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I. INTRODUCTION

Orbitmpi is a parallelized version of Roscoe White’s Orbit code [1,2] . The code has been parallelized using MPI,
which makes it portable to many types of machines. The guidelines used for the parallelization were to increase code
performance with minimal changes to the code’s original structure. This document gives a general description of
how the parallel sections of the code run. It discusses the changes made to the original code and comments on the
general procedure for future additions to Orbitmpi, as well as describing the effects of a parallelized random number
generator on the code’s output. Finally, the scaling results from Hecate and from Puffin are presented. Hecate is a
64-processor Origin 2000 machine, with MIPS R12000 processors and 16GB of memory, and Puffin is a PC cluster
with 9 dual-processor 450 MHz Pentium IIT (18 processors max.), with 100Mbits ethernet communication.

II. CODE DESCRIPTION
A. Orbitmpi

The general idea of Orbitmpi is that a number of particles are distributed to each processor and their trajectories
are calculated in the main loop until each particle has either achieved its maximum toroidal transits or until it is
absorbed by the wall. During the run, the magnetic field is assumed static and the particles do not interact with each
other. This means that no communication is required between processors during the essential calculations, making
Orbit an ideal candidate for parallelization. The main communications consist of a broadcast of information to each
processor at the beginning of the code, and a gather routine after the main loop.

The code begins with a call to ‘initialize_mpi’ which initializes MPI and opens a file for each process to use for
write statements to stdout. The master process then opens files and initializes NCAR, graphics. The code calls
‘parallel switch’ to determine whether or not the code will be run in parallel. The conditions for parallelization for
Orbitmpi are that nplot is not 1 or 6 (1 has one particle and 6 skips the main loop) and that the number of particles
is greater than the number of processors. The first condition cannot be changed, since there are no gather routines
written for those choices of nplot (also there is no reason they need to be run in parallel). The second condition can
be changed as desired, as the parallelization is not useful for small numbers of particles.

The master process reads in the numerical equilibrium and broadcasts the values to the other processes. It then
does the equilibrium plots. All processes call the different subroutines to make sure all values are initialized until
right before the particle deposition, then ’find_nprt’ is called. The subroutine ‘find_mynprt’ assigns an equal number
of particles to each process and ensures the remainder is evenly distributed. The subroutine also defines “firstprt’
and ’lastprt’, which are the first and last values of the original array index that that processor holds. For example, if
there are 10 particles and 3 processors, process 0 (the master process) will have mynprt=3 firstprt=1, and lastprt=3.
Process 1 will have mynprt=3 firstprt=4,lastprt=6 and process 2 will have mynprt=4 firstprt="7 lastprt=10.

The next subroutine called sets the initial configuration of the particles. Each processor only initializes its own set
of particles according to the choice of distribution (ndist). Most of the initialization routines use a random number
generator. The consequences of using a random number generator in a parallel code are discussed in section IV.
Three of the distributions in Orbitmpi (ndist = 11,13,14) read in values from a data file. Since only one processor
can read in this file, the master process only does the initialization of particles and then it ’scatters’ the particles to
the appropriate processor (in subroutine ’scatterdist’).

After this initial distribution, the master process makes a plot of the initial distribution and must gather the
appropriate values from the other processors (unless ndist is 11,13,0r 14). The subroutine ’gatherpdist’ does this
gathering.

The main loop follows. These main subroutines consist of do loops over the particles, from 1 to nprt, so after nprt
is set for each processor in the previous routines there were very few changes necessary to parallelize the main loop.
After the loop is finished, the variables are gathered on to the main processor in the subroutine ’gather’. The variable



‘nprt’ is gathered from the processors in case of ejected particles, nsteps is set to the highest value of nsteps, and if
eject is used then time(1) is set to the time it takes for the particle that took the highest number of nsteps to finish.
After this gather, the final graphs are plotted.

B. Orbitmpi3d

The Orbitmpi3d code is structurally almost identical to the Orbitmpi code with a few exceptions. In the condition
for parallelization, the minimum number of particles to run can be changed, but there must be at least one particle per
processor. This is because pspline routines complain if there are no particles. Other differences are inherent from the
original differences in the code: different variables are needed to broadcast and gather, nplot=6 is parallelized because
it does go through the loop, etc. There are no large differences between the codes, but the scaling of Orbitmpi3dd is
not as good as that of Orbitmpi because of the need to broadcast the large 3D spline data to all the processors (VI).

