large s̄.

Oblate FRCs (E < 1) are known to have different stability properties than prolate

FRCs9–12. In particular, the n = 1 internal tilt mode in the prolate FRC becomes an

external mode for oblate configurations, and thus can potentially be stabilized by close-

fitting conducting shells, even in the large s̄ MHD regimes. In spheromak experiments, for

example, it has been demonstrated that the tilt mode can be suppressed by figure-8 coils13

when the plasma shape is oblate14. An experimental study of oblate FRC stability has

been performed recently in the merging experiments in Japan15. In these experiments, a

slow-formation of the FRC has been developed using two merging spheromaks with opposite

magnetic helicities. It has been reported that the stability of the n = 1 tilt mode has been

greatly improved by a combination of the oblate shape, low s̄, and insertion of a central

conductor and transformer.

These considerations motivated the present numerical work, in which the possible means

of stabilization of the oblate FRCs are investigated using three-dimensional (3D) nonlinear

MHD and hybrid (fluid electrons and kinetic particle ions) simulations. For every non-zero

value of the toroidal mode number n, there are three MHD modes that must be stabilized.

For n = 1, these are the interchange (or sausage), the tilt and the radial shift; while for

n > 1 these are the interchange and two co-interchange modes with different polarization.

The effects of the separatrix shaping (elongation), conducting shells, profile effects, and

kinetic effects on the stability of these modes are all considered. The linear stability of the

n = 1 modes in oblate FRCs is discussed in detail in the next Section. Simulation results

concerning the nonlinear evolution and stability of the n > 1 modes are presented in the

Section III, and results of the hybrid simulations are described in Section IV. Conclusions

and discussion are given in Section V.

II. LINEAR n = 1 MODES

There are three types of n = 1 modes which can be unstable in oblate FRC: the tilt
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mode, which has an odd symmetry of vr relative to midplane; and two even modes - the

radial shift mode and an interchange (sausage) mode.

(a)

(b)

(c)

    

Fig.1 Poloidal mode structure of the n = 1 (a) tilt, (b) radial shift, and (c) interchange

modes, obtained in the different linear MHD simulations with E = 0.6− 0.7. Shown are

vector plots of the poloidal velocity in r − z plane.

Typical poloidal structures of these modes are shown in Fig. 1, where vector plots of

the poloidal component of the fluid velocity obtained in MHD simulations with different

pressure profiles and initial perturbations and with E ∼ 0.6−0.7, are shown. In this Section

the possibility of stabilization of these n = 1 modes in the MHD regime is discussed.

A. Numerical model

The MHD simulations were performed using the MHD version of our FRC stability

code described earlier7,11. In the MHD version of the code, the nonlinear resistive one-fluid

MHD equations are advanced using a second-order, explicit, time-stepping scheme with

fourth-order accurate spatial derivatives. A cylindrical grid is employed and finite difference
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approximations are used in all three directions (r, φ, z). A fine resolution of (100×32×150)

grid points has typically been used in the MHD runs. Periodic boundary conditions are

applied in both the toroidal and axial directions, and geometric boundary conditions are

implemented at r = 0. The cylinder length is taken to be large enough, so that periodic

boundary conditions in the axial direction have no effect on the stability. At the radial

wall, r = Rc, (or at the conformal shell location, if present) perfectly conducting boundary

conditions for the velocity and non-equilibrium component of the field are used, (δV = 0,

δA = 0). A two-dimensional (2D) self-consistent equilibrium is found by solving the Grad-

Shafranov equation for the field and plasma pressure including equilibrium flows, and this is

used as an initial condition for 3D stability calculations. The plasma temperature is taken

as constant throughout the plasma so that the density varies as ρ ∼ p. The vacuum region

is treated as a low density plasma region, and a small cutoff density (typically 0.05 to 0.1

fraction of the peak density) is applied to avoid the severe time step restrictions that the

Courant condition would impose. A nonuniform resistivity profile with resistivity inversely

proportional to the plasma density is used, so that the ”vacuum” is modeled as a highly

resistive, low density plasma. The linearized form of the MHD equations has been included

in the code as an option, and this has been used for the stability studies of marginally

unstable modes.

B. Tilting and shifting modes

The n = 1 tilt instability is thought to be the most dangerous MHD instability in prolate

FRCs because it is a global internal mode which cannot easily be stabilized by kinetic effects

or by external means. However, it was shown both analytically and in numerical spectral

stability calculations that the internal tilt is stable when E ≤ 1. Nevertheless, two other

n = 1 free boundary modes, the external tilt mode and the radial shift mode can be unstable

when the separatrix shape is oblate. It was found by Rosenbluth and Bussac12 that a close-

fitting conducting shell can stabilize these modes in oblate spheromak configurations. In

this work we have performed MHD simulations to study the stabilization of the external tilt

and shift modes in oblate FRCs with E ≤ 1.

