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Abstract

A fully kinetic assessment of the stability properties of toroidal drift modes

has been obtained for a case for the Large Helical Device (LHD) [A. Iiyoshi,

et al., Plasma Physics and Controlled Nuclear Fusion Research, 1998, Nucl.

Fusion 39, 1245 (1999)]. This calculation retains the important e�ects in the

linearized gyrokinetic equation, using the lowest-order \ballooning represen-

tation" for high toroidal mode number instabilities in the electrostatic limit.

Results for toroidal drift waves destabilized by trapped particle dynamics and

ion temperature gradients are presented, using three-dimensional magnetohy-

drodynamic equilibria reconstructed from experimental measurements. The

e�ects of helically-trapped particles and helical curvature are investigated.
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I. INTRODUCTION

Drift mode calculation results are presented here for a case representing the Large Helical

Device1 (LHD), speci�cally for discharge 2900 at t = 0:6 s. The temperature pro�les and the

density pro�le used were published previously in Ref. 2. Using this and other experimental

information, a reconstructed magnetohydrodynamic (MHD) equilibrium is calculated using

the three-dimensional VMEC equilibrium code,3;4 in VMEC coordinates. The MHD equi-

librium is transformed to Boozer coordinates5 by the TERPSICHORE code,6 and needed

data along a chosen magnetic �eld line for the instability calculation in FULL is constructed

by the VVBAL code.7 The linear kinetic microinstability calculation is performed by the

FULL code. The original tokamak (axisymmetric) version of this code is described in Refs. 8

and 9. The extension of this code to the stellarator (nonaxisymmetric) case and results for

a quasiaxisymmetric case generated as part of the design process for the National Com-

pact Stellarator Experiment10;11 (NCSX) are described in Ref. 12. The calculation and code

employed here are identical to the ones described in that reference.

The nonaxisymmetric version of the FULL code retains the dynamics of the axisymmet-

ric version of the code, in the electrostatic limit. It is a high-n (toroidal mode number)

calculation employing the lowest-order ballooning representation. It includes trapped parti-

cles, �nite Larmor radius e�ects to all orders, banana orbital dynamics, bounce and transit

and magnetic drift frequency resonances, equilibrium shaping e�ects, etc., for all species.

Particle turning points are found numerically along the magnetic �eld line for each pitch

angle, so that all classes of trapped particles are included automatically, including both

toroidally-trapped and helically-trapped particles. The same extended form of model Krook

collision operator described in Ref. 12 is employed here, which allows for multiple classes of

trapped particles.

The previous quasiaxisymmetric case results in Ref. 12 were in a sense rather tokamak-

like, in that the fraction of helically-trapped particles was small, and they played only a

small role in the mode dynamics, compared to the toroidally-trapped particles. In the
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present LHD case, the helical magnetic �eld wells (along the magnetic �eld line) are much

larger, so that there is a much larger fraction of helically-trapped particles, and they and

the helical curvature can a�ect the mode dynamics much more strongly. Also, in the present

LHD case, the MHD equilibriumand the density and temperature pro�les are experimentally

derived, rather than being somewhat arbitrarily chosen as in the quasiaxisymmetric case. In

addition, only electron and background ion species were included for the quasiaxisymmetric

case, whereas three impurity species, as well as a hot beam particle species with a slowing-

down equilibrium distribution function, are also included for the LHD case. Thus, the

present LHD case is in a sense more realistic than the previous quasiaxisymmetric case.

The LHD case is described and results for variation of a number of parameters in the

collisionless limit are presented in Sec. II. Collisional e�ects are investigated and results of

a radial scan are presented in Sec. III. Conclusions are given in Sec. IV.

II. COLLISIONLESS RESULTS

For LHD discharge 2900 at t = 0:6 s, the helical coil center major radius is R = 3:9 m,

the average plasma minor radius a = 0:6 m, the magnetic �eld B0 = 1:5 T, the magnetic axis

major radius is at Rma = 3:75 m, representing an inward shift, and the average elongation

is one, with no ohmic current. At this time, the plasma is in a low-recycling pump-out

phase. The background ion and hot beam ion species are both hydrogen, and the observed

impurities are carbon (C), oxygen (O), and iron (Fe) in the estimated ratios 1:1:0.5, with

an estimated Zeff = 2, so that we take nC=ne = nO=ne = 2nFe=ne = 0:0024 at all radii.

