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Abstract

A fully kinetic assessment of the stability properties of toroidal drift modes
has been obtained for a case for the Large Helical Device (LHD) [A. liyoshi,
et al., Plasma Physics and Controlled Nuclear Fusion Research, 1998, Nucl.
Fusion 39, 1245 (1999)]. This calculation retains the important effects in the
linearized gyrokinetic equation, using the lowest-order “ballooning represen-
tation” for high toroidal mode number instabilities in the electrostatic limit.
Results for toroidal drift waves destabilized by trapped particle dynamics and
ion temperature gradients are presented, using three-dimensional magnetohy-
drodynamic equilibria reconstructed from experimental measurements. The

effects of helically-trapped particles and helical curvature are investigated.
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I. INTRODUCTION

Drift mode calculation results are presented here for a case representing the Large Helical
Device! (LHD), specifically for discharge 2900 at ¢ = 0.6 s. The temperature profiles and the
density profile used were published previously in Ref. 2. Using this and other experimental
information, a reconstructed magnetohydrodynamic (MHD) equilibrium is calculated using
the three-dimensional VMEC equilibrium code,** in VMEC coordinates. The MHD equi-
librium is transformed to Boozer coordinates® by the TERPSICHORE code,® and needed
data along a chosen magnetic field line for the instability calculation in FULL is constructed
by the VVBAL code.” The linear kinetic microinstability calculation is performed by the
FULL code. The original tokamak (axisymmetric) version of this code is described in Refs. 8
and 9. The extension of this code to the stellarator (nonaxisymmetric) case and results for
a quasiaxisymmetric case generated as part of the design process for the National Com-
pact Stellarator Experiment!®!! (NCSX) are described in Ref. 12. The calculation and code
employed here are identical to the ones described in that reference.

The nonaxisymmetric version of the FULL code retains the dynamics of the axisymmet-
ric version of the code, in the electrostatic limit. It is a high-n (toroidal mode number)
calculation employing the lowest-order ballooning representation. It includes trapped parti-
cles, finite Larmor radius effects to all orders, banana orbital dynamics, bounce and transit
and magnetic drift frequency resonances, equilibrium shaping effects, etc., for all species.
Particle turning points are found numerically along the magnetic field line for each pitch
angle, so that all classes of trapped particles are included automatically, including both
toroidally-trapped and helically-trapped particles. The same extended form of model Krook
collision operator described in Ref. 12 is employed here, which allows for multiple classes of
trapped particles.

The previous quasiaxisymmetric case results in Ref. 12 were in a sense rather tokamak-
like, in that the fraction of helically-trapped particles was small, and they played only a

small role in the mode dynamics, compared to the toroidally-trapped particles. In the



present LHD case, the helical magnetic field wells (along the magnetic field line) are much
larger, so that there is a much larger fraction of helically-trapped particles, and they and
the helical curvature can affect the mode dynamics much more strongly. Also, in the present
LHD case, the MHD equilibrium and the density and temperature profiles are experimentally
derived, rather than being somewhat arbitrarily chosen as in the quasiaxisymmetric case. In
addition, only electron and background ion species were included for the quasiaxisymmetric
case, whereas three impurity species, as well as a hot beam particle species with a slowing-
down equilibrium distribution function, are also included for the LHD case. Thus, the
present LHD case is in a sense more realistic than the previous quasiaxisymmetric case.
The LHD case is described and results for variation of a number of parameters in the
collisionless limit are presented in Sec. II. Collisional effects are investigated and results of

a radial scan are presented in Sec. III. Conclusions are given in Sec. IV.