Our simulations show that the growth rate of the tilt instability is not very sensitive
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to the equilibrium pressure profiles, and that it is approximately equal to γ0 = VA/Zs for

elongations E ∼ 1. Here VA is the Alfvén velocity defined by VA = B0/
√

4πρ0, B0 is the

magnetic field amplitude at r = 0 at the midplane, ρ0 is the plasma density at the magnetic

null, and Zs is the separatrix half-length at r = 0. The tilt and the radial shift mode

calculations have been performed for a plasma pressure profile

p(x) = 0.5p0[tanh(ax+ b) + 1], x = ψ/ψ0. (1)

Here ψ0 is the value of the flux at the magnetic null point (ψ0 < 0), and a = 1.5, b = −3.3

are the pressure profile parameters. Note that x > 0 inside the separatrix and x < 0 outside

of it. For this equilibrium, the separatrix beta is finite, but small, p(0)/p(1) = 0.05. The

separatrix radius at the midplane is xs = Rs/Rc ≈ 0.7.

It has been suggested earlier that the external tilt instability in the FRC is suppressed

when the separatrix elongation is small enough10. The stabilization is provided by the

strong shaping vacuum fields, which are needed to form the strongly oblate FRC (with

E ∼< 0.5). The strong curvature of these mirror-like fields provides a restoring force to

the tilt-like perturbation. Our simulations confirm this stabilization. However we find that

when E ∼< 0.5 a radial shift mode becomes unstable with a growth rate that increases as E

decreases.

γ / γ0
tilt

shift

0

0.5

1

1.5

2

0.4 0.5 0.6 0.7 0.8 0.9 1

E

    

Fig.2 Growth rates of the tilt and the radial shift instabilities versus elongation.
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Fig. 2 shows the tilt and the radial shift mode growth rates calculated in the linearized

MHD simulations for different separatrix elongations using the equilibrium pressure profile

given by Eq. (1). The elongation was changed from E = 0.87 to E = 0.42 by varying the

mirror ratio of the external field from rm = 1.0 to rm = 2.4, while keeping the amplitude of

the reversed field on the axis (at the midplane) and the separatrix radius the same. (The

mirror ratio rm is defined as the ratio of the magnitude of vacuum magnetic field on the axis

near the end of the cylinder to that at the midplane, rm = B(r = 0, z = Zc)/B(r = 0, z = 0).)

As the elongation decreases, the growth rate of the tilt mode becomes smaller, while the

growth rate of the radial shift mode increases. As the elongation decreases below E = 0.55,

the shift mode becomes more unstable than the tilt mode. Note that this is very similar

to the behavior of tilt and shift instabilities in a spheromak16,17, where the mode crossing

occurs approximately at E = 0.6. As can be seen from Fig. 2, at the mode crossing point

the growth rate is reduced only by a factor of three from that of the tilt mode growth rate

for the equilibrium with E ∼ 1. However, the poloidal structure of the tilt mode changes

significantly as the elongation changes from E = 0.7 to E = 0.5. At E = 0.69 the tilt mode

structure is shown in Fig. 1(a). At smaller E, the mode is localized near r = 0, and becomes

nearly singular at the X points.

C. Wall stabilization

The possibility of stabilizing the tilt mode for elongations in the range 1 > E > 0.5 by

placing a conducting shell close to the separatrix has been investigated in MHD simulations.

In these simulations the pressure profile was taken to be

p(ψ) = p0




0.5x2[tanh(ax+ b)− tanh(b)] x > 0

0 x ≤ 0
(2)

For this profile, the plasma pressure and toroidal current are both equal to zero at the

separatrix and in the external region. Simulations have been carried out for a = 3.0, b =

−0.5, and the external field mirror ratio rm = 1.5 corresponding to elongation E = 0.64.

Both uniform resistivity and resistivity inversely proportional to the equilibrium plasma

density (normalized to the null-point) have been used.
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Fig.3 (a) Equilibrium flux contours from the simulations with E = 0.64; the position of

the conducting wall (d = 0.06) is indicated by a thick line. Tilt mode structure obtained

in the simulation with d = 0.07: (b) contour plot of toroidal velocity component Vφ, and

(c) vector plot of poloidal velocity.

The equilibrium poloidal flux contours for these calculations are shown in Fig. 3(a),

where the thick line indicates the position of the conformal conducting shell, chosen to

follow an external flux surface. The 2D equilibria for this set of simulations is calculated in

a full cylinder as before, but perfectly conducting boundary conditions are applied at the

shell in the 3D simulations.

The calculated growth rate of the tilt mode is shown in Fig. 4 as a function of a

separation d between the separatrix and conducting wall for uniform resistivity (solid line)

and nonuniform resistivity (dashed line). Here the parameter d = (Rw − Rs)/Rs is defined

as the distance from the separatrix to the conformal conducting wall normalized to the

separatrix radius, as calculated at the midplane. The value of d = 0.2 corresponds to the

case with no conducting wall inside the cylinder (Rw ≥ Rc). As can be seen from Fig. 4, the

growth rate is reduced when the conducting wall is moved in closer to the separatrix, and
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complete stabilization occurs at the separation d ≤ 0.06.
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Fig.4 Tilting instability growth rate as a function of the separation between the conducting

wall and the separatrix, d = (Rw − Rs)/Rs, for uniform resistivity (solid line), and

resistivity profile inversely proportional to the equilibrium plasma density (dashed line).

