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A fully three-dimensional gyrokinetic particle code using magnetic coordinates for general geom-
etry has been developed and applied to the investigation of zonal 
ows dynamics in toroidal ion-
temperature-gradient turbulence. Full torus simulation results support the important conclusion
that turbulence-driven zonal 
ows signi�cantly reduce the turbulent transport. Linear collisionless
simulations for damping of an initial poloidal 
ow perturbation exhibit an asymptotic residual 
ow.
The collisional damping of this residual causes the dependence of ion thermal transport on the
ion-ion collision frequency even in regimes where the instabilities are collisionless.

PACS: 52.65.Tt, 52.35.Qz, 52.25.Fi

I. INTRODUCTION

Nonlinear gyrokinetic simulations [1] are playing an
increasingly important role in understanding the physics
of pressure-gradient-driven microinstabilities which are
leading candidates to account for the ion thermal trans-
port in magnetically con�ned fusion plasmas. With the
development of a low noise nonlinear Æf algorithm [2]
and the rapid increase in parallel computing power, real-
istic three-dimensional particle simulations of microtur-
bulence in tokamaks have become possible in both a full
torus using Cartesian coordinates [3] and a 
ux-tube ge-
ometry using quasiballooning coordinates [4]. The 
ux-
tube code is based on the assumption of scale separation
between 
uctuation and equilibrium pro�les. In the ab-
sence of equilibrium pro�le variations, it is not surprising
that a gyro-Bohm scaling has been observed in 
ux-tube
simulations. Therefore, the key issues of turbulent trans-
port scaling, steep pressure pro�les in transport barriers,
and meso-scale physics can only be e�ectively studied in
global simulations. The Monte-Carlo sampling of veloc-
ity phase space in the particle simulation is more eÆcient
in multi-dimensionality than the direct discretization us-
ing phase space grids in a Vlasov simulation [5].

Previous nonlinear full torus simulations assumed a
high aspect ratio axisymmetric equilibriumand neglected
equilibrium pro�le variations (e.g., gyroradius variations
across the poloidal plane). This was necessitated by the
limitations of Cartesian representations and the spectral
approach in solving the gyrokinetic Poisson equation.
Hence, developing a general geometry capability for a
nonlinear gyrokinetic code not only represents an impor-
tant fundamental advance but is also of great interest
for practical applications. Furthermore, transport barri-
ers in enhanced con�nement regimes are characterized by
sharp pressure gradients. Cartesian coordinates are not
eÆcient for dealing with these complicated equilibrium
con�gurations, especially when only numerical equilib-

rium data rather than analytic formulas are available.
The spectral method for solving the Poisson equation is
not valid in a general geometry equilibrium such as the
steep pressure pro�le of transport barriers or the �nite
poloidal magnetic �eld of low aspect ratio machines. In
this paper, magnetic coordinates [6] and a nonspectral
Poisson solver [7] suitable for general geometry are uti-
lized to address these issues.

Magnetic coordinates give the most general coordinate
system for any magnetic con�guration possessing nested
surfaces. The property of straight �eld lines in these co-
ordinates is desirable for describing the microinstabilities
for which mode structures are �eld aligned and for eÆ-
ciently treating the electron dynamics. Furthermore, the
unique ability of a single code to simulate both a full
poloidal cross section and an annulus box with radially
periodic boundary conditions provides a connection be-
tween global simulations and 
ux-tube simulations. The
guiding center equations of motion [8] can be derived
from a Hamiltonian formulation which conserves phase
space volume and is best for integrating particle orbits
for a long period. The fact that only scalar �eld quan-
tities are needed to calculate the guiding center orbit in
this framework is most suitable for the general geometry
equilibrium.

