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Stabilization of tokamak plasma by lithium streams

L. E. Zakharov,

Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451

June 8, 2000

Abstract

The stabilization theory of free-boundary magnetohydrodynamic instabilities in tokamaks by liquid

lithium streams driven by magnetic propulsion is formulated. While the conventional, wall-locked, resis-

tive wall mode can be well suppressed by the 
ow, a new, stream-locked mode determines the limits of

the 
ow stabilization.

1. Introduction

Recently, the author proposed a mechanism of magnetic propulsion for driving fast lithium streams along the
plasma facing surface of the tokamak vacuum chamber (Fig.1a). The metal is maintained at the �rst-wall
surface by the electromagnetic force J�B (Fig.1b), where J is the poloidal current, driven through the liquid
metal by an external power source and B is the tokamak magnetic �eld. The magnetic pressure, created
in the 
uid, is nonuniform along the lithium layer and the 
uid is propelled from the high-�eld side of the
tokamak to the low-�eld side in the form of two streams along the top and bottom halves of the vacuum
chamber, respectively.

Because of the strong toroidal magnetic �eld, the J�B force can be made suÆcient to create a pressure to
the wall exceeding the external pressure, e.g., 1 atm. This enables expulsion of the lithium from the vacuum
chamber. Accordingly, the pressure drop along the streams exceeds 1� 2 atm, thus, making velocities of the
order of 20 m/sec typical for the lithium streams.
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Fig.1. (a) Cross section of the tokamak with lithium streams (inlet and outlet are both schematic).
(b) Guide wall with two lithium streams at the top and bottom halves of the chamber.
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These intense lithium streams have been proposed primarily as a new power extraction scheme compatible
with a fusion reactor environment. Remarkably, due to centrifugal force, the streams themselves are robustly
stable with respect to the sausage instability, associated with the electric current in the metal as well as to
the much weaker gravitational instability. The big, externally controlled magnetic pressure due to the J�B
force, holding streams on the wall, makes liquid metal insensitive to other electromagnetic forces even in the
most violent disruption event in tokamaks.

In this paper, it is shown that intense lithium streams improve stability of the free-boundary modes of the
tokamak plasma. In particular, lithium streams can potentially stabilize con�gurations which are otherwise
unstable in the presence of a passive walls.

There are two stabilizing e�ects associated with lithium streams. First, streams enable an e�ective
conducting shell right at the plasma boundary, thus, increasing signi�cantly the e�ectiveness of a possible
feedback stabilization. Second, the axisymmetric m = 1, n = 0 (m, n are the poloidal and toroidal wave
numbers, respectively) pattern of the fast metal 
ow a�ects explicitly the resistive wall modes[1, 2].

The �rst e�ect is straightforward and analogous to the theory of resistive (solid) wall modes, which have
been extensively analyzed in the literature (see, e.g., References[1, 2, 3, 4, 5, 6, 7, 8, 9]) and where the authors
tried to rely on nonideal e�ects in the plasma. The second e�ect, considered in this paper, has no direct
analog in to existing theories. It provides a stabilization mechanism independent of the plasma properties.

2. Interaction of lithium streams with external plasma modes

If a plasma column is surrounded by a conducting shell (with or without metal 
ow) and if the plasma is
stable with respect to internal (�xed boundary) MHD modes, then the remaining instabilities are the free
boundary, so-called \resistive wall modes" (RWM)[1, 2], which are purely growing modes in the laboratory
frame. Their growth rate 
 is determined by the resistive penetration time �res


 ' 1

�res
; �res � �0�ah; (2:1)

where � is the conductivity of the wall, a a characteristic minor radius, and h the height of the metal shell
(we dropped the poloidal wave number from the de�nition of �res). With such a small growth rate, the
plasma inertia can be neglected and the equations of motion for the plasma are those of perturbed equilibria.
As a result, the growth rate is determined solely by the time evolution of the currents in the shell.

The metal 
ow and associated V �B electromotive force (V is the 
ow velocity) a�ect the excitation
and evolution of eddy currents and, thus, also stability. The stabilization depends signi�cantly on the 
ow
pattern. Thus, just a rotating metal shell is not e�ective because the RWM can be locked into rotation[2].
On the other hand, the two stream pattern of magnetic propulsion (Fig.1.), when the metal is supplied from
the large toroidal �eld side of the tokamak and taken out from the low �eld side, eliminates the possibility
of good mode locking. Instead, the mode can be locked only into one of the streams, thus, making the other
stream equivalent to a perfectly conducting shell.

