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Abstract

The macroscopic warm-
uid model developed by Lund and Davidson

[Phys. Plasmas 5, 3028 (1998)] is used in the smooth-focusing approxima-

tion to investigate detailed stability properties of an intense charged par-

ticle beam with pressure anisotropy, assuming small-amplitude electrostatic

perturbations about a waterbag equilibrium. Stability properties are calcu-

lated numerically for the case of extreme pressure anisotropy with P 0
k (r) = 0

and P 0
?(r) 6= 0, assuming axisymmetric wave perturbations (@=@� = 0) of

the form Æ�(x; t) = Æ�̂(r) exp(ikzz � i!t), where kz is the axial wavenum-

ber, and Im! > 0 corresponds to instability (temporal growth). For suÆ-

ciently large values of kzrb, where rb is the beam radius, the analysis leads

to an anisotropy-driven instability (Im! > 0) provided the normalized Debye

length (�D = �D?=rb) is suÆciently large and the normalized beam intensity

(sb = !̂2pb=2

2
b!

2
�?) is suÆciently below the space-charge limit.
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I. INTRODUCTION

There is increasing interest in the equilibrium and stability properties of intense charged

particle beams1{3, with potential applications including heavy ion fusion, transmutation of

radioactive waste, accelerator-based production of tritium, and spallation neutron sources.

At the beam intensities of practical interest, it is particularly important to develop an

improved theoretical understanding of the in
uence of space-charge e�ects and collective

processes on detailed stability and transport properties4{20. A complete description of col-

lective processes in intense nonneutral beams generally requires a knowledge of the beam

distribution function f(x;p; t) in the six-dimensional phase space (x;p). While consid-

erable progress has been made in analytical investigations based on the Vlasov-Maxwell

equations4{17, such kinetic analyses are often complex, even under idealized assumptions.

It is therefore important to develop and test the robustness of alternative theoretical mod-

els, such as macroscopic models21{26 based on the 
uid-Maxwell equations, for investigating

beam equilibrium and stability properties.

Macroscopic 
uid descriptions21{26 have met with recent success in describing the

propagation of space-charge-dominated (low-emittance) beams in periodic-focusing trans-

port systems22;25, and in describing high-frequency collective oscillations in high-intensity

beams24. In this Letter, we make use of the macroscopic warm-
uid model developed by

Lund and Davidson24 in the smooth-focusing approximation to investigate the linear stability

properties of an intense charged particle beam, allowing for equilibrium pressure anisotropy

(P 0
? 6= P 0

k ). A particular focus in the present analysis is application of the warm-
uid model

to investigate the anisotropy-driven (P 0
? > P 0

k ) instability observed by Lund, et al.18{20

in particle-in-cell simulations and studied analytically using the Vlasov-Maxwell equations.

Such anisotropies are well known to develop naturally in accelerators. For example, for a

beam of charged particles of mass m and charge q that is accelerated through a voltage

V , a simple estimate shows that the �nal and initial longitudinal temperatures (in energy

units) are related4 in the nonrelativistic case by Tkf = T 2
ki=2qV: In the relativistic case, this
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relation is modi�ed to become Tkf = T 2
ki


3
i =�

2
f


3
fmc

2, where 
 is the relativistic mass factor

and � is the relativistic velocity. As an example, for an electron beam with initial energy 10

keV and temperature Tki = 0:5 eV accelerated to 1 MeV, the �nal longitudinal temperature

is Tkf = 2:1 � 10�8 eV, a decrease by seven orders-of-magnitude. In addition, the beam's

e�ective transverse temperature T? and emittance are subject to increase due to nonlin-

earities in applied and self-�eld forces, nonstationary beam pro�les, and mismatches, which

may produce negligible changes in the parallel temperature. This simultaneous cooling in

the parallel direction and heating in the transverse direction can provide the free energy to

drive collective instabilities and cause a further deterioration in beam quality through the

instability mechanism described in this paper. As a general remark, application of a warm-


uid model to describe the equilibrium and stability properties of intense charged particle

beams appears to be a remarkably robust and simple approach, both for the case of stable

high-frequency collective oscillations24, as well as the unstable case considered here, where

the instability is driven by gross macroscopic properties of the beam equilibrium (pressure

anisotropy).