The paper is organized as follows. Section II �rst pro-
vides the basic formalism of this new general geometry
global gyrokinetic code. Results of convergence studies
are then presented. Section III discusses the application
to the collisionless dynamics of turbulence-driven E �B
zonal 
ows. E�ects of collisional zonal 
ow damping on
turbulent transport are studied in Section IV. Conclu-
sions are drawn in Section V.
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II. GYROKINETIC SIMULATIONS USING

MAGNETIC COORDINATES

A. Basic formalism

In gyrokinetic simulations, the gyrokinetic Vlasov-
Poisson system is solved by advancing the particle po-
sition in phase space and calculating the self-consistent
perturbed �eld recursively in a pre-de�ned coordinate
system. In this section, magnetic coordinates, Hamil-
tonian guiding center equations of motion and the gen-
eral geometry Poisson solver used in our gyrokinetic
toroidal code (GTC) are presented along with numeri-
cal techniques for 3-dimensional gyrophase-averaging and
boundary conditions for both global and annulus simula-
tions.
In a general magnetic con�guration possessing nested

toroidal magnetic surfaces, the magnetic �eld B can be
written [8] in the contravariant form

B =
1

q
r� �r +r �r�;

and in the covariant form

B = gr� + Ir� + Ær :

The magnetic coordinates ( ; �; �) are, respectively,
toroidal 
ux, poloidal and toroidal angles. g; I and Æ
are related to the poloidal, toroidal and P�rsch-Schluter
currents, respectively. q is the safety factor. The Jaco-
bian is chosen to be: J = (gq + I)=B2. The �eld line is
straight in these coordinates, and only scalar quantities
are needed to integrate guiding center orbits. The simu-
lation domain is discretized in a rectangular grid layout
in [f1( ); f2(�); �] space. The arbitrary functions f1 and
f2 provide 
exibilities for adjusting the desired resolution
and maximizing orthogonality across the poloidal plane.
The guiding center Hamiltonian is [8]:

H =
1

2
�2kB

2 + �B + ��;

where �k = vk=B, � is the magnetic momentwhich is con-
stant in gyrokinetic simulations, and �� is the gyrophase-
averaged electrostatic potential. The mass and charge of
particles are normalized to unity throughout the paper.
The guiding center equations in canonical form are:

dP�
dt

= �@�H ;
d�

dt
= @P�H

dP�
dt

= �@�H ;
d�

dt
= @P�H

where P� = g�k� p, P� = I�k+ , and  p is the poloidal

ux. This formulation has been implemented in a guid-
ing center code (ORBIT) [8]. The Hamiltonian approach

preserves phase space volume and is most suitable for
describing the long time behavior of particle orbits.
The gyrokinetic Poisson equation [1] takes the follow-

ing form,

�

�2D
(� � ~�) = 4�e(Æ�ni � Æne); (1)

where

~�(x) =
1

2�

Z
��(R)FM (R; �; vk)Æ(R� x + �)dRd�dvkd�;

(2)

and

��(R) =
1

2�

Z
�(x)Æ(x �R� �)dxd�: (3)

Here x and R are particle and guiding center positions,
respectively. � is the gyroradius and � is the gyrophase.
� = Te=Ti and �D is the plasma Debye length. Æ�ni and
Æne are the ion guiding center and electron perturbed
density response, respectively. The term of (�� ~�) repre-
sents the ion polarization density. It can be shown [9,10]
that a set of gyrokinetic Vlasov equations corresponding
to the guiding center equation and Eq. (1) conserves the
energy. Transformation between ~� and � must be car-
ried out in order to solve Eq. 1. In a global code using
Cartesian coordinates, this is usual done by transforming
Eq. 1 to the Fourier space with some approximations such
as zero poloidal �eld and constant gyroradius across the
poloidal plane. Here, we utilize a generalized gyrokinetic
Poisson solver [7] which is based on the physical process
of gyrophase-averaging and employs local operations in
con�guration space to compute the polarization density
response. Speci�cally, the integrations over gyrophase �
in Eq. 2 and Eq. 3 are carried out by a numerical av-
eraging along a charged ring which corresponds to the
particle gyro-orbit [1]. This method automatically takes
into account the pro�le variation e�ects and is suitable
for general geometry. Its local operations in con�guration
space are also amenable to massively parallel algorithms.
Previous procedures of the gyrophase-averaging have