This physics consideration can be formalized and linked to the existing stability theory. Perturbations
in the magnetic con�guration can be expressed in terms of the perturbations of the vector potential

A = ~Ae
t; (2:2)

where 
 is the linear (complex) growth rate. We will use a toroidal 
ux coordinate system �; �; ' correspond-
ing to the straight �eld-line representation of magnetic �eld with axisymmetric azimuth ' and with poloidal
angle � = 0 on the high-�eld side. Inside the plasma, � =const surfaces coincide with magnetic surfaces. The
inner (plasma facing) and outer surface of the metal shell are speci�ed by equations � = a and � = a + Æa
(Æa � a). Outside the shell the coordinates represent a continuous extension of internal coordinates with,
e.g., � =1 corresponding to in�nity and to the axis of symmetry.
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Vector potential can be taken in the following covariant form

~A � �(�; �; ')r�+ �(�; ')r� +  (�; �; ')r';
I
 d� = 0; (2:3)

where � does not depend on � and  is an oscillatory function of �. The perturbation of the magnetic �eld
can be expressed either in contravariant form

~B = ( 0� � �0')(r� �r') + (�0' �  0�)(r'�r�) + (�0� � �0�)(r��r�) (2:4)

or in covariant form
~B = ~B�r�+ ~B�r� + ~B'r': (2:5)

These two representations are related through the metric tensor gik of the coordinate system

~Bi =
X
k

gik ~B
k; i = �; �; '; k = �; �; '; (2:6)

thus, making it possible to express the covariant components ~B�;�;' in terms of �; �;  . Both inside and
outside the plasma, the equations for the unknowns �; �;  can be written in the form of contravariant
components of Ampere's law (r� ~B) = �0j

J(j � r�) = ( ~B')
0
� � ( ~B�)

0
'; J(j � r�) = ( ~B�)

0
' � ( ~B')

0
� and J(j � r') = ( ~B�)

0
� � ( ~B�)

0
�; (2:7)

where J is the Jacobian of the coordinate system

J � D(x; y; z)

D(�; �; ')
: (2:8)

Because r � j = 0, not all of the three equations in (2.7) are independent. Only the �rst equation together
with the �-averaged component of the second equation and the oscillatory part of the third equation are
essential. The boundary conditions for these equations are:

~Aj�=0 = ~Aj�=1 = 0: (2:9)

Inside the plasma, the expressions for the current density can be obtained from the perturbed equilibrium
equations. In the vacuum region j = 0 while inside the 
owing metal, j is determined by Ohm's law.

We consider two lithium streams 
owing along the plasma boundary from the low-�eld side of the torus
to the high-�eld side. The velocity of the 
ow is assumed to be purely poloidal, V = V (�)epol, where epol
is the unit vector in the poloidal direction. For each stream, the velocity V (�) and the height h(�) of the
stream are related by equations

V (�)j0<�<� = V
Rh

rw(�)h(�)
; V (�)j��<�<0 = �V Rh

rw(�)h(�)
; (2:10)

where r = rw(�) together with z = zw(�) is a parametric representation of the wall contour, R is a charac-
teristic major radius, and V and h are the velocity and height of the 
ow at this radius, respectively.

The current density in the thin shell can be written in terms of the stream function I(�; '):

�0~jw � r��rI
Æa

= � I
0
'

Jw
e� +

I 0�
Jw

e'; e' � retor; jetorj = 1: (2:11)

Here, Jw plays the role of the Jacobian for an in�nitesimally thin shell

Jw � rw(�)h(�)
p
g��; g�� = (rw)

02
� + (zw)

02
� and je�j = pg��: (2:12)
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With this representation the matching conditions across the shell can be written as:�
~B'ja+Æa � ~B'ja