Thus, six species in all are included in the FULL code calculation. The beam species density

pro�le is calculated using a three-dimensional Monte Carlo simulation code.13 A slowing-

down equilibrium distribution function is used for the hot beam species, and Maxwellian

distributions for all of the other species. The electron and ion temperature pro�les and the

electron density pro�le shown in Fig. 3 of Ref. 2 are used here in modi�ed form.

We �rst consider the magnetic surface s = 0:875 ' (r=a)2, with the magnetic �eld line
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in this surface speci�ed by � � � � q� = 0 and the ballooning parameter �0 = 0 (�0 is

sometimes called �k). Each of these parameters will be varied individually later in this

section. The ballooning representation (nonperiodic) input functions on this magnetic �eld

line are shown in Fig. 1 for B(�) � jB(�)j, in Fig. 2 for k2
?
(�)=n2, and in Fig. 3 for the

curvature drift � k? � fb� [(b �r)b]g=n. Here, � (poloidal angle) is used as the nonperiodic

ballooning coordinate along the magnetic �eld line. Data is used over 25 2� periods in �,

from �12:5 � 2� to 12:5 � 2�, but only data for the center period, from �� to �, is shown

in these �gures. Each of these input functions is symmetric (even) in � around � = 0,

when �0 = � = 0. This is in a sense a symmetry point of the MHD equilibrium. In this

situation, the instability eigenfunctions are either symmetric (even) or antisymmetric (odd)

in � around � = 0. However, when either �0 6= 0 or � 6= 0 (or some other symmetry values

of �0 and �), all of these symmetries are broken.

-π 0 π
θ (radians)

1.0

1.5

2.0

B
(T

)

FIG. 1. Variation of B(�) along chosen magnetic �eld line with � = 0 and �0 = 0, on magnetic

surface 49 of 61 (s = 0:825), for case for LHD discharge 2900 at t = 0:6 s.

For the magnetic �eld strength shown in Fig. 1, the short-scale helical variation is com-

parable in amplitude to the longer-scale toroidal variation. For the illustrative pitch angle

corresponding to B = 1:8 T, there is one class of toroidally-trapped particles and four classes

4



340

0

170

−π π0
θ (radians)

k 
 (

θ)
/n

  (
m

  )
2 ⊥

-2
2

FIG. 2. Variation of k2
?
(�)=n2 along chosen magnetic �eld line, for case of Fig. 1.
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FIG. 3. Variation of curvature drift k � fb� [(b � r)b]g=n along chosen magnetic �eld line, for

case of Fig. 1.
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of helically-trapped particles with one or both turning points in this center period. For the

illustrative pitch angle corresponding to B = 1:4 T, there are ten trapped-particle classes

with one or both turning points in this center period, which cannot be conveniently classi-

�ed as either toroidally or helically trapped. All of the trapped particle classes in all of the

periods are found numerically by the FULL code and used in its kinetic calculation.

The eigenfunction for the perturbed electrostatic potential �̂(�) for an unstable mode,

for the experimental values �ei � d ln Ti=d ln ne = 0:80 and �e � d lnTe=d ln ne = 0:85, for

k?�i(� = 0) = 0:56 and n = 237, without collisions, is shown in Fig. 4. The parameters that

have been mentioned so far are our basic case parameters, which we will vary one by one

later in this section. This eigenfunction is even in � around � = 0. Odd eigenfunctions in �

can also be found, as will be seen. The eigenfunction in Fig. 4 is mainly localized within the

toroidal magnetic �eld well around � = 0, and strongly overlaps only a few helical magnetic

�eld wells.
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FIG. 4. Eigenfunction of electrostatic, collisionless toroidal drift mode (TEM root) along chosen

magnetic �eld line, for case of Fig. 1, with �ei = 0:80, �e = 0:85, and k?�i(� = 0) = 0:56 (n = 237),

including electrons, hydrogen background ions, carbon, oxygen, and iron impurity species, and a

hydrogen hot beam species with a slowing-down distribution.