neglected the poloidal �eld so that the gyro-orbit is in
the poloidal plane. However, in a low aspect ratio de-
vice, the poloidal �eld can be comparable to the toroidal
�eld and the gyrophase-averaging should be along the
true gyro-orbit which is in a plane perpendicular to the
magnetic �eld. In magnetic coordinates, we can project
the gyro-orbit back onto the poloidal plane by following
the �eld line. The gyro-averaging can then still be done
on the poloidal plane along the projected ecliptic ring.
This procedure is valid for kk�i � 1 which holds for mi-
croturbulence and can reduce a 3-D gyro-averaging to
a 2-D operation even in the situation of non negligible
poloidal �eld. The grid spacing in the toroidal direction
is only limited by the shortest wavelength of interest.
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The 
exibility of magnetic coordinates enables us to
simulate both a full poloidal cross section and an annu-
lar box [ 1;  2] with a variety of boundary conditions
including the radially periodic boundary condition. This
unique capability allows a connection between global sim-
ulations and 
ux-tube simulations. The perturbed elec-
trostatic potential is set to zero at the wall in all global
simulations. Here, we present a radially periodic bound-
ary condition similar to that of the 
ux-tube simula-
tion [11,4]. De�ning a new variable � = �=q � �; we can
use � to label the magnetic �eld line and � to measure
the parallel distance along the 
ux tube. The periodic
boundary condition in the radial direction is de�ned as
�( 1) = �( 2) with � and � kept constant. Speci�cally,
we impose periodic boundary conditions such that

�( 1; �1; �1) = �( 2; �2; �2)

with

�2 = �1 and �2 � �1 = (q2 � q1)�1:

Here, we use subscripts 1 and 2 to label quantities at
the inner and outer boundaries, respectively. Since the
�eld line maps the whole annulus, the physical periodic
boundary condition of �(�) = �(� + 2�) requires,

q2 � q1 = integer:

B. Convergence studies

Both linear and nonlinear simulations have been car-
ried out to rigorously benchmark the GTC code against
earlier analytic and computational models. Convergence
studies have also been performed in nonlinear simulations
using a representative tokamak core plasma parameters.
In the core region of this plasma, the temperature gradi-
ent peaks at a radial location of r = 0:5a where a is the
minor radius. The dimensionless plasma parameters used
in simulations are: R0=LT = 6:9, �i � Ln=LT = 3:2,
q = 1:4, ŝ � (r=q)(dq=dr) = 0:78, Te=Ti = 1, and
� � a=R0 = 0:36. Here R0 is the major radius, LT
and Ln are the temperature and density gradient scale
lengths, respectively. Ti is the ion temperature and Te
is the electron temperature. The size of the plasma
column is a = 160�i where �i is the thermal ion gy-
roradius measured at r = 0:5a. The simpli�ed model
used in this section includes: parabolic q pro�le, circu-
lar cross section, and adiabatic electron response with no
turbulence driven E �B 
ow. Ion-temperature-gradient
(ITG) modes are found to be unstable with these param-
eters. The simulation domain is limited to the region
of 0:25 < r=a < 0:75 in this study with �xed boundary
conditions and a narrow pro�le of temperature gradient.
Convergence studies with respect to size of time step,

number of grid points and number of particles in non-
linear simulations have been carried out. In particular,
convergence of the ion heat conductivity �i and 
uctua-
tion energy level with respect to the number of particles
is shown in Fig. 1. A total of 20 million grid points,
i.e., (80� 640� 384) are used in the ( ; �; �) space. The
ion heat conductivity remains unchanged when the num-
ber of particles is increased from 32 million to 80 million.
This indicates that �i is well converged. The di�erence in
�eld energy with di�erent number of particles as shown in
Fig. 1 is due to short wavelength modes which need more
particles to resolve and have little e�ect on transport.
These short wavelength modes can also be suppressed by
numerical �ltering.
In Fig. 1, both �i and 
uctuation energy initially grow

exponentially in the linear phase, then peak in the quasi-
linear stage, and �nally drop to the much lower steady
state values in the fully developed nonlinear phase. This
behavior has been observed in all previous gyrokinetic
particle simulations. Questions have been raised regard-
ing these steep drops. We found that the transport at the
quasilinear peak is caused by a few linearly most unstable
modes with k��i � 0:4 which grow to very high ampli-
tudes. The 
uctuation energy is then transferred from
these linearly dominant modes to the longer wavelength
modes with k��i � 0:2 which have smaller amplitude and
are responsible for the steady state transport. This pro-
cess is visualized in the time history of individual modes
as shown in Fig. 2.
The issue of discrete particle noise has been examined