To brie
y summarize the assumptions and macroscopic warm-
uid model, the present

analysis considers an intense nonneutral beam consisting of charged particles with charge

q and rest mass m propagating in the z-direction with average axial velocity Vb = const:,

and characteristic directed kinetic energy (
b � 1)mc2 in the laboratory frame. Here, 
b =

(1�V 2
b =c

2)�1=2 is the relativistic mass factor, c is the speed of light in vacuo, and a perfectly

conducting cylindrical wall is located at radius r = rw, where r = (x2 + y2)1=2 is the

radial distance from the beam axis. The characteristic beam radius is denoted by rb, and

it is assumed that the particle motion in the beam frame is nonrelativistic. Transverse

con�nement of the beam particles is provided by applied magnetic or electric focusing �elds,

and in the smooth-focusing approximation we model the applied transverse focusing force

on a beam particle by Ffoc = �
bm!2�?(xêx + yêy), where !�? = const: is the e�ective

betatron frequency for the transverse oscillations, and (x; y) is the transverse displacement

from the beam axis.
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The present analysis is carried out in the electrostatic approximation, where the self-

electric �eld Es(x; t) produced by the beam space charge is Es = �r�, and the electrostatic

potential �(x; t) is determined self-consistently from Poisson's equation,r2� = �4�qn(x; t),
where n(x; t) is the number density. In addition, the axial beam current, qn(x; t)Vz(x; t),

where Vz(x; t) is the average axial velocity, produces a transverse self-magnetic �eld,Bs(x; t),

where Bs = rAz � êz. Here, Az(x; t) is determined self-consistently in the magnetostatic

approximation from Maxwell's equation, r2Az = �(4�=c)qnVz. In circumstances where the

average axial velocity is approximately uniform over the beam cross section with Vz ' Vb =

const:, which we assume to be the case, the self-�eld potentials, �(x; t) and Az(x; t), are

related by the familiar expression, Az = (Vb=c)�.

To describe the dynamics of the intense charged particle beam interacting with the

applied focusing �eld and the self-generated electric and magnetic �elds, we make use of

the macroscopic warm-
uid model developed by Lund and Davidson24. To brie
y sum-

marize, by taking appropriate momentum moments of the nonlinear Vlasov equation for

the beam distribution function f(x;p; t), we obtain an interconnected chain of macro-

scopic 
uid equations21 advancing the particle density n(x; t), the average 
ow velocity

V(x; t) = Vz(x; t)êz + V?(x; t), the pressure tensor P(x; t), the heat 
ow tensor Q(x; t),

etc. Following Lund and Davidson24, we adopt a model in which the heat-
ow contribu-

tion, proportional to (@=@x) �Q(x; t), is neglected in the dynamical equation advancing the

pressure tensor P(x; t). In addition, we adopt a model21 in which P(x; t) is assumed to be

isotropic in the plane perpendicular to the beam propagation direction (the z-direction),

i.e., P(x; t) = P?(x; t)(êxêx + êyêy) + Pk(x; t)êzêz, where P?(x; t) and Pk(x; t) are scalar

pressures. In this case, making use of the assumptions enumerated earlier, the warm-
uid

equations24 appropriately generalized to the case of relativistic axial motion are given by

the continuity equation for n(x; t),

 
@

@t
+ Vz

@

@z
+V? � @

@x?

!
n+ n

 
@Vz
@z

+
@

@x?
�V?

!
= 0 ; (1)

the perpendicular force balance equation for V?(x; t),
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bmn

 
@

@t
+ Vz

@

@z
+V? � @

@x?

!
V? +

@

@x?
P? = �nq 1


2b
r?�� 
bmn!

2

�?x? ; (2)

the parallel force balance equation for Vz(x; t),


bmn

 
@

@t
+ Vz

@

@z
+V? � @

@x?

!
Vz +

@

@z
Pk = �nq@�

@z
; (3)

the equation of state for the perpendicular pressure P?(x; t),

 
@

@t
+ Vz

@

@z
+V? � @

@x?