Another way to specify the conducting wall position is by the value of the flux on

the corresponding flux surface. The data points indicated on Fig. 4 correspond to the flux

values ranging from ψ =5% to ψ =100% of the maximum flux at the cylinder wall (ψm

at z = Zc and r = Rc), where the marginal separation (d = 0.06) occurs at ψ =15% of

ψm (for uniform resistivity). The position of the conformal conducting wall corresponding

to marginal stability with d = 0.06 is shown on Fig. 3(a). The poloidal structure of the

tilt mode from the calculations close to the marginal stability (d = 0.07) is displayed on

Fig. 3(b,c), where the contour plot of the toroidal velocity component and the vector plot of

poloidal velocity are shown.

The separation at which the tilt mode becomes stabilized depends somewhat on the re-

sistivity profile, and as the resistivity of the plasma between the magnetic separatrix and the

conducting shell is increased, the shell has to be moved closer to the separatrix for stability.

The results shown in Fig. 3 and Fig. 4 (solid line) have been obtained in the simulations for

a uniform resistivity, which corresponds to Lundquist number S = RcVA/η = 2.5 · 103. In

the same set of simulations with resistivity profile taken to be inversely proportional to the
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equilibrium density, tilt stability has been obtained for the conducting wall position corre-

sponding to d ≤ 0.05 (ψ = 0.12ψm). In these calculations, the cutoff density was nc = 0.1n0,

and the resistivity of the plasma outside the separatrix was about an order of magnitude

larger than that in the simulations with a uniform resistivity profile. From Fig. 4 it is seen

that, when the separation between the conducting wall and the separatrix is large, the tilt

growth rate is independent of the resistivity, as expected for an ideal instability. However,

growth rates at small separations do depend on the plasma resistivity on the open field lines,

indicating that the instability persists as a resistive one when it is stabilized in ideal MHD18.

The conducting wall stabilization also depends on the current profile close to the sepa-

ratrix. Configurations with toroidal current reducing smoothly to zero near the separatrix

have been found to be more stable than configurations with significant current at the separa-

trix. The increased stability of the equilibria with zero or small current near the separatrix

can be understood by considering the forces driving the instability. The tilt mode structure

from the calculations performed near marginal stability is shown in Fig. 3(b,c). The singular

behavior near the X points seen in Fig. 3(b,c) can be explained by a magnetic pressure im-

balance across the perturbed X points, which is produced by the tilt motion and drives the

instability12. Since the destabilizing force is localized near the separatrix, equilibria with a

flux hole or with the current reducing smoothly to zero near the separatrix are more stable.

This behavior is similar to the results obtained regarding the tilt mode in spheromaks, where

the stabilizing influence of the flux hole and the current smoothing in the neighborhood of

the separatrix were shown16,17.

Note that the X-point localized structure of the tilt mode seen on Fig.3(b,c), can be an

important factor in the recently proposed tilt stabilization mechanism19. This mechanism

takes into account the non-fluid behavior of the electrons trapped in the large curvature

regions close to X points and executing fast toroidal drift motion. Since this drift frequency is

large compared to the mode frequency, the electrons do not respond to the tilt perturbation

in an MHD way. The ion motion becomes restricted as well due to the quasi-neutrality

constraint, limiting the class of possible MHD perturbations. The self-consistent examination

of this effect will require a kinetic description for the electrons which is not included in our

10



present model.

In addition to the conducting wall stabilization described above, the effect of a central

conductor on the tilt mode stability has also been investigated in MHD simulations with

E = 0.63. The central stack was assumed to be a perfectly conducting cylinder of radius rc.

Line tying effects were included (that is, the equilibrium magnetic field lines were allowed

to cross the surface of the conductor). Considerable reduction in the instability growth rate

was observed under these conditions. In particular, for the values of rc/Rc = 0.0, 0.15, and

0.20 the tilt mode growth rate was calculated to be γ/γ0 = 0.96, 0.68, and 0.55. Thus the

growth rate is reduced almost by a factor of two when the radius of the central conductor

is 20% of the external wall radius. These calculations are consistent with the results of the

oblate FRC experiments15, where the insertion of a central conductor has been found to

improve the tilt mode stability.

D. Interchange mode stability

Our MHD simulations have shown that unlike the tilt and radial shift modes, the n = 1

interchange (sausage) mode cannot easily be stabilized by a close fitting conducting shell,

even when the shell is placed at the separatrix. However, the stability to interchange modes

is sensitive to the precise distribution of plasma pressure20. We have performed MHD simu-

lations for several FRC equilibria with different pressure profiles and different values of the

separatrix beta, βs, in order to investigate their effect on the n = 1 interchange mode.

In axisymmetric field reversed equilibria, there exists a necessary condition for stability

against pure interchange modes21

(V ′′/V ′ + p′/Γp) > 0, (3)

where V is the volume within a ψ = const surface, V ′ = 2π
∮
dl/B and primes denote

derivatives with respect to poloidal flux, ψ, and Γ = 5/3 is the ratio of specific heats.