The eigenfrequency corresponding to this eigenfunction is ! = (+2:3 + 4:9i) � 105 s�1,
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with positive real frequencies meaning: in the electron diamagnetic direction. This root will

be labeled as a trapped-electron mode (TEM) root, because of its characteristics when �ei

and �e are varied arti�cially. There is another root labeled as an ion temperature gradient

mode (ITG) root that is only unstable for �ei = �e above a critical value �c = 1:35, with the

other basic case parameters, and has a real frequency in the ion diamagnetic direction. (The

ITG root would be part of the \toroidicity-induced branch", in tokamak nomenclature.)

Both of these roots have eigenfunctions that are even in �. This ITG root is stable for the

experimental values of �ei = 0:80 and �e = 0:85. This behavior is shown in Fig. 5, where �ei =

�e is varied arti�cially at �xed total pressure gradient, so that dTi=dr and dTe=dr increase

and dne=dr decreases as �ei = �e increases. For this particular case, the respective real

frequencies !r never change sign. The TEM root growth rate  is monotonically decreasing

in �ei = �e, while that of the ITG root is monotonically increasing, with a crossover at about

�ei = �e = 2:5. For this case, the TEM root and the ITG root are separate roots, and do not

hybridize into a single root, as often happens in tokamak cases.
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FIG. 5. Variation of linear growth rate  and real frequency !r for TEM and ITG roots with

�ei = �e, for k?�i(� = 0) = 0:56 (n = 237). Here, the total pressure gradient is held �xed as �ei = �e

varies.

The e�ect of the beam species is slightly stabilizing for the TEM root for this case, and
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that of the impurities is very slightly destabilizing, for the basic case parameters. Turning o�

the beam species (i.e., replacing the beam particles with additional background ion particles

so that ne is unchanged), the value of ! for the TEM root with the experimental values of

�ei changes to ! = (+2:5+5:5i)�105 s�1, and with all three impurity species also turned o�

in the same way, it becomes ! = (+2:0+5:3i)� 105 s�1. For the ITG root at �ei = �e = 4:0,

with the other basic case parameters, the e�ect of the beam species is essentially neutral, and

that of the three impurity species is very slightly stabilizing. With all six species included,

the ITG root eigenfrequency for �ei = �e = 4:0 is ! = (�3:8 + 2:3i) � 105 s�1, while with

the beam species turned o� it is ! = (�3:8 + 2:3i) � 105 s�1, and with all three impurity

species also turned o� it is ! = (�4:3 + 2:4i) � 105 s�1. For other cases, the e�ects of the

beam species and the impurity species could be much stronger than is seen for this case.

The variation of  and !r with k?�i(� = 0) or n is shown in Fig. 6 for the TEM root,

with the other basic parameters. The growth rate peaks for k?�i(� = 0) ' 0:5 to 0.6, and

the change of the real frequency is from the electron towards the ion diamagnetic direction

as k?�i(� = 0) increases. This is the kind of k?�i dependence that is familiar for tokamaks.

However, the TEM root real frequency stays in the electron diamagnetic direction over this

range.

The e�ect on  and !r of varying the ballooning parameter �0 (sometimes called �k)

through one period for the TEM root (which has an even eigenfunction in � around � = 0

for �0 = � = 0) for the other basic parameters is shown in Fig. 7. Also shown is another

root, which corresponds to an eigenfunction which is odd in � around � = 0 for �0 = � = 0.