III. CHANGES AND NEW FILES

The new files added to Orbit are orbitmpi.f, mpicheck.f, and gathersubs.f. Orbitmpi.f contains the initialization
and broadcast subroutines and a subroutine “parallel_switch” that determines whether the run will be in parallel or
not. It also contains “find_mynprt”, a subroutine that finds how many particles should be placed on each processor.
Orbitmpi.f contains the scatter and gather routines used to give the master process the correct values for plotting the
initial distribution. Mpicheck.f contains some routines that are useful for debugging, but in general unnecessary for
running the code. Gathersubs.f contains the subroutines used to gather all of the values needed for the final plots.

The original routines have been altered slightly to accommodate the parallelization. In the main routine (orbit.f or
orbit3d.f), there are calls to the above mentioned parallelization routines and added ‘if” statements for when only the
master processor should perform the subroutines, etc. The Makefile has been altered to compile the new files and to
use MPI libraries. New global variables have been added to the common block files. Some of the subroutines have
been modified slightly to accommodate differences that arise from either using the array index in an equation or by
using ‘nprt0’ instead of 'nprt’. For two detailed examples of this, see V. The random number generator subroutine
ranx in file ‘ranfl.f” has been modified in order to give a different seed to each processor. One major change that has
been applied to each routine is that each processor must have its own output file, and hence, all previous ‘write(6,*)’
statements have been replaced by ‘write(myfile,*)’ statements.

There 1s also a perl script needed to put together the output files from each processor. Most of the main output
file, ’orbout’; is written out by the master processor in subroutine 'wrt6’. The other processors will write out the
information on the lost particles. The perl script takes this lost particle data from each file and inserts it into the
proper location in the orbout file and deletes those temporary files.

IV. RANDOM NUMBER GENERATOR

The original Orbit initializes a seed value in the beginning of the code. In order to ensure each processor does not
have this same seed, thereby producing so many copies of the same pseudo-random numbers, when ranx is initialized
each processor increments the original seed by its process number. This is perfectly acceptable for the physics of the
problem, but poses a debugging dilemma- the code will give different answers for different numbers of processors.
The code does use a portable random number generating routine so that different machines using the same number
of processors and the same seed will get the same answers. In order to debug certain aspects of the code it may be
desired to get the same answers for different processors, and in that case an initial distribution that does not use
random calls can be used. Alternatively the ranx subroutine can be replaced by the original (with one seed only),
and the following loop may be inserted in the beginning of the particle initialization routines:

if(myid.gt.0) then
do i= 1,firstprt-1
dummy = ranx()
end do
end if



V. FUTURE REVISIONS

If the code is to be modified, there are only a few items that must be kept in mind in order to keep consistent
with the parallelization. If more graphs are added or different variables are considered in the final plots, the gather
subroutines must be altered. This i1s easy enough: for instance, if a new plot is added for nplot=2 and 1t plots rho,
the subroutine “gather_2” must be altered by adding a block of code that gathers the variable 'tho’. Tt should be
pointed out that the gather subroutines currently gather only those variables necessary to make the appropriate plots
and output files for a given nplot.

Since each particle is independent from the others, in general there is no problem adding more code without worrying
about the parallelization. The exceptions are when the index of a loop is used in the equation and when there are
sums over the variables from 1 to nprt. For example, in rcrd0, kO is recorded. This had to be modified from:

do k=1,nprt
k0(k) = k
end do

to:

do k=1,nprt
k0(k) = k + firstprt -1
end do

Similar modifications can be done if the array index is used in an equation. When there are sums taken on each
processor, that value must be gathered at the end of the loop. For example, in rcrd9 there is a sum that is divided
by the number of particles:

zv(kplt) = dum/nprt
This had to be changed to
zv(kplt) = dum/nprt0

the intention of this was to divide by the total number of particles. Also, in the gather subroutine the values of zv
for each processor are added together with ‘MPI_REDUCE’ in order to get the correct value.