II. COLLISIONLESS RESULTS

For LHD discharge 2900 at ¢ = 0.6 s, the helical coil center major radius is £ = 3.9 m,
the average plasma minor radius ¢ = 0.6 m, the magnetic field By = 1.5 T, the magnetic axis
major radius is at R,,, = 3.75 m, representing an inward shift, and the average elongation
is one, with no ohmic current. At this time, the plasma is in a low-recycling pump-out
phase. The background ion and hot beam ion species are both hydrogen, and the observed
impurities are carbon (C'), oxygen (O), and iron (Fe) in the estimated ratios 1:1:0.5, with
an estimated Z.;; = 2, so that we take n¢/n. = no/n. = 2ng./n. = 0.0024 at all radii.
Thus, six species in all are included in the FULL code calculation. The beam species density
profile is calculated using a three-dimensional Monte Carlo simulation code.!® A slowing-
down equilibrium distribution function is used for the hot beam species, and Maxwellian
distributions for all of the other species. The electron and ion temperature profiles and the
electron density profile shown in Fig. 3 of Ref. 2 are used here in modified form.

We first consider the magnetic surface s = 0.875 ~ (r/a)?, with the magnetic field line



in this surface specified by o = ( — ¢f = 0 and the ballooning parameter §, = 0 (§, is
sometimes called 6;). FEach of these parameters will be varied individually later in this
section. The ballooning representation (nonperiodic) input functions on this magnetic field
line are shown in Fig. 1 for B(f) = |B(#)|, in Fig. 2 for k2 (0)/n* and in Fig. 3 for the
curvature drift = k- {b x [(b-V)b]}/n. Here, 6 (poloidal angle) is used as the nonperiodic
ballooning coordinate along the magnetic field line. Data is used over 25 27 periods in 6,
from —12.5 x 27 to 12.5 x 27, but only data for the center period, from —m to 7, is shown
in these figures. Each of these input functions is symmetric (even) in 6 around 6 = 0,
when 6y = o = 0. This is in a sense a symmetry point of the MHD equilibrium. In this
situation, the instability eigenfunctions are either symmetric (even) or antisymmetric (odd)
in 6 around § = 0. However, when either 6y # 0 or a # 0 (or some other symmetry values

of 0y and «), all of these symmetries are broken.
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FIG. 1. Variation of B(8) along chosen magnetic field line with « = 0 and 8y = 0, on magnetic

surface 49 of 61 (s = 0.825), for case for LHD discharge 2900 att = 0.6 s.

For the magnetic field strength shown in Fig. 1, the short-scale helical variation is com-
parable in amplitude to the longer-scale toroidal variation. For the illustrative pitch angle

corresponding to B = 1.8 T, there is one class of toroidally-trapped particles and four classes
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FIG. 3. Variation of curvature drift k-{b x [(b-V)b]}/n along chosen magnetic field line, for

case of Fig. 1.



of helically-trapped particles with one or both turning points in this center period. For the
illustrative pitch angle corresponding to B = 1.4 T, there are ten trapped-particle classes
with one or both turning points in this center period, which cannot be conveniently classi-
fied as either toroidally or helically trapped. All of the trapped particle classes in all of the
periods are found numerically by the FULL code and used in its kinetic calculation.

The eigenfunction for the perturbed electrostatic potential qAb(@) for an unstable mode,
for the experimental values nf = dInT;/dInn, = 0.80 and n. = dInT./dInn. = 0.85, for
kipi(0 =0) =0.56 and n = 237, without collisions, is shown in Fig. 4. The parameters that
have been mentioned so far are our basic case parameters, which we will vary one by one
later in this section. This eigenfunction is even in § around 6 = 0. Odd eigenfunctions in ¢
can also be found, as will be seen. The eigenfunction in Fig. 4 is mainly localized within the

toroidal magnetic field well around § = 0, and strongly overlaps only a few helical magnetic

field wells.
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FIG. 4. FEigenfunction of electrostatic, collisionless toroidal drift mode (TEM root) along chosen
magnetic field line, for case of Fig. 1, with n{ = 0.80, n. = 0.85, and k, p;(§ = 0) = 0.56 (n = 237),
including electrons, hydrogen background ions, carbon, oxygen, and iron impurity species, and a

hydrogen hot beam species with a slowing-down distribution.