We will refer to this second root generally as the odd root, even though the eigenfunction has

odd symmetry only for �0 = � = 0. Antisymmetric modes have been investigated previously

for tokamaks in a more approximate way, for instance in Ref. 14. The growth rate of the

odd root is much less than that of the TEM root for any value of �0. The e�ect on  and

!r of varying the �eld line label � through one period on these two roots for the other basic

parameters is shown in Fig. 8. The growth rate of the odd root is much less than that of the

TEM root for � = 0, but becomes greater than that of the TEM root for � = �=10 (i.e.,
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FIG. 6. Variation of  and !r with k?�i(� = 0) and n, for case of Fig. 4 for TEM root.

halfway through one period of the ten toroidal period LHD). However, the highest growth

rate overall occurs for the TEM root at �0 = � = 0.

By comparing the present case with an arti�cial case in which all of the helical compo-

nents are set to zero in the VVBAL code in evaluating the input functions along the magnetic

�eld line for the FULL code, the e�ect of the helically-trapped particles and the helical cur-

vature is seen to be strongly destabilizing for the TEM root and slightly stabilizing for the

ITG root. For the TEM root with the basic parameters, so that �ei = 0:80 and �e = 0:85,

the eigenfrequency with the helical contributions suppressed is ! = (+1:1 + 0:7i)� 105 s�1,

while with the helical contributions included it is ! = (+2:3 + 4:9i)� 105 s�1, a substantial

increase in the growth rate. For this value of �ei , the TEM root is destabilized mainly by the

collisionless trapped-electron mode mechanism, which is a toroidal magnetic drift precession

frequency resonance mechanism entering through the trapped-particle time-average term.8

Suppressing the helically-trapped particles and helical curvature decreases the amount of

\bad" curvature available for this destabilization. For the ITG root with �ei = �e = 4:0,

the eigenfrequency with the helical contributions suppressed is ! = (�2:1 + 2:8i)� 105 s�1,

while with the helical contributions included it is ! = (�3:8 + 2:3i)� 105 s�1, a moderate
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decrease in the growth rate. At this �ei = �e value, the ITG root is destabilized mainly by

the ion temperature gradient mechanism entering through the ion terms,8 which does not

require \bad" curvature to be e�ective, but only requires that the ion temperature gradient

be larger than a critical value. However, the collisionless trapped electron mode destabi-

lization mechanism can still make a contribution at any value of �ei . For other cases, the

contribution of the helically-trapped particles and the helical curvature could in general be

either destabilizing or stabilizing. Note that this comparison is not the same as a comparison

to a tokamak case, because the present arti�cial case without the helical contributions still

has the opposite sign of the (average) magnetic shear everywhere from that of a standard

tokamak, among other di�erences. In particular, negative magnetic shear does not have to

a�ect the helical curvature in the same way as the toroidal curvature.

III. COLLISIONAL EFFECTS

The nonaxisymmetric version of the FULL code uses a model Krook collision operator

that is described in more detail in Ref. 12. Briey, for axisymmetric geometry it models

the two-step physical process of detrapping and retrapping, which gives an e�ective colli-

sion frequency which diverges at the trapped-passing boundary. This approach gives good

agreement with results from an equivalent calculation using a Lorentz pitch-angle scatter-

ing operator, in a tokamak comparison.15 In the nonaxisymmetric version, where there are

multiple classes of trapped particles, the model collision operator is generalized to include

transitions between adjacent trapped-particle classes also. The nonaxisymmetric FULL

code �nds all local maxima of B(�), and the e�ective collision frequency is constructed so

as to diverge (in pitch angle) at these maxima, modeling the behavior of a Lorentz collision

operator.

Note that the pressure and pressure gradient are input to the FULL code through the

MHD equilibrium. The total pressure gradient is allocated to the density and temperature

gradients of the individual species using the eta's, the density fractions, the temperatures,
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etc., of the individual species. The separate electron density that is input is used only to

calculate the collision frequencies. Thus, a zero electron density speci�es the collisionless

limit, but does not a�ect the rest of the calculation.

The behavior of  and !r with the electron density ne and with the usual tokamak

collisionality parameter ��e is shown in Fig. 9 for the TEM root for the basic case parameters.