�
0
=
�
I 0'
�
0
; ~B�ja+Æa � ~B�ja = I 0�; (2:13)

where (: : :)0 means averaging over �. In Ohm'law

~jw = �[�
 ~A�r�E + (V � ~B)]; (2:14)

two essential (covariant) components have the form

� g��
Jw�0�

I 0' = �
�� (�E)
0
�;

r2

Jw�0�
I 0� = �
 � (�E)

0
' � V �( 0� � �0'): (2:15)

After elimination of the scalar potential �E , an equation for the stream function I is given:

hg��
Jw

I 00'' +

�
hr2

Jw
I 0�

�0
�

= ��0h�
( 0� � �0')�Rm

�
v(�)( 0� � �0')p

g��

�0
�

; where v(�) � V (�)

V
: (2:16)

In Eq.(2.16), Rm is the magnetic Reynolds number for the 
ow calculated based on the height of the stream

Rm � �0�V h: (2:17)

For lithium, �0� ' 4 sec/m2. Thus, with characteristic velocities of the order of 20 m/sec, it is possible to
obtain Reynolds numbers of the order of unity even for thin lithium streams h ' 1 cm.

Because of the gap in the wall at the outlet point, I should satisfy boundary conditions

I(! = � � �; ') = const; I(! = � + �; ') = const (2:18)

at the gap sides ! = � � �, where the angle 2� speci�es the extend of the gap.
Equations (2.7) with boundary conditions of Eq. (2.9), matching conditions across the shell (2.13) and

Eq. (2.16) specify the eigenvalue problem for obtaining the growth rate 
.
Equations (2.7) are typically being solved using a Fourier transformation

� =
X
m

�m(�)e
im��in'; � � � 0(�)e�in';  =

X
m 6=0

 m(�)e
im��in';

(~�)m � �m and (~ )m �  m;

(2:19)

where two vector functions ~� and ~ are composed from the Fourier harmonics of the components of the vector
potential. Both inside the plasma and in the vacuum region, the �rst equation in (2.7) allows to express

vector ~� in terms of ~ 0 and ~ . Thus, the full set of independent solutions to Eqs.(2.7), satisfying boundary
conditions (2.9), can be represented in the form of the superposition of the normalized fundamental solutions
to Euler's equations

~ p(�) = Up(�)~ (a); ~ v(�) = Uv(�)~ (a); Up(0) = 0; Uv(1) = 0 and Up;v(a) = I; (2:20)

where each column Um0

p;v in matrix functions Up;v represents an independent solution to Eqs.(2.7) either in

the plasma (index \p") or in the vacuum (index \v") regions. At the plasma boundary � = a, the Up;v are
the identity matrices, Up;v(a) = I.

In addition to the matrices Up;v of the fundamental solutions, it is possible to introduce related matrices
Dp;v, representing the left-hand side of the matching conditions (2.13) in Fourier space for every fundamental

solution Um0

p;v

~B'(a; �; ') =
X
m 6=0

~B�;me
im��in'; ~B'(a; �; ') =

X
m

~B';me
im��in';

( ~D)m6=0;m0 � � ~Bm0

�;m6=0 and ( ~D)0;m0 � � ~Bm0

';0:

(2:21)
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Using the matrices Dp;v , the matching conditions (2.13) can be written in the form

(Dv �Dp)~ (a) = �iM~I; (2:22)

where vector ~I and matrix M are de�ned as

I(a; �; ') �
X
m

(~I)me
im��in'; Mm 6=0;m0 � mÆmm0 and M0;m0 � �nÆ0m0 : (2:23)

Eq. (2.16) for I can be written in the matrix form as

S~I = i�0h�
M~ �RmVM~ ; (2:24)

where the matrices S and V are de�ned as

(S)mm0 = mm0

�
h
r2

Jw

�
m�m0

+ n2
�
hg��
Jw

�
m�m0

and (V)mm0 � m

�
v(�)p
g��

�
m�m0

: (2:25)

Its solution, expressed in the form

~I = i�0h�
S
�1M~ �RmS�1VM~ ; (2:26)

after subsitution into matching conditions (2.22) gives a dispersion relation

(Dv �Dp)~ (a) = �0h�
(MS�1M)~ + iRm(MS�1VM)~ : (2:27)

For any plasma equilibrium, Dv, Dp can be calculated using standard stability codes for free-boundary MHD
modes. Then, the growth rates and stability conditions in presence of 
ow can be obtained by solving the
linear algebraic eigenvalue problem (2.27) for 
.