The eigenfrequency corresponding to this eigenfunction is w = (+2.3 +4.97) x 10° s71,



with positive real frequencies meaning: in the electron diamagnetic direction. This root will
be labeled as a trapped-electron mode (TEM) root, because of its characteristics when nf
and 7, are varied artificially. There is another root labeled as an ion temperature gradient
mode (ITG) root that is only unstable for nf = 1. above a critical value n. = 1.35, with the
other basic case parameters, and has a real frequency in the ion diamagnetic direction. (The
ITG root would be part of the “toroidicity-induced branch”, in tokamak nomenclature.)
Both of these roots have eigenfunctions that are even in §. This I'TG root is stable for the
experimental values of nf = 0.80 and n. = 0.85. This behavior is shown in Fig. 5, where nf =
ne is varied artificially at fixed total pressure gradient, so that d7;/dr and dT./dr increase
and dn./dr decreases as nf = 1. increases. For this particular case, the respective real
frequencies w, never change sign. The TEM root growth rate 4 is monotonically decreasing
in n¢ = n., while that of the I'TG root is monotonically increasing, with a crossover at about
ne = n. = 2.5. For this case, the TEM root and the ITG root are separate roots, and do not

hybridize into a single root, as often happens in tokamak cases.
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FIG. 5. Variation of linear growth rate v and real frequency w, for TEM and I'TG roots with
N = Ne, for kip;(6 =0)=0.56 (n =237). Here, the total pressure gradient is held fized as n{ = 1.

varies.

The effect of the beam species is slightly stabilizing for the TEM root for this case, and



that of the impurities is very slightly destabilizing, for the basic case parameters. Turning off
the beam species (i.e., replacing the beam particles with additional background ion particles
so that n. is unchanged), the value of w for the TEM root with the experimental values of
n¢ changes to w = (+2.545.5¢) x 10° s7*, and with all three impurity species also turned off
in the same way, it becomes w = (4+2.0 +5.37) x 10° s~!. For the ITG root at nf = n. = 4.0,
with the other basic case parameters, the effect of the beam species is essentially neutral, and
that of the three impurity species is very slightly stabilizing. With all six species included,
the ITG root eigenfrequency for nf = 5. = 4.0 is w = (—3.8 + 2.3¢) x 10° s™', while with
the beam species turned off it is w = (—3.8 +2.3¢) x 10° s™!, and with all three impurity
species also turned off it is w = (—4.3 + 2.47) x 10° s™'. For other cases, the effects of the
beam species and the impurity species could be much stronger than is seen for this case.

The variation of v and w, with ki p;(6 = 0) or n is shown in Fig. 6 for the TEM root,
with the other basic parameters. The growth rate peaks for k; p;(§ = 0) ~ 0.5 to 0.6, and
the change of the real frequency is from the electron towards the ion diamagnetic direction
as k1 pi(0 = 0) increases. This is the kind of £ p; dependence that is familiar for tokamaks.
However, the TEM root real frequency stays in the electron diamagnetic direction over this
range.

The effect on v and w, of varying the ballooning parameter y (sometimes called )
through one period for the TEM root (which has an even eigenfunction in § around 6 = 0
for 8y = o = 0) for the other basic parameters is shown in Fig. 7. Also shown is another
root, which corresponds to an eigenfunction which is odd in § around 6 = 0 for y = o = 0.
We will refer to this second root generally as the odd root, even though the eigenfunction has
odd symmetry only for 8y = o = 0. Antisymmetric modes have been investigated previously
for tokamaks in a more approximate way, for instance in Ref. 14. The growth rate of the
odd root is much less than that of the TEM root for any value of 8. The effect on + and
w, of varying the field line label o through one period on these two roots for the other basic
parameters is shown in Fig. 8. The growth rate of the odd root is much less than that of the

TEM root for @ = 0, but becomes greater than that of the TEM root for o = 7/10 (i.e.,
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FIG. 6. Variation of v and w, with kyp;(6 =0) and n, for case of Fig. 4 for TEM root.

halfway through one period of the ten toroidal period LHD). However, the highest growth
rate overall occurs for the TEM root at 8 = oo = 0.