since the early days of particle simulations. With the im-
provement in theory and numerical algorithm, and the
rapid increase in computer power, the particle noise in
simulations has been dramatically reduced and is be-
lieved not to have large e�ects in nonlinear dynamics.
The mode history of Fig. 2 indicates that very small,
if any, particle noise exists in the nonlinear phase. It
should be emphasized that such a good numerical prop-
erty has only been captured in the straight-�eld-line mag-
netic coordinates which can better represent the 
uctu-
ation structure. Another interesting feature of Fig. 2 is
the very coherent structure of individual mode history
even though millions of modes are coupled together in
the turbulent system.

III. DYNAMICS OF FLUCTUATION-DRIVEN

E�B ZONAL FLOWS

E �B 
ow shear suppression of turbulence is the most
likely mechanism to be responsible for various forms of
con�nement enhancement. Recent experimental data
show evidence of E �B 
ows [12] which cannot be ex-
plained by neoclassical theory. These 
ows can be driven
by turbulence itself [13{15], and mainly in the poloidal di-
rection for high aspect ratio devices. They are referred to
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as the radial modes, (0,0) modes or zonal 
ows [16], and
have been found to play an important role in regulating
nonlinear saturation and turbulent transport in 
ux-tube
gyro
uid [11,17] and gyrokinetic [4] simulations.

A. Linear damping of zonal 
ows

In toroidal geometry, an initial source of zonal 
ows is
damped by the collisionless transit time magnetic pump-
ing e�ects [18]. A residual 
ow can survive this linear
collisionless damping process [19], and play a key role
in determining the turbulent transport level in nonlinear
simulations, thus its long time behavior must be treated
accurately. An illuminating test problem of predicting
the residual 
ow level in response to an initial 
ow per-
turbation introduced by a 
ux-surface-averaged charge
separation has been solved analytically [19]. In our sim-
ulation, the relaxation of the perturbed poloidal 
ow,
shown in Fig. 3, occurs initially through a fast magnetic
pumping process and is then followed by a slowly damped
oscillation with a characteristic frequency corresponding
to that of the geodesic acoustic mode (GAM) [20]. The
residual levels of poloidal 
ow measured from simula-
tions, shown in Fig. 4, agree with theoretical results in
the high aspect ratio limit where the theory is valid. We
note that similar results have been obtained in a 
ux-
tube gyrokinetic code [21]. In the damping processes,
the m = 1 harmonic can be excited by toroidal coupling
to the m = 0 harmonic. When the safety factor q is large,
the GAM oscillations persist as the m = 1 harmonic be-
comes undamped [22].
Since the microturbulence intensity in tokamaks typi-

cally has an in-out variation, it is important to be able
to address the generation of poloidal 
ows from a m = 1
source due to toroidal couplings. Because of the up-down
symmetry of the equilibrium magnetic �eld, only that
part of the m = 1 harmonic that is even in � can generate
poloidal 
ow. This has been veri�ed by simulation results
(Fig. 5) which show that the time asymptotic poloidal

ow is nonzero for an even-� source and zero for an odd-�
source. The 
ow generation results from trapped parti-
cle dynamics which has not been accurately described by

uid simulations.

B. Nonlinear generation of zonal 
ows and e�ects on

turbulence

Previous studies using global gyrokinetic simula-
tions [3] either arti�cially suppress zonal 
ows or found
only a small reduction in ion thermal transport at non-
linearly saturated state when shear 
ows e�ects were in-
cluded in the nonlinear evolution. Moreover, E�B 
ows
with scale length of the system size have been gener-
ated in global codes, while in 
ux-tube codes 
uctuating

zonal 
ows with a radial characteristic scale length com-
parable to that of the ambient turbulence have been the
dominant feature. Finally, global codes typically yields
a much lower value of �i than that from 
ux-tube codes.
To study the origin of these di�erent results, we have
carried out nonlinear simulations with either the whole
cross-section or an annulus geometry in the same code.
The annulus simulation model is designed to capture the
key features of local simulations, i.e., uniform pressure
gradient pro�le and radially periodic boundary condi-
tions described in the previous section. In global sim-
ulations, the pressure gradient is nonuniform and a �xed
radial boundary condition is used. In order to �nd out
the relative importance of pressure pro�le and the ra-
dial boundary condition in causing the di�erent results,
global simulations are carried out with either a narrow
pro�le of pressure gradient or a broad pro�le of pressure
gradient which is similar to that of the annulus simu-
lations. The same plasma parameters speci�ed in the
previous section are used in these simulations.