The derivation of this condition assumes pure interchange displacements for which n � 1

and the normal displacement X ∼ ξ · ∇ψ (ξ is the displacement vector) is constant along

the magnetic field line. Thus this condition does not apply to the stability of modes with

ballooning structure or to tilt and radial shift modes. The condition (3) was derived in the

limit n� 1, and it can be shown that for these assumptions higher n interchange modes are
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more unstable than the n = 1 interchange mode.

The first term in (3) is positive and logarithmically diverges at ψ = 0, therefore a finite

value of p′/p (p 6= 0) at the separatrix is sufficient for the pure interchange stability of the

flux surfaces near the separatrix. Since the value of the negative term p′/Γp in (3) can

be reduced by increasing the plasma pressure, p, configurations with larger pressure at the

separatrix should be, in general, more stable20.

In order to investigate the dependence of the n = 1 interchange mode growth rate on the

value of ps = p(0)/p(1) (the ratio of the separatrix pressure to the pressure at the magnetic

null point), we have performed linearized MHD simulations using the equilibrium pressure

profile given by Eq. (2) and with E = 0.64. This is the same profile used in the conducting

wall stabilization study of the tilt mode, described above. The linearized version of our MHD

code has been used in these simulations in order to avoid the growth of n > 1 modes. The

initial perturbation (n = 1) of even symmetry (in terms of vr) relative to the midplane was

applied at t = 0. Thus the tilt mode (odd symmetry) did not grow, and the growth rate

of the radial shift mode for this equilibrium was much smaller than that of the interchange

mode. The value of ps in the simulations was changed by adding a constant term to the p(ψ)

profile, which corresponds to adding a uniform background pressure, and thus does not alter

the computed equilibria. Our simulations show that as p(0)/p(1) is increased, the growth

rate of the n = 1 interchange mode decreases, and the mode becomes more localized near

the magnetic null.

The results of these simulations are shown in Figs. 5 and 6, where the dependence γ(ps)

is shown, as well as the change in the linear mode structure with ps. The growth rate is

reduced by an order of magnitude, as the separatrix pressure increases from zero to 0.3pmax.

Figure 6 shows the vector plots of the poloidal velocity in the r−z plane from the simulations

with ps = 0.125 and ps = 0.29. For comparison, the interchange mode structure for the same

equilibrium and zero separatrix pressure, ps = 0.0, is shown in Fig. 1(c). From Fig. 6 it is

seen that as ps is increased, the interchange mode eigenfunction first vanishes at the flux

surfaces near the separatrix. When the plasma pressure at the separatrix is large enough,

the eigenfunction vanishes everywhere and the configuration becomes stable with respect to
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all interchange modes.
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Fig.5 Growth rate of the n = 1 interchange (sausage) mode as a function of the separatrix

pressure ps = p(0)/p(1) for the pressure profile given by Eq. (2).
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Fig.6 The n = 1 interchange mode structure for (a) ps = 0.125, and (b) ps = 0.29 for the

same pressure profile as calculations in Fig. 5.

For the pressure profile given by Eq. (2), the n = 1 stability occurs at p(0)/p(1) ∼> 0.35,

as seen in Fig. 5. Note that ps > 0 implies a finite value of plasma density on the open field

lines. While there may be experimental reasons to expect this, for example due to finite ion
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Larmor radius or an externally applied mirror field, it is still desirable to find an interchange

stable equilibrium with a small value of p(0), especially if a close-fitting conducting wall is

to be used for tilt mode stabilization.

Previous calculations20 show that the value of ps at which the interchange mode becomes

marginally stable depends strongly on the pressure profile, and can vary from ps < 0.1 to

ps ∼ 1. In order to study how this value depends on the profile parameters, we have evaluated

the interchange stability criterion, Eq. (3), on the internal flux surfaces using TSC (Tokamak

Simulation Code) code22.

0.3

0.4

0.5

0.6

-2.5 -2 -1.5 -1 -0.5 0

p(
0)

/p
(1

)

b

unstable

stable

(a)

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5

p(
0)

/p
(1

)

c

unstable

stable

(b)

Fig.7 Interchange stability diagram for two different pressure profiles given by Eq. (2) -

(a); and by Eq. (4) - (b).

The results of these calculations are summarized in Fig. 7, where the marginal stability

curves for two different pressure profiles are shown. For the same pressure profile as used in

the above MHD simulations, Eq. (2), the stability diagram is shown in Fig. 7a, where the

value of ps is plotted versus the profile parameter b (larger value of |b| corresponds to a more

peaked pressure profile and smaller elongation). Figure 7a indicates that for the equilibrium

with pressure profile given by Eq. (2) a large pressure on the separatrix, p(0) ∼> 0.3pmax,
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is required to stabilize the interchange modes. Note that for b = −0.5, there is a good

agreement between the initial value MHD simulations (Fig. 5) and the interchange stability

criteria as computed by TSC (Fig. 7a). Namely, extrapolating data shown in Fig. 5, we

obtain the stability threshold (for n = 1 interchange mode) at ps ≈ 0.35, whereas from

Fig. 7a we find the stability condition: ps ≥ 0.33.