At the experimental values of ne and ��e , there is a substantial reduction of the linear growth

rate and an increase of the real frequency, relative to the collisionless limit. The e�ect of

trapped particles under these conditions is to increase the growth rate and decrease the real

frequency (i.e., to move it towards the ion diamagnetic direction). The dominant e�ect of

the collisions, in turn, is to reduce the contribution of the trapped particles, accounting for

the observed behavior.
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FIG. 9. Variation of growth rate  and real frequency !r with electron density ne and collision-

ality parameter ��e , for case of Fig. 4, for TEM root.

Finally, we perform a radial scan over the magnetic surface label (s) for this case, in-

cluding collisions. In the process, k?�i(� = 0) = 0:56, �0 = 0, and � = 0 are kept �xed,

and the other parameters are evaluated locally from the experimentally derived density and

temperature pro�les, so that the value of n varies with s. The results for  are shown in

Fig. 10(a) and for !r in Fig. 10(b). The TEM root is seen to be unstable only in the region
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0:7 <
� s <

� 0:86, which is a region of relatively strong density and temperature gradients.

For discharges with di�erent density and temperature pro�le shapes, the radial region of

instability could be quite di�erent. Note that in some nonlinear tokamak gyrokinetic sim-

ulations, it has been observed that the radial region of signi�cant anomalous transport is

signi�cantly wider than the radial region of linear instability.16

IV. CONCLUSIONS

The existing axisymmetric version of the linear microinstability code FULL was converted

for nonaxisymmetric geometry, as described in Ref. 12. In the present experimentally-derived

LHD case, two separate roots were found with this new version of FULL, one labeled as the

trapped-electron mode (TEM) root, and one labeled as the ion temperature gradient mode

(ITG) root which is only unstable above a critical value of the ion temperature gradient,

with real frequencies in the electron and ion diamagnetic directions, respectively. For the

experimental values of the electron and ion temperature gradients, only the TEM root is seen

to be unstable. The maximum growth rate for the TEM root occurs for k?�i(� = 0) = 0:5

to 0.6, as is also typical for tokamak cases. The maximum growth rate in the ballooning

parameter �0 and the �eld line label � � � � q� occurs for the TEM root for �0 = � = 0,

a symmetry point of the MHD equilibrium. Collisions reduce the TEM root growth rate

substantially, but it is still unstable for the experimental value of the density and collision

frequency. Radially, the TEM root is unstable only over the range 0:7 <� s ' (r=a)2 <� 0:86,

but could have e�ects outside that region.

In Ref. 12, results for a quasiaxisymmetric case were given which were generally rather

tokamak-like, in that there was only a small fraction of helically-trapped particles. In the

present LHD case, the fraction of helically-trapped particles is much larger, and the helically-

trapped particles and the helical curvature are seen to play a substantial destabilizing role

for the TEM root. For the ITG root, on the other hand, their e�ect is moderately stabilizing.

It is planned to investigate other cases for LHD also, in order to determine how general these
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trends are.

The only other work on microinstabilities in LHD of which we are presently aware is

Ref. 17. The calculation there contains a number of approximations that are not made here.

In Ref. 17, a simple model magnetic �eld is used to compare properties of ITG modes in

tokamaks and in an LHD-like helical system, and it is argued that the negative magnetic

shear and the helical ripples in the LHD-like con�guration lower the growth rates of ITG

modes by reducing the bad curvature on the outside of the torus. In that calculation,

simpli�ed dynamics with purely adiabatic electron response and no trapped particles and

no collisions are used, while here the complete electron and trapped-particle response, along

with a model collision operator, are kept in the calculation. Also, a di�erent LHD case

is considered there. Because of these di�erences, only rough qualitative agreement can be

expected, and only for the ITG root. In fact, there is qualitative agreement on the values of

�, �0, and k?�i that maximize the growth rate, and also on the stabilizing e�ect of helical

curvature, for this root.

In future work, other cases for LHD will be investigated, as well as additional cases re-

sulting from the NCSX design e�ort. It would also be desirable to investigate cases for other

stellarators that are currently in operation or are planned. In addition, evaluation of quasi-

linear particle and energy uxes for all species, and extension to the fully electromagnetic

case, are intended for the FULL code in future work.
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