!�
P?
n2

�
� P?
n2
@Vz
@z

= 0 ; (4)

the equation of state for the parallel pressure Pk(x; t),

 
@

@t
+ Vz

@

@z
+V? � @

@x?

! 
Pk
n

!
+
2Pk
n

@Vz
@z

= 0 ; (5)

and Poisson's equation for the electrostatic potential �(x; t),

r2
?�+

@2

@z2
� = �4�qn : (6)

Equations (1){(6) provide a closed macroscopic description of the nonlinear evolution of

the beam interacting with the applied focusing �eld and the self-generated electric and

magnetic �elds, Es = �r� and Bs = (Vb=c)r�� êz. In obtaining Eqs. (1){(6), it has been

assumed that the 
uid motions in the beam frame are nonrelativistic, i.e., V2
?=c

2 ; (Vz �
Vb)2=c2 ; P?=
bnmc2 ; Pk=
bnmc

2 � 1.

Equations (1){(6) can be used to investigate detailed macroscopic equilibrium and stabil-

ity properties for perturbations about a wide range of beam equilibria24 ranging from a warm-


uid thermal equilibrium with di�use radial density pro�le, to a warm-
uid Kapchinskij-

Vladimirskij (KV) equilibrium with step-function density pro�le, to a warm-
uid waterbag

equilibrium. For example, assuming @=@z = 0, Lund and Davidson have investigated24 sta-

ble electrostatic oscillations for perturbations about a warm-
uid KV equilibrium. In the

present analysis, allowing for a pressure anisotropy with P? 6= Pk and perturbations with

@=@z 6= 0, we examine detailed stability properties for perturbations about a warm-
uid

waterbag equilibrium11;13;24.
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Under steady-state (equilibrium) conditions with @=@t = 0, we assume a matched, ax-

isymmetric beam in which all equilibrium pro�les (denoted with a superscript zero), satisfy

@=@� = 0 = @=@z = 0, and depend only on the radial distance r = (x2 + y2)1=2 from the

beam axis. In equilibrium, it is further assumed that there is no perpendicular motion of the

beam and that the axial 
ow velocity is uniform over the beam cross section, i.e., V0
? = 0,

and V 0
z = Vb = const: For a warm-
uid waterbag equilibrium11;13;24, we assume that the

perpendicular and parallel pressures are of the form

P 0

?(r) = (T̂?=n̂)[n
0(r)]2 ; P 0

k (r) = T̂kn
0(r) ; (7)

where n0(r) is the equilibrium density pro�le. In Eq. (7), n̂ = n0(r = 0) = const: is the

on-axis density, and the constants T̂? and T̂k are the perpendicular temperature and parallel

temperature, respectively, at r = 0, expressed in energy units. From Eq. (7), we note that

the e�ective temperature pro�les, T 0
?(r) = P 0

?(r)=n
0(r) and T 0

k (r) = P 0
k (r)=n

0(r), are given

by T 0
?(r) = T̂?n

0(r)=n̂ and T 0
k (r) = T̂k = const: That is, T 0

?(r) has the same radial shape as

the density pro�le n0(r), whereas T 0
k (r) is uniform (isothermal) over the beam cross section.

We introduce the e�ective perpendicular Debye length �D? and self-�eld intensity parameter

sb de�ned by

�2D? =
2T̂?
2b
4�q2n̂

; sb =
!̂2pb

2
2b!
2
�?

; (8)

where !̂2pb = 4�n̂q2=
bm is the on-axis plasma frequency-squared. Without presenting alge-

braic details, the exact solution for the equilibrium density pro�le is given by26

n0(r) =

8>>>><
>>>>:
n̂
I0(rb=�D?)� I0(r=�D?)

I0(rb=�D?)� 1
; 0 � r < rb ;

0 ; rb < r � rw ;

(9)

where rb is the outer radius of the beam, and rw is the conducting wall radius. In terms of

�D? and sb = !̂2pb=2

2
b !

2
�?, the beam radius rb in Eq. (9) is determined self-consistently from

I0(rb=�D?) =
1

1� !̂2pb=2

2
b!

2
�?

: (10)
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Here, I0(x) is the modi�ed Bessel function of the �rst kind of order zero.