The �nal Eq. (2.27) of the present theory has the following structure. The matrices Dv�Dp and MS�1M
(which are not related to 
ow) are Hermitian. Their o�-diagonal terms containing, in particular, the toroidal

ballooning mode coupling, make a destabilizing contribution. The matrix iRmMS�1VM describing the 
ow
e�ect is essentially anti-Hermitian. Its o�-diagonal terms, producing the mode coupling, contribute positively
to stability.

3. Stabilization of current-driven kink modes

In order to illustrate the stabilizing e�ect of the streams, we consider a simple model of a tokamak plasma with
a circular cross section in the large aspect ratio approximation corresponding to a=R � 1, Bpol=Btor � 1
and neglect pressure e�ect. For simplicity, we also neglect the e�ect of a gap in the 
ow near the outlet
point and assume that I is a periodic function of !, '.

In this case Eqs.(2.7) in the plasma and vacuum regions are reduced to a second-order equation

(� 0m)
0 =

m2

�
 +

�0Rj
0

Btor(�� n=m)
 ; �(�) � �0R

Btor�

Z �

0

j(�)�d�; �(�) =
1

q
; (3:1)

where j(�) is the toroidal current distribution and q is the safety factor. Matrices Dp, Dv, S are diagonal:

(Dp)mm0 =
a 0p;m
R m

Æmm0 ; (Dv)mm0 =
a 0v;m
R m

Æmm0 = �m
R
Æmm0 and (S)mm0 = m2R

a
Æmm0 : (3:2)
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For an example of a constant velocity of each stream, the normalized stream velocity v(�) in Eq.(2.16) has
the following Fourier expansion

v(�)j0<�<� = 1; v(!)j��<�<0 = �1; v(�) =
X
k

v2k+1e
i(2k+1)�; v2k+1 =

2

i�(2k + 1)
; (3:3)

and the 
ow coupling matrix V can be calculated as

(V)m;m+2k+1 =
m

a
v�2k�1 =

m

a
v�2k+1; (V)m;m+2k = 0: (3:4)

The dispersion relation can be written as an eigenvalue problem for a system of linear equations

a�0
m m = �res
 m +Rm

X
k

(m+ 2k + 1)v�2k+1 m+2k+1; �res = �0�ha; (3:5)

where

a�0
m � R(Dv �Dp)mm = a

 0v;m �  0p;m
 m

����
�=a

: (3:6)

For a classical example[10] of a plasma with uniform current distribution, a�0
m has an analytical represen-

tation

a�0
m = �2mm� 1� nq

m� nq
; q(�) = const = qa: (3:7)

In order to make stabilization by the 
ow evident, let us consider a three harmonics approximation for  

 =
�
 m�1e

i(m�1)� +  me
im� +  m+1e

i(m+1)�
�
e�in'+
t: (3:8)

In this case, the eigenvalue problem for linear system

(a�0
m�1 � �res
) m�1 = imRmv

�
1 m;

(a�0
m � �res
) m = i(m+ 1)Rmv

�
1 m+1 + i(m� 1)Rmv1 m�1;

(a�0
m+1 � �res
) m+1 = imRmv1 m

(3:9)

is reduced to solving an algebraic equation for 
:

a�0
m � �res
 +

m(m+ 1)R2
mjv1j2

a�0
m+1 � �res


+
m(m� 1)R2

mjv1j2
a�0

m�1 � �res

= 0: (3:10)

In a typical situation of an unstable low m;n mode with a�0
m > 0, the satellite modes are stable, i.e.,

a�0
m�1 < 0 and a�0

m+1 < 0. Taking this into account, the above equation shows explicitly that the 
ow has
a stabilizing e�ect (proportional to R2

m) on the mode with the real growth rate.
Growth rates calculated for the m = 3 current-driven kink mode and uniform current distribution are

shown in Fig. 2a.
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Fig.2. Normalized growth rate (solid curves) and rotation frequency (dashed curves) of
RWM for a circular plasma with a uniform current distribution and �pol = 0. (a) wall- and
stream-locked m = 3 mode; (b) stability diagram for 2 < qa < 4.