VI. SCALING

The scaling shown in the following graphs show the speed up for increasing number of processors, plotted with the
“ideal” speedup- twice as fast for twice as many processors. The actual numbers are a comparison of the parallelized
code to itself, not between the original code and the parallelized version, although there is no significant difference
between the run time of the original code with the new code using one processor. The deviation from ideal scaling
is due to two major things- the communication time and the TO time. The master processor must processes all of
the plots. This plotting will take a certain time regardless of the loop speedup and will increase with an increase
in particles. The second issue 18 communication. The master process must gather and broadcast values to each
process, so this time increases with the number of processors and with the number of particles. The effect of this
communication is more dramatic in Orbitmpi3d, because the 3D spline must be broadcast to each processor and this
is a very large amount of data. The following scaling runs are from nplot=>5 and ndist=1.
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FIG. 2. Orbitmpi: Speedup on Hecate- nplot=5 and ndist=1 for 16000 and 49980 particles
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FIG. 3. Orbitmpi3d: Speedup on Puffin- nplot=>5 and ndist=1 for 16000 and 49980 particles
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FIG. 6. Orbitmpi3d: Speedup on Hecate and Puffin for 49980 particles

Below are the tables for the actual run time in seconds for Orbitmpi and Orbitmpi3dd on Puffin and Hecate. For
Orbitmpi with 49980 particles, the time for a run on Puffin decreases from 17.4 minutes on one processor to 1.3
minutes on 16 processors. On Hecate this time decreases from 5.5 minutes to 12.1 seconds.



Puffin
49980 particles

Puffin
16000 particles

Time (seconds)

Processors Time (seconds) Processors

1 1041.129 1 329.265

2 521.570 2 163.337

4 263.705 4 82.563

8 137.715 8 44.839

16 76.320 16 27.927

Hecate Hecate
49980 particles 16000 particles
Processors Time (seconds) Processors Time (seconds)

1 329.8179 1 95.492

2 154.976 2 47.434

4 77.1536 4 24.566

8 38.412 8 13.445

16 20.8025 16 7.930

32 12.0586 32 5.393

TABLE I. Run Time in Seconds for Orbitmpi
Puffin Puffin
49980 particles 16000 particles
Processors Time (seconds) Processors Time (seconds)
1 1610.140 1 514.871
2 811.819 2 261.968
4 414.307 4 139.113
8 221.569 8 80.876
16 142.453 16 68.075
Hecate Hecate
49980 particles 16000 particles
Processors Time (seconds) Processors Time (seconds)

1 795.152 1 238.695
2 400.866 2 119.302
4 203.348 4 61.266
8 99.450 8 32.872
16 51.597 16 19.819
32 29.648 32 14.239
64 23.959 64 15.886

TABLE II. Run Time in Seconds for Orbitmpi3d




The scaling improves with the number of particles, and the parallelized versions of Orbit are not very useful for a
small number of particles particularly on machines with less than superb communications. For Orbitmpi on Puffin,
the scaling starts to approach expected values for between 1000 and 5000 particles. For Orbitmpi3d the scaling begins
to improve between 5000 and 10000 particles.

VII. LOAD BALANCING

The issue of load balancing is important to optimize the performance of a parallel code. Most of the initializations
for orbit are random distributions, so the current system of simply making sure that each processor has an equal
number of particles gives decent load balancing. Some distributions, however, are not random but based on angles
increasing with a loop index, such as ndist=9 and 12 from Orbitmpi3D. Such distributions give poor load balancing
when distributed in contiguous blocks to each processor. For example, all of the particles on processor 8 may be at
an angle facing the wall and therefore exit the calculation almost immediately, while the particles on processor 1 may
have a steady orbit in the middle of the machine and continue for some time. Such distributions are better handled
by the master process doing the initialization and then distributing the particles in a cyclic fashion rather than in
blocks.

Other distributions that involve reading in data from a file may also be biased in certain ways, and it is possible
that even in random distributions there may be more particles getting lost or hitting the wall early. In further
development of the code, subroutines that categorize the phase space of each particle and distribute them among
the processors accordingly could be written for each initial distribution. This version of the Orbit code has been
deliberately constructed to deviate as minimally as possible from the original code, and also to ensure that the results
were exactly the same as the original code during the testing process. Because of this, the previous suggestions for
load balancing optimizations are discussed but not implemented. If load balancing is indeed a concern for future
work, 1t must be handled on a case by case basis. The following analysis has found that while some load balancing
techniques improve the performance of the code significantly, in other cases the load balance insures only that each
processor goes about as slow as the slowest processor. The time it may take for the code to do load balancing analysis
at the beginning of the initialization will also be of importance.