For the equilibriumdensity pro�le n0(r) speci�ed by Eq. (9), we note that the density pro-

�le decreases monotonically from the on-axis value n0(r = 0) = n̂ at r = 0, to n0(r = rb) = 0

at the beam edge (r = rb). At low beam intensities with sb = !̂2pb=2

2
b!

2
�? � 1, it follows

from Eqs. (9) and (10) that rb < �D?, corresponding to an emittance-dominated beam

with near-parabolic density pro�le, n0(r) = n̂(1 � r2=r2b ), over the beam cross section. On

the other hand, for sb = !̂2pb=2

2
b!

2
�? ! 1 � �, with � ! 0+, it follows from Eqs. (9) and

(10) that rb � �D? and that n0(r) approaches the step-function density pro�le character-

istic of space-charge-dominated beams with very low transverse emittance. These proper-

ties are illustrated in Fig. 1, where the normalized density pro�le n0(r)=n̂ calculated from

Eq. (9) is plotted versus r=rb for several values of the dimensionless intensity parameter

sb = !̂2pb=2

2
b!

2
�? over the interval 0 < sb < 1.

The macroscopic 
uid-Poisson equations (1){(6) can be linearized for small-amplitude

perturbations about the warm-
uid waterbag equilibrium described by Eqs. (7), (9),

V0
?(x) = 0, and V 0

z = Vb = const: The resulting linearized equations then can be com-

bined into a single eigenvalue equation26 for the perturbed electrostatic potential Æ�(x; t),

allowing for arbitrary anisotropy in the perpendicular and parallel pressures, P 0
?(r) and

P 0
k (r). The details of this derivation will be presented elsewhere26.

Using a normal-mode approach, we express all perturbed quantities Æ�(x; t), ÆP?(x; t),

ÆPk(x; t), and Æn(x; t) as

Æ (x; t) = Æ ̂(x?) exp(ikzz � i!t) : (11)

Here, Æ ̂(x?) is the perturbation amplitude, kz is the axial wavenumber of the perturbation,

and ! is the complex oscillation frequency, with Im! > 0 corresponding to instability

(temporal growth). We further introduce the de�nitions


 = ! � kzVb ; !2pb(r) =
4�n0(r)q2


bm
; v2Tz =

2T̂k

bm

; (12)

where 
 is the Doppler-shifted oscillation frequency, !2pb(r) is the local relativistic plasma
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frequency-squared, and vTz = const: is the e�ective axial thermal speed of the beam ions.

After some algebraic manipulation and rearrangement of terms, we obtain26

@

@x?
�
("


2 � !2pb(r)


2b
(1 + k2z�

2

D?)�
1

2
k2zv

2
TZ


2


2 � k2zv2TZ

#
@

@x?
Æ�̂

+ �2D?
!2pb(r)


2b

@

@x?
r2

?Æ�̂

+
1

2
k2z�

2

D?

@

@x?

"
!2pb(r)=


2
b


2 � k2zv2TZ

�
[!2pb(r) +

1

2
k2zv

2

TZ]Æ�̂�
1

2
v2TZr2

?Æ�̂
�#)

� k2z

(

2 � !2pb(r)


2


2 � k2zv
2
TZ

�
1

2
k2zv

2
TZ


2


2 � k2zv
2
TZ

)
Æ�̂ = 0 : (13)

Equation (13) is the �nal eigenvalue equation for the potential eigenfunction Æ�̂(x?) and the

eigenfrequency 
 = ! � kzVb. Equation (13) has been derived from Eqs. (1){(6) for small-

amplitude perturbations about the warm-
uid waterbag equilibrium described by Eqs. (7)

and (9), and can be used to investigate detailed stability properties over a wide range of val-

ues of beam intensity and temperature anisotropy. Introducing cylindrical polar coordinates

(r; �), where x = r cos � and y = r sin �, we represent Æ�̂(x?) = Æ�̂(r; �). The eigenvalue

equation (13) is to be solved for Æ�̂(r; �) and 
 subject to the requirements that Æ�̂(r; �) be

regular at the origin (r = 0), and that

Æ�̂(r = rw ; �) = 0 : (14)

The boundary condition in Eq. (14) assures that the perturbed tangential electric �eld

components vanish at the perfectly conducting wall.