The stability diagram for a different pressure profile is shown in Fig. 7b, where

p(x) = 0.5p0[tanh(ax+ b+ cx3) + 1], x = ψ/ψ0, (4)

and a = 1.5, b = −3.3, and c ≥ 0. Figure 7b shows the values of ps corresponding to the

marginal stability plotted versus parameter c. It is seen that the equilibrium with pressure

profile given by Eq. (4) can be stable with respect to interchange modes (n ≥ 1) for very

small pressure on the separatrix (ps ≥ 0.035). This result has been verified in the initial value

linearized MHD simulations, performed for the same pressure profile Eq. (4) and c = 0.2. In

these simulations the n = 1 interchange mode has been found to be stable for ps = 0.035 (as

compared to ps = 0.04 from Fig. 7b). Stable equilibrium pressure and current profiles from

these simulations are shown in Fig. 8, where pressure is normalized to the external magnetic

field pressure (B2
0/4π), and current is normalized to ein0VA.
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Fig.8 Radial pressure (solid line) and current (dashed line) profiles (at the midplane)

stable with respect to the n = 1 interchange mode. Equilibrium p(ψ) is given by Eq. (4)

with a =1.5, b =-3.3, and c =0.2.
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In summary, we have shown that the n = 1 interchange mode can be stabilized by

increasing the plasma pressure on the open field lines. The stabilization is caused by plasma

compression. In general, a relatively large ratio of the separatrix pressure to the maximum

pressure is required for stability. However, this value is profile dependent, and equilibrium

profiles stable with respect to interchange modes, can be found with much reduced pressure

on the separatrix.

III. NONLINEAR EFFECTS AND n > 1 MODES

A. Nonlinear results

MHD simulations have also been performed to study the nonlinear evolution of the

unstable modes, in particular, the n = 1 external tilt mode and the low n (n = 2−8) modes.

Our simulations show that nonlinear effects do not stabilize the tilt mode, and a disruption

due to growth of the n = 1, together with n > 1 modes, has always been observed at the end

of the simulation runs. Fig. 9 shows the typical nonlinear evolution of the unstable modes

in the oblate FRC with E = 0.69. Shown are the plasma pressure isosurfaces at t = 0,

t = 2.4tA, and t = 2.8tA.

t=0 t=2.4 t=2.8

   

Fig.9 Pressure isosurfaces at t = 0, t = 2.4tA, and t = 2.8tA, from the nonlinear MHD

simulation with E = 0.69 and n = 1 tilt-like initial perturbation.

Note that these simulations have been performed starting from an n = 1 tilt-like initial

perturbation, and the amplitude of this mode has remained larger than that of the n > 1

modes until the nonlinear phase. However, higher n modes are generally more unstable
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than the n = 1 modes, with growth rates several times larger than that of the tilt mode,

depending on the profiles and the elongation. For this particular run, the amplitudes of

the n > 1 modes at the end of the simulation are comparable to that of the n = 1 tilt

mode. This can also be seen from Fig. 10, where the time dependences of the kinetic energy

of the different n modes are shown. Here, time is normalized to tA = Rc/VA, which is a

characteristic Alfvén time, and Rc is the cylinder radius. The calculations shown in Figs. 9

and 10 have been performed for the plasma pressure profile given by Eq. (1), with the mirror

ratio rm = 1.3. For this equilibrium, the most unstable n > 1 modes are co-interchange

modes with the character of an m = 1 kink mode (m is a poloidal mode number), and have

the displacement vector mostly in the axial direction (Fig. 9).
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Fig.10 Temporal evolution of the n = 1−4 kinetic energy from the same calculation as Fig. 9.

A nonlinear simulation with the same equilibrium profile, Eq. (1), but with a smaller

elongation (E = 0.42), has also terminated in a disruption due to the growth of the n > 1

modes. In this case the tilt mode is linearly stable, and the n = 1 radial shift mode has the

growth rate γ = 0.8γ0.

In the nonlinear simulations with a different pressure profile, given by Eq. (2), and with

a close-fitting conducting wall used to stabilize the tilt mode, a similar nonlinear behavior

has been observed. For the conducting wall position d = 0.06 (marginally stable tilt mode),

we have found the growth rates of the n =2, 3, and 4 modes to be γ2 = 1.55γ0, γ3 = 2.61γ0,

17



and γ4 = 2.63γ0. The linear structure of these modes corresponds to either that of the

interchange (n = 2 and 4) or co-interchange (n = 3) modes. The configuration is destroyed

at t ≈ 4tA, primarily due to growth of the co-interchange (n = 3 and 5) perturbations.

B. n > 1 stability

Our MHD simulations have shown that in oblate FRCs, the n > 1 co-interchange modes

are strongly unstable, and do not saturate nonlinearly. For the equilibrium with pressure

profile given by Eq.(4), the calculated growth rates of the first n ≤8 most unstable modes

are shown in Fig. 11. It is seen that at small n, the growth rate increases rapidly with

n, but seems to approach a finite limit γ ∼ 7γ0 at n � 1. For this equilibrium, the

interchange stability condition is satisfied, and the n ≥ 1 interchange modes indeed appear

to be stable. The unstable modes have a (m = 1) structure of the co-interchange modes

with the displacement vector mostly in the axial direction. The poloidal structure of these

modes is similar to that of the n = 1 tilt mode shown in Fig. 1a, except that for larger n

the perturbation becomes localized near the magnetic null. The radial extent of the mode

decreases as n increases. For toroidal mode numbers n ≥ 3, the perturbation amplitude near

the separatrix is very small, therefore these modes are essentially internal to the separatrix.
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Fig.11 Growth rates of the different n co-interchange modes obtained in simulations with pres-

sure profile given by Eq. (4) with a =1.5, b =-3.3, and c =0.2.