The following load balancing data is from nplot=>5 with various distributions. The statistical variables are defined
as follows: The run time is the time in seconds that each process takes to complete the main loop. The mean value
p is defined as the sum of the run times (7") for each processor divided by the total number of processors N:

_XT
=5

The variance V 1s
(T - p)?
V= ——
N

and the standard deviation is
c=VV.

The run time from the processor that took the longest is given in the table as L. The deviation of L from the mean
value and that deviation relative to the mean value are also given in the tables.

ndist 7 o L L —pu L%“
1 15.586 0.295 16.226 0.640 0.041
2 9.512 0.402 10.188 0.676 0.071
4 22.409 0.238 22.876 0.467 0.021
5 19.967 0.563 20.827 0.086 0.043
7 48.287 0.776 49.447 1.160 0.024
10 2.946 0.052 3.037 0.091 0.031
14 9.775 0.210 10.091 0.316 0.032

TABLE III. Load Balancing for Orbitmpi, 16000 particles




ndist 7 o L L —p Lp

1 54.904 0.745 56.399 1.495 0.627
2 32.138 0.831 33.763 1.625 0.051
4 80.240 1.047 81.331 1.091 0.014
5 69.873 1.399 70.958 1.085 0.016
7 169.601 2.467 173.514 3.913 0.023
10 10.477 0.212 10.739 0.262 0.025
14 34.454 0.686 35.743 1.289 0.037

TABLE IV. Load Balancing for Orbitmpi, 49980 particles

The next two tables show the results from Orbitmpi3d. The particle numbers are different because in ndist=9,
the number of particles must be divisible by 60 (ntheta) in order to ensure all particles are initialized properly. The
distributions 9 and 12 have distributions based on increasing theta(9) or pitch angle(12), and therefore have poor
load balancing with the original distribution routine that distributes the particles in contiguous blocks. This data
from this routine is shown in the tables as 9,1 and 12,1. A test subroutine was created to test the load balancing if
the particles were distributed so that each processor had a similar set of particles. This was done by the the master
process doing the initialization and then distributing the particles in a cyclic fashion to each processor. The data from
the test routine is given by 9,2 and 12,2. For both cases, this test subroutine improved the load balancing significantly,
however, for ndist=9, there was no significant increase in performance. As illustrated by comparing L in the tables,
the load balancing for ndist=9 only makes each processor go equally slow. For ndist=12, the average time to complete
the loop increased from 12,1 to 12,2, but the longest run time L significantly decreases, giving better performance
with better load balancing.

ndist 7 o L L —pu L%“
1 30.701 0.519 31.435 0.734 0.024
3 16.008 0.290 16.285 0.277 0.017
4 27.410 0.751 28.910 1.500 0.055
5 29.088 0.779 30.198 1.110 0.038
6 20.711 0.396 21.360 0.649 0.031
10 15.561 0.102 15.767 0.206 0.013
11 29.518 0.475 30.209 0.691 0.023
9,1 13.027 2.268 15.172 2.145 0.165
9,2 14.510 0.262 15.101 0.591 0.041

12,1 9.090 3.133 11.686 2.596 0.286
12,2 9.915 0.137 10.043 0.128 0.013

TABLE V. Load Balancing for Orbitmpi, 16320 particles




ndist 7 o L L —pu L%
1 101.400 2.259 103.398 1.998 0.020
3 53.098 1.252 54.250 1.152 0.022
4 92.009 2.179 94.042 2.033 0.022
5 96.834 2.201 100.198 3.364 0.034
6 69.125 1.464 70.416 1.291 0.019
10 53.360 0.548 54.027 0.667 0.013
11 98.949 2.019 100.743 1.794 0.018
9,1 42.823 7.476 49.855 7.032 0.164
9,2 47.823 0.931 49.073 1.25 0.026

12,1 29.683 10.190 37.855 8.172 0.275
12,2 32.197 0.658 32.674 0.477 0.015

code on Hecate to provide the scaling and load balancing data.

TABLE VI. Load Balancing for Orbitmpi, 49920 particles
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