Anisotropy-driven instabilities are expected to be the strongest (largest growth rate) in

the case of strong temperature anisotropy T̂? � T̂k. In circumstances where the beam ions

are cold in the propagation direction, the eigenvalue equation (13) simpli�es considerably.

Therefore, in the remainder of this article we set T̂k = 0 (v2Tz = 0) in Eq. (13), and further

assume axisymmetric perturbations with (@=@�)Æ�̂ = 0. The eigenvalue equation (13) then

reduces to26
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1

r

@

@r
r

("

2 � !2pb(r)


2b
(1 + k2z�

2

D?)

#
@

@r
Æ�̂(r)

+ �2D?
!2pb(r)


2b

 
1

r

@

@r
r
@

@r
� 1

r2

!
@

@r
Æ�̂(r) (15)

+
1

2
k2z�

2

D?

@

@r

 
!4pb(r)=


2
b


2
Æ�̂(r)

!)

� k2z [

2 � !2pb(r)]Æ�̂(r) = 0 :

For kz = 0 and �D? 6= 0, it is found26 that Eq. (15) gives purely stable oscillations with

Im
̂ = 0. On the other hand, as kzrb is increased to suÆciently large values, the temperature

anisotropy (T̂? / �2D? 6= 0, and T̂k = 0) provides the free energy to drive an instability26 at

moderate values of beam intensity.

For the equilibrium density pro�le n0(r) speci�ed by Eq. (9), the eigenvalue equation

(15) must be solved numerically for the (generally) complex eigenfunction Æ�̂ = Æ�̂r + iÆ�̂i

and complex eigenfrequency 
 = 
r + i
i = !r + i!i � kzVb, subject to the boundary

condition at r = rw in Eq. (14). A detailed investigation of Eq. (15) for a wide range of

system parameters will be presented elsewhere26, and we summarize here several of the key

results. First, the dimensionless parameters characterizing Eq. (15) are

kzrb ; �D � �D?
rb

; sb �
!2pb

2
2b!
2
�?

;
rb
rw

; (16)

where sb and �D are related by Eq. (10). Second, it is convenient to introduce the char-

acteristic measures of the depressed and undepressed single-particle transverse oscillation

frequencies, � and �0, de�ned by

�2 � !2�? � !̂2pb=2

2

b ; �20 � !2�? ; (17)

and the e�ective tune depression, �=�0, where

�2

�20
= 1 � !̂2pb

2
2b!
2
�?

= 1� sb : (18)

Finally, in Eq. (15) there is a clear demarcation between the vacuum region where !2pb(r) = 0

(rb < r � rw), and the beam interior (0 � r < rb). For sb 6= 1 and �D 6= 0, the equilibrium

9



density pro�le n0(r) in Eq. (9) approaches zero continuously at r = rb (see Fig. 1), and it is

readily shown26 from Eq. (15) that the appropriate boundary conditions at the beam surface

(r = rb) correspond to continuity of Æ�̂(r),

Re[Æ�̂I(r = rb)] = Re[Æ�̂II(r = rb)] ;

Im[Æ�̂I(r = rb)] = Im[Æ�̂II(r = rb)] ; (19)

and continuity of (@=@r)Æ�̂(r),

Re

"
@

@r
Æ�̂I(r)

#
r=rb

= Re

"
@

@r
Æ�̂II(r)

#
r=rb

;

Im

"
@

@r
Æ�̂I(r)

#
r=rb

= Im

"
@

@r
Æ�̂II(r)

#
r=rb

; (20)

where Region I corresponds to the beam interior (0 � r < rb), and Region II corresponds to

the vacuum region (rb < r � rw).