18



The internal nature of n > 1 modes makes the conducting wall stabilization ineffective.

In particular, for the equilibrium given by Eq.(4), the n = 1 tilt mode is found to be stable

for a separation between the separatrix and conducting wall equal to d =0.09. For the same

separation, the growth rates of the n =2 and n = 3 co-interchange modes are reduced only

by 11% and 6% respectively, and the growth rate of the n = 8 mode is very close to that

without the conducting wall. For equilibria with smaller E, unstable n > 1 modes also have

a (m = 1) structure, but in this case the radial polarity mode is more unstable than the

axial mode.

It has been shown previously that sheared toroidal rotation has a stabilizing effect on

the n = 1 tilt mode in the prolate FRC4,7, when the rotation rate is sufficiently large. Thus,

we have performed MHD simulations to study the effect of sheared flows on the stability of

the oblate FRCs, in particular on the n > 1 co-interchange modes. The simulations have

been performed for the pressure profile given by Eq. (1) and angular velocity profile similar

to that used by Belova et al.7. For this velocity profile, the toroidal rotation frequency, ω, is

zero at the magnetic null and at the wall, and has maximum near the separatrix, such that

∆ω = 1.44γ0 for Mach number at the separatrix Ms = Vs/VA = 2.4.

In these simulations the growth rate of the tilt mode was reduced from γ = 1.2γ0

(Ms = 0.0) to γ = 0.78γ0 for Ms = 2.4. This reduction is considerably smaller than that

for the prolate FRC with the same rotation rate. This is because for the same separatrix

radius, the growth rate of the tilt mode in the oblate FRC (E < 1) is larger than that in the

prolate (E > 1) FRC, and for significant reduction in the growth rate to occur, the change

in the angular rotation frequency has to be comparable to the characteristic growth rate of

the mode ∆ω ∼> γ0 = VA/Zs. For the prolate FRC (E > 1), a rotation with Ms ∼> 1 is

typically required for stability4,7. Therefore even larger rotation rates are needed to reduce

the growth rate of the tilt mode in the oblate FRC.

The growth rates of the n > 1 co-interchange modes were reduced due to the sheared

rotation, but the reduction was also relatively small. In the simulations with Mach numbers

equal to Ms =0.0, 1.8, and 2.4 the growth rate of the n = 4 mode, for example, has been

found to be γ/γ0 = 3.44, 3.14, and 2.12 respectively. For large rotation rates, the radial
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extent of this mode is substantially reduced. The mode becomes more localized near the

field null, where the velocity shear is small, thus defeating the stabilizing effect of the sheared

rotation. Our simulations, therefore, indicate that the n > 1 co-interchange modes cannot

be stabilized by sheared rotation, unless the rotation rate is extremely large. The rotational

stabilization is ineffective both due to large growth rates of the unstable modes, and due to

the mode localization near the magnetic null, where the velocity shear is always small.

IV. KINETIC EFFECTS

The stability of high-n MHD modes in field-reversed geometry has been studied pre-

viously using the energy principle approach23–25. In the limit n � 1, it was shown that

interchange modes can be stabilized by plasma compressibility for favorable pressure pro-

files. The radial and axial co-interchange modes are found to be always unstable in the MHD

description, with the most unstable flux surfaces being those near the field null23. Since the

ion Larmor radius is also largest near the field null, these modes (n � 1) are likely to be

stabilized by kinetic effects24,25.

Thus, the intermediate and the low n > 1 internal kink (co-interchange) modes appear

to be the most dangerous in the oblate configuration. We have found that the n > 1 modes

cannot be stabilized by conducting walls, nonlinear effects or sheared rotation. Therefore

we consider the possibility of kinetic stabilization for these modes. We have performed

nonlinear hybrid simulations for s̄ = 4 and s̄ = 2 to study the bulk ion kinetic effects on

the stability of the low n co-interchange modes. The hybrid model and the code used in

this study have been described in the previous publication7. This model assumes quasi-

neutrality (ne = ni), cold fluid electrons (pe = 0) and particle ions. The δf method30 is used

to reduce numerical noise in the simulations. The equilibrium ion distribution function is

taken to be F0 = n0(mi/2πTi)
3/2 exp(−ε/Ti), where ε = miv

2/2 + eϕ is the particle energy,

Ti is the uniform ion temperature, and ϕ is the equilibrium electrostatic potential. For this

distribution function, Ji = 0 and all current is carried by the electrons. The equilibrium

electric field is equal to E = J × B/(ene) = Ti∇ni/(ene). Since the ion pressure is a

scalar for this distribution function, the Grad-Shafranov equation has been solved to find an

equilibrium solution.
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Fig.12 Temporal evolution of the kinetic energy (|V 2
e |) of the n = 0 − 4 modes from hybrid

simulation with s̄ = 4 and E = 0.69.