By comparing the present case with an artificial case in which all of the helical compo-
nents are set to zero in the VVBAL code in evaluating the input functions along the magnetic
field line for the FULL code, the effect of the helically-trapped particles and the helical cur-
vature is seen to be strongly destabilizing for the TEM root and slightly stabilizing for the
ITG root. For the TEM root with the basic parameters, so that i = 0.80 and 7. = 0.85,
the eigenfrequency with the helical contributions suppressed is w = (+1.1 + 0.77) x 105 s7*,
while with the helical contributions included it is w = (+2.3 4+ 4.9¢) x 10° s71, a substantial
increase in the growth rate. For this value of n?, the TEM root is destabilized mainly by the
collisionless trapped-electron mode mechanism, which is a toroidal magnetic drift precession
frequency resonance mechanism entering through the trapped-particle time-average term.®
Suppressing the helically-trapped particles and helical curvature decreases the amount of
“bad” curvature available for this destabilization. For the ITG root with n{ = n. = 4.0,
the eigenfrequency with the helical contributions suppressed is w = (—2.1 + 2.8¢) x 10° s71,

while with the helical contributions included it is w = (=3.8 + 2.3¢) x 10° s71, a moderate
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decrease in the growth rate. At this i = n. value, the I'TG root is destabilized mainly by
the ion temperature gradient mechanism entering through the ion terms,® which does not
require “bad” curvature to be effective, but only requires that the ion temperature gradient
be larger than a critical value. However, the collisionless trapped electron mode destabi-
lization mechanism can still make a contribution at any value of n{. For other cases, the
contribution of the helically-trapped particles and the helical curvature could in general be
either destabilizing or stabilizing. Note that this comparison is not the same as a comparison
to a tokamak case, because the present artificial case without the helical contributions still
has the opposite sign of the (average) magnetic shear everywhere from that of a standard
tokamak, among other differences. In particular, negative magnetic shear does not have to

affect the helical curvature in the same way as the toroidal curvature.

I1I. COLLISIONAL EFFECTS

The nonaxisymmetric version of the FULL code uses a model Krook collision operator
that is described in more detail in Ref. 12. Briefly, for axisymmetric geometry it models
the two-step physical process of detrapping and retrapping, which gives an effective colli-
sion frequency which diverges at the trapped-passing boundary. This approach gives good
agreement with results from an equivalent calculation using a Lorentz pitch-angle scatter-
ing operator, in a tokamak comparison.'® In the nonaxisymmetric version, where there are
multiple classes of trapped particles, the model collision operator is generalized to include
transitions between adjacent trapped-particle classes also. The nonaxisymmetric FULL
code finds all local maxima of B(), and the effective collision frequency is constructed so
as to diverge (in pitch angle) at these maxima, modeling the behavior of a Lorentz collision
operator.

Note that the pressure and pressure gradient are input to the FULL code through the
MHD equilibrium. The total pressure gradient is allocated to the density and temperature

gradients of the individual species using the eta’s, the density fractions, the temperatures,
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etc., of the individual species. The separate electron density that is input is used only to
calculate the collision frequencies. Thus, a zero electron density specifies the collisionless
limit, but does not affect the rest of the calculation.

The behavior of v and w, with the electron density n. and with the usual tokamak
collisionality parameter v is shown in Fig. 9 for the TEM root for the basic case parameters.
At the experimental values of n. and v, there is a substantial reduction of the linear growth
rate and an increase of the real frequency, relative to the collisionless limit. The effect of
trapped particles under these conditions is to increase the growth rate and decrease the real
frequency (i.e., to move it towards the ion diamagnetic direction). The dominant effect of
the collisions, in turn, is to reduce the contribution of the trapped particles, accounting for

the observed behavior.
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FIG. 9. Variation of growth rate v and real frequency w, with electron density n. and collision-

ality parameter v, for case of Fig. 4, for TEM root.