For kz = 0. it is readily shown from Eq. (15) that the radial electric �eld perturbation,

ÆÊr = �(@=@r)Æ�̂, is equal to zero in the vacuum region, i.e., ÆÊr = 0 for rb < r � rw. For

kz = 0, Eq. (15) has been solved26 over the interval 0 � r < rb for ÆÊr(r) and 
 subject to

the requirement that [ÆÊr]r=rb = 0 using two approaches: (a) direct numerical integration of

Eq. (15) using a shooting method to determine both the eigenfunctions and eigenvalues, and

(b) a matrix-dispersion-equation technique that expands Eq. (15) in a complete set of basis

functions that satisfy a priori the boundary condition [ÆÊr]r=rb = 0. The results using both

techniques are in excellent agreement26. For kz = 0, the solutions to Eq. (15) correspond

to a discrete set of stable oscillations f!ng with radial mode numbers n = 1; 2; 3; : : :, and

Im!n = 0. Typical numerical results are shown in Fig. 2 where Re[!n=�0] is plotted versus

�=�0 in Fig. 2(a) for e�ective tune depressions ranging from �=�0 = 0 (sb = 1) to �=�0 = 1

(sb = 0). For each value of n, note that the �=�0 = 0 (!̂2pb=2

2
b!

2
�? = 1) intercept in Fig. 2(a)

corresponds to the single frequency Re!n =
p
2�0 =

p
2!�? = !̂pb=
b in the limit of high

beam intensity. On the other hand, as �=�0 = (1 � sb)1=2 is increased (decreasing beam

intensity sb = !̂2pb=2

2
b !

2
�?), it is evident from Fig. 2(a) that there is a discrete spectrum
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of stable oscillations with frequencies f!ng that increase as �=�0 and n are increased. The

general features of the solutions for f!ng presented in Fig. 2(a) for kz = 0 perturbations

about a warm-
uid waterbag equilibrium are qualitatively similar to those for a warm-
uid

Kapchinskij-Vladimirskij (KV) equilibrium24, although the precise values of f!ng di�er as
�=�0 is increased. For completeness, shown in Fig. 2(b) are plots of the eigenfunction ÆÊ(r)

versus r=rb for radial mode numbers n = 1; 2; 3 obtained numerically from Eq. (15) for

sb = 0:36 and �=�0 = 0:8. Note from Fig. 2(b) that the number of radial oscillations of

ÆÊ(r) increase as the mode number n is increased. Moreover, for speci�ed mode number n,

the number of zeros of ÆÊ(r) in the interval 0 � r � rb is equal to n + 1.

For kz 6= 0 and �D = �D?=rb 6= 0, the eigenvalue equation (15), valid for T̂k = 0,

generally supports unstable solutions (Im! > 0) provided kzrb is suÆciently large and the

normalized beam intensity sb is suÆciently below the space-charge limit26. The eigenvalue

equation (15) is a linear fourth-order ordinary di�erential equation for Æ�̂(r). At r = 0,

several of the coeÆcients are singular. At r = rb, the beam edge, the coeÆcient multiplying

the highest-derivative term vanishes, causing a boundary layer. Since standard numerical

integration techniques are not applicable, we instead expand the solution near r = 0 in a

Froebenius series. Using this analytical expansion near the origin where it is suÆciently

accurate, we begin by numerically integrating from very near r = 0 out to the beam edge

at r = rb, and then back to the origin.

The linearity of Eq. (15) implies that the solution for Æ�̂(r) is arbitrary up to a constant,

multiplicative, complex factor. This freedom can be used in the unstable case to make

the matching of real and imaginary parts at the beam edge simpler. For present purposes,

we choose the initial amplitude and phase at r = 0 such that Re[Æ�̂(r = 0)] = 1 and

Im[Æ�̂(r = 0)] = 0. In the unstable case, integrating away from r = 0, the eigenfunction

generally develops an imaginary component with Im[Æ�̂(r)] 6= 0. Of course at the beam edge

(r = rb), there are four conditions to satisfy, corresponding to Eqs. (19) and (20). We can

automatically satisfy the matching conditions in Eq. (19) by appropriate choice of complex

phase factor for the solution for Æ�̂(r) in the vacuum region (rb < r � rw). In general,
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however, neither of the matching conditions on @Æ�̂=@r at r = rb in Eq. (20) will be satis�ed

unless the complex eigenfrequency 
 = 
r + i
i occurring in Eq. (15) is correctly chosen,

which corresponds to the desired dispersion relation. Therefore, in the present shooting

method, Eq. (15) is repeatedly integrated, and the value of 
r + i
i adjusted until the

matching conditions in Eq. (19) are satis�ed, thereby determining the eigenfrequency.