The initial equilibrium was similar to that used in the nonlinear MHD simulations shown

in Figs. 9 and 10, with the ion pressure profile given by Eq. (1), rm = 1.3, and E = 0.69.

The energy plots for n ≤ 4 modes from nonlinear hybrid simulation with s̄ = 4 are shown

in Fig. 12. The initial perturbation for this run was the n = 1 tilt-like perturbation. Linear

growth rates and the nonlinear evolution in this hybrid run are very similar to that in the

MHD run, shown in Fig. 10. The calculated growth rates normalized to the MHD growth

rates are: γ/γmhd = 1.08 for the n = 1 mode, and γ/γmhd = 0.9 for the n = 4 mode (s̄ = 4).

As seen from Fig. 12, in the hybrid simulation the n > 1 modes grow earlier to larger

amplitudes than in the MHD simulation due to relatively high initial numerical noise level

in the particle simulation. The configuration is destroyed at t ≈ 2.2tA, and the n = 4 kink

mode has the largest amplitude in the nonlinear phase. Note that large n (n � 1) modes

are not well resolved in our simulations, where the cylindrical grid (r, φ, z) of (60× 32× 80)

grid points is used to represent fields, and 51 × 51 × 80 Cartesian grid is used for particle

pushing.

Three typical ion orbits from this nonlinear simulation run are shown in Fig. 13. Fig-

ure 13a shows the midplane (z = 0) projection of the particle trajectories, and the r − z

plane projections are shown in Fig. 13b. The ion trajectories remain confined inside the
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separatrix until t ≈ 2tA, when the unstable modes grow to large amplitudes and cause the

particles to be lost along the axis.

(a)
(b)
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0-0.8 0.8
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R

Fig.13 Three ion trajectories from the same nonlinear hybrid simulation as Fig. 12. Shown

are (a) projections on the midplane (z = 0), and (b) projections on the r − z plane. Dashed

lines show the separatrix position, and dotted line show the magnetic null position.

In the simulations with smaller value of s̄ (s̄ = 2), similar results have been obtained. In

this case, the normalized growth rates of the n = 1 and n = 4 modes are γ/γmhd = 1.08 and

γ/γmhd = 0.76 respectively. No nonlinear stabilization has been found in this simulation,

and the unstable modes grow to large amplitudes and destroy the configuration at t ≈ 2tA.

Our simulations show that both the linear and the nonlinear behavior of low n ≤ 4

unstable modes is not modified significantly by the finite Larmor radius (FLR) effects for

the values of the kinetic parameter s̄ ∼> 2. For the n = 1 tilt mode this is an expected result,

because an approximate condition for FLR effects to be important, s̄/E ∼< 0.2 − 0.5 (or,

equivalently, γ ∼< ω∗), implies that s̄ < 1 is needed for the reduction of the tilt mode growth

rate in the oblate FRC3. In our simulations, however, the reductions in the growth rates

of the n > 1 modes are also small, even though the diamagnetic frequency ω∗ ∼ kφ ∼ n

is larger. This is because the MHD growth rate increases almost linearly with n for low n

modes (Fig. 11). Thus we find that the ion FLR effects alone do not stabilize the low n

co-interchange modes, and much smaller values of s̄ (∼< 1) and, possibly, a non-Maxwellian
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ion distribution function are required to obtain the kinetic stabilization of these modes. Note

that our results suggest that the tilt mode suppression found in the oblate FRC experiments15

cannot be explained by the FLR effects, since the value of s̄ in these experiments was quite

large.

The kinetic effects on the stability of the n = 1 tilt and low n kink (co-interchange)

modes have been studied previously for field-reversed ion rings and an ion ring confined

plasma26–29. When the confined plasma has zero current and pressure, the stability criterion

has been shown to be26,2

(ω − nΩ)2 > ω2
β , (5)

where ω is the mode frequency, Ω is the toroidal rotation frequency of the beam ions, and

ωβ is the betatron frequency in the self-field. If this condition is satisfied, the n = 1 tilt

and low n kink modes are MHD stable. With the approximation ω � Ω, the stability

condition becomes n2Ω2 > ω2
β , which can be more easily satisfied for larger toroidal mode

numbers. The derivation of this condition assumes a mono-energetic ion beam and thus

it is not directly applicable to an equilibrium with thermal ions. It has been shown that

if the inequality Eq. (5) holds in an average sense, the kink modes will be MHD stable,

but then the resonant instabilities become possible due to the thermal spread in the ion

velocities28. Detailed numerical calculations are required to self-consistently determine the

stability condition in a configuration with a finite spread in the beam ion velocities and a

finite confined plasma current.