Our simulations [23] recover the previous results from
the annulus simulations and the results from the global
simulations with a narrow pro�le of the pressure gradi-
ent. While �ne scale structure of 
ows are dominant
in annulus simulations, a single-well structure in E �B

ows emerges in the global simulations with a narrow
pro�le. In addition, the ion heat conductivity from annu-
lus simulations is much higher than that from the global
simulations. When we make the pro�le of the pressure
gradient broad in global simulations, the �ne scale com-
ponents of E �B 
ows with radial characteristic scale
length comparable to the turbulence decorrelation length
become dominant. Good agreement in both the structure
of E �B 
ows and ion heat conductivities are obtained
between annulus and global simulations with broad pres-
sure gradient pro�le. These agreements indicate that the
radially periodic boundary condition in local codes is not
responsible for the results di�ering from global code re-
sults, at least for the cases we have studied. Therefore
the narrow pro�le of pressure gradient in global codes
causes the results to di�er from the local code results.

Quantitative di�erence in �i exists between our annu-
lus simulationmodel and 
ux-tube gyrokinetic model [4].
While our annulus simulations are designed to capture
the key features of the local simulations, some di�erences
remain between them. The variations of safety factor
and aspect ratio are kept in the annulus code, while the

ux-tube code has constant aspect ratio and connection
length (keeping magnetic shear) in radius. The other
di�erence is that annulus code simulates the whole 
ux
surface with all toroidal mode numbers while 
ux-tube
code simulates a fraction of the 
ux surface with a se-
lected subgroup of toroidal modes.

We have also carried out nonlinear simulations with
the E�B 
ows suppressed for all these three cases. It
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is found that a signi�cant reduction of ion heat con-
ductivity occurs when the turbulence-generated E �B

ows are retained in nonlinear global simulations. The
key mechanism of reducing transport by the E �B 
ows
is the breaking of turbulence eddies, and consequently
the reduction of the radial decorrelation length and 
uc-
tuation levels [24,25]. Another important e�ect of the
turbulence-generated E �B 
ows appears in the individ-
ual mode history. When E �B 
ows are suppressed, for
�xed k��i, the potential exhibit regular oscillation with a
constant phase (Fig. 2 in previous section). That coher-
ent mode history corresponds to a frequency spectrum
with a well-de�ned peak which may indicate that the
mode coupling is not so strong and that the nonlinear
wave-particle interaction may be more important than
previously expected. When E �B 
ows are included
in nonlinear simulations, the oscillation becomes chaotic
with no regular phase relation.

IV. COLLISIONAL DAMPING OF ZONAL

FLOWS

The residual 
ow observed in collisionless simulation
is eventually damped out by ion-ion collisions and pos-
sibly, by nonlinear e�ects. In the present work, the col-
lisional decay of the 
ow perturbation in the linear gy-
rokinetic simulation agrees well with the analytical cal-
culation [26]. The e�ective damping time measured from
the simulation is very close to the theoretical prediction
of �d = 1:5��ii, where � � r=R0 is the local inverse aspect
ratio and �ii is the ion-ion collision time. In full torus
nonlinear ITG simulations, we use a momentum and en-
ergy conserving Fokker-Planck operator which has been
rigorously benchmarked for neoclassical transport [27].
These simulations used plasma parameters in Section II
with �xed boundary conditions of � = 0 enforced at
r < 0:1a and r > 0:9a, a pressure gradient pro�le of
expf�[(r � 0:5a)=0:3a]6g, and an adiabatic electron re-
sponse [28] with Æne=n0 = e(� � h�i)=Te, where h� � �i
represents the 
ux surface average. In each nonlinear
simulation, we calculated 10000 time steps of 8!ci for
the trajectories of 84 million gyrocenter centers inter-
acting with the self-consistent turbulent �eld, which was
discretized by 21 million grid points. ITG mode has a
linear threshold [21] of R0=LT = 4. We scan R0=LT in
the present studies to assess sensitivity of the collisional
e�ects on the proximity to ITG marginality.
For a strong ITG drive of R0=LT = 6:9, both tur-