Using this method, Eq. (15) has been solved numerically subject to the boundary con-

ditions in Eqs. (14), (19) and (20), and the complex eigenfrequency 
 = 
r + i
i and

eigenfunction Æ�̂(r) have been determined self-consistently over a wide range of system pa-

rameters corresponding to normalized beam intensity, sb = !̂2pb=2

2
b!

2
�?, tune depression,

�=�0 = (1 � sb)1=2, transverse Debye length, �D = �D?=rb, and axial wavenumber kzrb.

Here, keep in mind that sb and �D are related by Eq. (10), so that very high beam inten-

sity (sb ! 1) corresponds to �D � 1, and low beam intensity (sb � 1) corresponds to

�D � 1 (see Fig. 1). Because T̂k = 0 is assumed in the present analysis, the term propor-

tional to k2z�
2
D? 6= 0 in Eq. (15) provides the free energy to drive instability associated with

temperature anisotropy (T̂? > T̂k).

For kz 6= 0, typical numerical results obtained from Eq. (15), are illustrated in Figs. 3{5

for a mildly relativistic beam with 
b = 1:02 and rw=rb = 2. As a general remark, beams

which are cold in the transverse direction oscillate stably at all values of axial wavelength.

Beams with intermediate transverse temperatures are unstable for all wavenumbers kzrb

larger than a critical value. Finally, beams which are suÆciently hot in the transverse

direction have a �nite instability bandwidth in kzrb: short wavelengths and long wavelengths

are stable, while wavelengths in a range about kzrb�D � 1 are unstable. That is, the growth

rate of suÆciently temperature-dominated beams turns over and approaches zero at large

values of kzrb. For the choice of waterbag equilibrium considered here with T̂k = 0, the

onset of instability occurs for �D > ��D = 0:364, sb < s�b = 0:750, and �=�0 > ��=�0 = 0:500,

which are equivalent conditions. For increasing values of �D relative to ��D, the instability

bandwidth �rst increases, encompassing both higher and lower axial wavenumbers. For even
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warmer beams, however, high values of kzrb become stabilized, while the region of instability

continues to shift to smaller axial wavenumbers.

Figure 3 shows typical numerical results for the choice of system parameters �D = 0:360

(sb = 0:755), corresponding to stable oscillations with Im
 = Im! = 0. Plotted in Fig. 3(a)

is Re(! � kzVb)=�0 versus kzrb for the n = 1 eigenmode, whereas Fig. 3(b) shows the

corresponding eigenfunction Æ�̂(r) (assumed real) plotted versus r=rb for several values of

kzrb. The high-frequency (upper) branch in Fig. 3(b) corresponds to the familiar plasma

oscillation branch considered in Fig. 2, extended to non-zero values of kzrb. The lower

(slow-wave) branch in Fig. 3(a) starts at zero frequency for kz = 0, and Re(! � kzVb)

increases linearly with kzrb for kzrb < 1, and then asymptotes at Re(! � kzVb) ' 1:03�0 for

kzrb � 1. On the other hand, the upper (high-frequency) branch in Fig. 3(a) asymptotes

at Re(! � kzVb) ' 1:3�0 for kzrb � 1. From Fig. 3(b), as expected, as kzrb is increased, the

eigenfunction Æ�̂(r) extends radially well into the vacuum region, with Æ�̂(r = rw) = 0.

For �D > ��D, the two branches in Fig. 3 coalesce as kzrb is increased beyond some

critical value k�z (�D)rb. Typical numerical results in this case are illustrated in Fig. 4 for

the choice of system parameters �D = 0:509 (sb = 0:55). From Fig. 4, for 0 � kzrb <

k�zrb = 0:968, the eigenvalue equation supports two real oscillatory solutions with Im! = 0.

For kbrb > k�zrb = 0:968, however, the two modes coalesce and have the same value of

Re(! � kzVb), and complex conjugate values of Im! (one mode is damped, and the other

is growing). The normalized growth rate Im!=�0 of the unstable branch is plotted versus

kzrb in Fig. 4(a), and increases from Im! = 0 at kzrb = k�zrb = 0:968, to Im! ' 0:4�0 for

kzrb � 1. Consistent with Fig. 4(a), the corresponding eigenfunction plots of Re[Æ�̂(r)] and

Im[Æ�̂(r)] versus r=rb are presented in Fig. 4(b) for kbrb = 4, corresponding to instability.