For the ion distribution function used in the hybrid simulations described above, for

majority of particles the betatron frequency, |ωβ |, is found to be several times larger than

the toroidal frequency, |Ω|, and condition (5) is not satisfied. Thus this equilibrium is MHD

unstable, and FLR effects, while reducing the growth rates, do not stabilize the unstable

modes completely. A strongly anisotropic ion distribution is therefore required in order to

satisfy the inequality (5), and obtain an MHD stable equilibrium in the oblate FRC. A

hybrid system, in which field reversal is created both by plasma currents as in the FRC and

a low density energetic component of large orbit ions, may provide low n stability, and will

be investigated in future work.
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V. CONCLUSIONS

Global stability of the oblate FRC has been investigated numerically using linear and

nonlinear MHD, and hybrid simulations. The effects of conducting shells, shaping, pressure

profile, rotation, and kinetic effects on the stability of n = 1 and low n MHD modes have

been studied. Our simulations show that configurations can be found such that all n = 1

modes (interchange, external tilt, and radial shift modes) can be stabilized in the MHD

regime.

It is shown, that the n = 1 internal tilt mode, which is considered to be the most

dangerous MHD mode in prolate configurations, becomes an external mode when E < 1,

and therefore can be effectively stabilized by close-fitting conducting walls, even in the small

Larmor radii (MHD) regime. The marginal separation between the magnetic separatrix

and the conducting wall at which the tilt mode becomes stable, depends somewhat on the

resistivity profile outside the separatrix and on the current profile near the separatrix. For

the equilibria considered, the marginal separation is found to be between 5% to 10% of the

separatrix radius (at the midplane). The insertion of a central conductor has also been

shown to reduce the growth rate of the tilt mode due to line tying effects.

The stability of the oblate FRC to tilt and shift modes, in general, is found to be very

similar to that of spheromak plasmas14,16,17. In particular, the tilt mode stability improves

with oblateness, and, at small elongations, E ≤ 0.55, (i.e. larger mirror ratio of the external

coils) the radial shift mode becomes more unstable than the tilt mode.

The n = 1 interchange mode stability is strongly pressure profile dependent, with the

growth rate being smaller or comparable to that of the tilt mode. An addition of a uniform

background pressure reduces the growth rate and the mode becomes more localized near the

magnetic null. An equilibrium with a relatively peaked pressure profile has been found which

is stable with respect to the n ≥ 1 interchange modes for a small plasma pressure at the

separatrix (3.5% of the maximum pressure). Our simulations therefore show that all n = 1

modes can be stabilized in the MHD regime, provided that the pressure profile is sufficiently

peaked (interchange stable), the elongation is in the range 1 > E ∼> 0.6, and a conducting

wall is used to stabilize the tilt mode.
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However, in the nonlinear simulations the growth of MHD modes with low to inter-

mediate n has been observed. We have shown that these modes have large linear growth

rates, which increase with n, and do not saturate nonlinearly. Thus, even in the cases when

n = 1 modes are stabilized, the oblate FRC still disrupts due to the growth of the n ∼ 3− 5

perturbations.

For an equilibrium stable to interchange modes, the n > 1 modes have a structure of the

co-interchange (m = 1 kink) modes with a displacement vector being in the radial or axial

direction. Depending on the separatrix elongation, the most unstable modes are axial (larger

E) or radial (E ∼< 0.4) kink modes. As the toroidal number increases, the radial extent of

these modes decreases, and the modes become more localized near the magnetic null. The

localization of the unstable modes near the field null makes the conducting wall and the

rotational stabilizations ineffective, but suggests that kinetic effects can be important.

Our hybrid simulations with s̄ = 2 and s̄ = 4 confirm that for an oblate FRC, the FLR

effects on the n = 1 tilt mode linear stability are small due to the large MHD growth rate of

this mode3 (for E < 1). The stabilizing effect of the FLR on the low n > 1 co-interchange

modes is also found to be small, and the nonlinear evolution of the unstable modes in the

hybrid runs has been shown to be very similar to that in the MHD simulations. Thus the

thermal ion FLR effects (for s̄ ≥ 2) are not sufficient to completely stabilize the n > 1

modes. However, the possibility still exists that these mode can be stabilized by energetic

ion beams, which was not considered in this paper.

In previous work24,25, it has been shown that an energetic ion beam carrying a large

fraction of the total current (more than a half), can stabilize the n� 1 co-interchange modes.

This stabilization is related to the fact that for large n, the energetic ions do not interact

with the wave, but effectively reduce the fraction of the current carried by the background

plasma (destabilizing term). Since the magnetic tension (stabilizing term) remains the same,

the mode becomes stable when the fraction of the current carried by the beam is sufficiently

large.

For the low n > 1 co-interchange modes, the energetic ion beam contribution is stabiliz-

ing if the condition Eq. (5) is satisfied17,26,27. In this case the stabilization is caused by the
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resonant wave-beam interaction, and the inequality Eq. (5) is required for the beam particles

to respond out of phase (stabilize) with the wave. Numerical simulations of the oblate FRC

with energetic ion beams or a strongly anisotropic ion distribution function are required to

establish the kinetic stabilization of low n modes, in particular to find the condition (fraction

of beam current) necessary for stability of the hybrid beam/thermal plasma system.

In summary, we have shown that all n = 1 modes (including the tilt mode) can be

stabilized in the oblate FRC in the small Larmor radius (MHD) limit. The stability to n > 1

interchange modes can be achieved for a favorable pressure profile and a finite separatrix

beta. However, the stability of the low n co-interchange (internal kink) modes remains

an issue. Future work will focus on evaluating the effectiveness of an energetic ion beam

component in stabilizing these modes.
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