In the absence of 
ow, the m = 3 mode is robustly unstable[1, 2] over the entire region 2 � qa � 3. With
no resonant surfaces inside the plasma, this con�guration cannot be stabilized by the nonideal plasma e�ects
considered in the literature[3, 4, 5, 6, 7, 8, 9]. The metal 
ow creates a stability gap 2 � qa � 2:37.

Fig. 2a shows, that in addition to the conventional wall-locked mode, which has a purely real growth rate
=(
) = 0, Eq. (3.10) contains additional roots corresponding to a new mode which rotates and is locked into
one of the streams, =(
) 6= 0. For this mode, another stream acts as a perfectly conducting wall. While the
wall-locked mode is well a�ected by the velocity of the streams, the stream-locked mode is insensitive to it
and determines the limits for the 
ow stabilization.

4. Stabilization of the pressure-driven kink modes

Plasma pressure introduces an additional destabilization of the tokamak equilibrium con�guration. In the
simplest case of the plasma with a circular cross section and low, but �nite, pressure p(�) it is described by
an energy principle

W =
X
m

�

R

Z (
�j 0mj2 +

m2

�
j mj2 + j0R

B(�� �m)
j mj2 + 4

�

R2
�polm

2 2�pol + 1� n2

m2

(m� nq)2
j mj2

�2�pol
R

m(m+ 1) m 
�
m+1

(m� nq)(m+ 1� nq)
� 2

�pol
R

m(m� 1) m 
�
m�1

(m� nq)(m� 1� nq)

�2�pol
R

m m(� 
0�
m+1 + � 0�m�1)

m� nq
� 2

�pol
R

(m+ 1)� 0m 
�
m+1

m+ 1� nq
� 2

�pol
R

(m� 1)� 0m 
�
m�1

m� 1� nq

�
d�;

(4:1)

which approximates[11, 12] the functional of potential energy. Here, the parameter �pol is de�ned as:

�pol(�) � ��0�p
0(�)

2B2
pol(�)

(4:2)
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and characterizes the local poloidal �. For a uniform current distribution and parabolic pressure pro�le
�pol(�) = const the Hermitian (symmetric) matrix a�0

mm0 � R(Dv �Dp)mm0 can be calculated as

a�0
m;m = �2mm� 1� nq

m� nq
� m+ 2

m+ 1

a2

R2
�pol

�
�pol + 1� n2

m2

�
m2

(m� nq)2
;

a�0
m�1;m = 2

a

R
�pol

m� 1

m� 1� nq
; a�0

m+1;m = 2
a

R
�pol

m

m� nq
:

(4:3)

Its o�-diagonal terms lead to a toroidal mode coupling, which results in destabilization of free-boundary
modes[12]. For a uniform current distribution, the RWM acquires a �nite growth rate for all q(a), as seen
in Fig. 3. The metal streams improve the stability of the �nite-beta plasma in a similar way as they a�ect
the pure currrent-driven modes. Fig. 3a shows growth rates for both wall- and stream-locked modes for
a=R = 1=4 and �pol = 0:5.
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Fig.3. Normalized growth rate (solid curves) and rotation frequency (dashed curves) of
RWM for a circular plasma R=a = 4 with a uniform current distribution and �pol = 0:5. a)
wall- and stream-locked m = 3 mode; b) stability diagram for 2 < qa < 4.

With the metal 
ow, stability gaps appear for the �nite-beta plasma even for a uniform current distri-
bution. It is possible also to notice that for a given n, the size of these gaps is not sensitive to the poloidal
mode number m for both current and pressure driven free-boundary modes. Thus, both low- and high-m
modes can be stabilized by the lithium 
ow.

5. Summary

Lithium streams, driven by magnetic propulsion, lead to improved stability of the tokamak free-boundary
modes. The stabilizing e�ect depends on the 
ow Reynolds number and is essential when Rm exceeds 1.
In contrast to the \rotating" wall, the m = 1 pattern of the stream 
ow may lead to a real stabilization of
the plasma. The theoretical formalism presented in this paper allows to calculate the eddy currents in the
streams, as well as to use the existing numerical codes for evaluation of growth rates and stability conditions
for resistive wall instabilities in the presence of 
ow.
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