For moderately low values of kzrb, the eigenfunction for the unstable mode has the distinctive

n = 1 mode structure illustrated in Fig. 4(b) for kzrb = 4. As kzrb is increased, however,

the real part of the eigenfunction, Re[Æ�̂(r)], changes continuously from an n = 1 to an

n = 2 mode structure26. For very large kzrb > 10, the boundary layer at r = rb becomes

very sharp, with large changes in Re[Æ�̂(r)] over a very short radial scale26. The radial mode
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number, however, does not appear to change from n = 2. Of course, perturbations with such

large values of kzrb are of limited practical interest because the modes would be stabilized

(Im! = 0) at short axial wavelengths by �nite T̂k 6= 0 e�ects in an analysis of the more

complete eigenvalue equation (13).

For completeness, shown in Fig. 5 are plots of the normalized growth rate Im!=�0 versus

kzrb obtained numerically from Eqs. (14), (15), (19), and (20) for several values of �D > ��D

and sb < s�b . Note from Fig. 5 that critical value of kzrb for onset of instability increases as �D

is increased (sb is decreased), and that the maximum normalized growth rate (Im!)max=�0

increases as �D is increased (sb is decreased). For suÆciently large value of �D (large enough

transverse emittance), we also note from Fig. 5 that the instability has a �nite bandwidth

in kzrb, whereas for smaller values of �D, the maximum growth rate occurs for kzrb � 1:

For T̂k 6= 0 (but T̂k < T̂?), it is expected that the more complete eigenvalue equation (13)

will always give a �nite instability bandwidth in kzrb.

To summarize, for kz = 0, the analysis of the eigenvalue equation (15) leads to a discrete

spectrum f!ng of stable oscillations with Im!n = 0, where n is the radial mode number. On

the other hand, for suÆciently large values of kzrb, where rb is the beam radius, the analysis

of the eigenvalue equation leads to an anisotropy-driven instability (Im! > 0) provided

the normalized Debye length (�D = �D?=rb) is suÆciently large and the normalized beam

intensity (sb = !̂2pb=2

2
b!

2
�?) is suÆciently below the space-charge limit. Depending on

system parameters, the growth rate can be a substantial fraction of the focusing frequency

!�?. As a general remark, application of a warm-
uid model to describe the equilibrium and

stability properties of intense charged particle beams appears to be a remarkably robust and

simple approach, both for the case of stable high-frequency collective oscillations24, as well

as the unstable case considered here, where the instability is driven by gross macroscopic

properties of the beam equilibrium (pressure anisotropy).
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FIGURES

FIG. 1. Plot of n0(r)=n̂ versus r=rb calculated from Eqs. (9) and (10) for several values of

sb = !̂2pb=2

2
b!

2
�?.

FIG. 2. Plots of (a) Re!n=�0 versus �=�0 for radial mode numbers n = 1; � � �4, and (b)

ÆÊr = �(@=@r)Æ�̂ versus r=rb for n = 1; 2; 3, for sb = 0:36 and �=�0 = 0:8, obtained numeri-

cally from the eigenvalue equation (15) for kz = 0.

FIG. 3. Plots of (a) Re(! � kzVb)=�0 versus kzrb, and (b) Re[Æ�̂(r)] versus r=rb for several

values of kzrb, obtained numerically from Eq. (15) for �D = 0:360 (sb = 0:755).

FIG. 4. Plots of (a) Re(!�kzVb)=�0 and Im!=�0 versus kzrb, and (b) Re[Æ�̂(r)] and Im[Æ�(r̂)]

versus r=rb for kzrb = 4, obtained numerically from Eq. (15) for �D = 0:509 (sb = 0:55).

FIG. 5. Plots of Im!=�0 versus kzrb obtained numerically from Eq. (15) for several values of

�D > ��D = 0:364.
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FIG. 5. Plots of Im!=�0 versus kzrb obtained numerically from Eq. (15) for
several values of �D > ��

D
= 0:364.
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