Finally, we perform a radial scan over the magnetic surface label (s) for this case, in-
cluding collisions. In the process, kip;(0 = 0) = 0.56, §y = 0, and o = 0 are kept fixed,
and the other parameters are evaluated locally from the experimentally derived density and
temperature profiles, so that the value of n varies with s. The results for v are shown in

Fig. 10(a) and for w, in Fig. 10(b). The TEM root is seen to be unstable only in the region

12



0.7 S s S 0.86, which is a region of relatively strong density and temperature gradients.
For discharges with different density and temperature profile shapes, the radial region of
instability could be quite different. Note that in some nonlinear tokamak gyrokinetic sim-
ulations, it has been observed that the radial region of significant anomalous transport is

significantly wider than the radial region of linear instability.'®

IV. CONCLUSIONS

The existing axisymmetric version of the linear microinstability code FULL was converted
for nonaxisymmetric geometry, as described in Ref. 12. In the present experimentally-derived
LHD case, two separate roots were found with this new version of FULL, one labeled as the
trapped-electron mode (TEM) root, and one labeled as the ion temperature gradient mode
(ITG) root which is only unstable above a critical value of the ion temperature gradient,
with real frequencies in the electron and ion diamagnetic directions, respectively. For the
experimental values of the electron and ion temperature gradients, only the TEM root is seen
to be unstable. The maximum growth rate for the TEM root occurs for kp;(6 = 0) = 0.5
to 0.6, as is also typical for tokamak cases. The maximum growth rate in the ballooning
parameter 6y and the field line label o = ( — ¢# occurs for the TEM root for 8y = o = 0,
a symmetry point of the MHD equilibrium. Collisions reduce the TEM root growth rate
substantially, but it is still unstable for the experimental value of the density and collision
frequency. Radially, the TEM root is unstable only over the range 0.7 < s ~ (r/a)? < 0.86,
but could have effects outside that region.

In Ref. 12, results for a quasiaxisymmetric case were given which were generally rather
tokamak-like, in that there was only a small fraction of helically-trapped particles. In the
present LHD case, the fraction of helically-trapped particles is much larger, and the helically-
trapped particles and the helical curvature are seen to play a substantial destabilizing role
for the TEM root. For the ITG root, on the other hand, their effect is moderately stabilizing.

It is planned to investigate other cases for LHD also, in order to determine how general these
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trends are.

The only other work on microinstabilities in LHD of which we are presently aware is
Ref. 17. The calculation there contains a number of approximations that are not made here.
In Ref. 17, a simple model magnetic field is used to compare properties of [TG modes in
tokamaks and in an LHD-like helical system, and it is argued that the negative magnetic
shear and the helical ripples in the LHD-like configuration lower the growth rates of ITG
modes by reducing the bad curvature on the outside of the torus. In that calculation,
simplified dynamics with purely adiabatic electron response and no trapped particles and
no collisions are used, while here the complete electron and trapped-particle response, along
with a model collision operator, are kept in the calculation. Also, a different LHD case
is considered there. Because of these differences, only rough qualitative agreement can be
expected, and only for the I'TG root. In fact, there is qualitative agreement on the values of
a, By, and k, p; that maximize the growth rate, and also on the stabilizing effect of helical
curvature, for this root.

In future work, other cases for LHD will be investigated, as well as additional cases re-
sulting from the NCSX design effort. It would also be desirable to investigate cases for other
stellarators that are currently in operation or are planned. In addition, evaluation of quasi-
linear particle and energy fluxes for all species, and extension to the fully electromagnetic

case, are intended for the FULL code in future work.
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