bulence and zonal 
ows saturate and reach steady state
in collisionless simulations. The fact that zonal 
ows
saturate even without collisional damping indicates that
strong turbulence can also damp zonal 
ows possibly
through nonlinear e�ects. When the realistic ion-ion col-
lisions with �� = 0:045 are included in the simulation,
the steady state ion heat conductivity �i is increased by

about one half from the collisionless value. The satu-
rated zonal 
ow level decreases due to collisions. Mean-
while, the change in linear growth rate is negligible. Fur-
thermore, when zonal 
ows are not included in the sim-
ulations, collisions have little e�ects on the turbulence
transport. We therefore conclude that the enhancement
of transport by collisions in the presence of zonal 
ows is
through the neoclassical damping of zonal 
ows.
When turbulence drive R=LT is reduced, nonlinear


ow damping becomes insigni�cant. The collisionless
system can undergo a transition to a 
ow-dominated
state where zonal 
ows generated from the initial growth
of turbulence completely suppress the turbulence and
transport [14,29]. In this paper, we characterize this
regime as the weak turbulent regime. Collisionless
nonlinear 
ux-tube gyrokinetic simulations of the same
plasma parameters have found [21] that, for R=LT = 4
to 6, no transport is produced even though the system
is linearly unstable to ITG modes. However, collisions
can remove this nonlinear upshift of critical gradient by
slowly damping zonal 
ows. The ion thermal transport
level will then strongly depend on the collision frequency.
We now reduce the turbulence drive to R=LT = 5:3 in
our nonlinear simulations. This is not the generic ITG
turbulence regime, but is suitable for the purpose of this
paper. We scan the ion-ion collision frequency upward
from experimental value to facilitate studies of the long
term collisional e�ects on the zonal 
ow dynamics. In
the collisionless simulation, the saturated heat 
ux de-
creases to insigni�cant level due to shearing e�ects of
zonal 
ows which reach a steady state level. When colli-
sions are introduced, zonal 
ows are damped and a �nite
transport level is obtained. As we increase collision fre-
quency without changing other parameters, we observe
the increase of time-averaged �i without a tendency to-
ward a saturation for the whole scan range of collision
frequency, which is up to 8 times the experimental value.
The ion heat conductivity sensitively depends on the col-
lision frequency in this weak turbulence regime [30]. This
collisionality-dependence of the turbulent transport im-
plies that an accurate treatment of the linear poloidal

ow damping [19,26] in nonlinear simulation codes is es-
sential in predicting transport level.
The simulation time history for the case of �� = 0:17

is shown in Fig. 6. The ITG instabilities evolve from a
linear phase of exponential growth to a nonlinear stage
in which zonal 
ows are generated. When the e�ective
shearing rate [31], or root mean square shearing rate [14]
of zonal 
ows exceeds the ambient turbulence decorrela-
tion rate which can be approximated by the ITG lin-
ear growth rate [17], the ITG turbulence and associ-
ated transport are signi�cantly reduced. Zonal 
ows are
then slowly damped by the ion-ion collisions and become
weaker. When the e�ective shearing rate is below the
growth rate, the ITG turbulence grows again and drives
zonal 
ows. These turbulence-zonal 
ows interactions
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modulated by collisions result in a cyclic, bursting be-
havior of 
uctuations, transport and zonal 
ows. From a
scan of the collision frequency, we observe that the burst-
ing period is of the order of the collisional damping time
of the zonal 
ows, �d. The oscillation of zonal 
ows lags
behind that of 
uctuation by a phase of 90o, an indica-
tion of the causal relation between the turbulence and
zonal 
ows.

V. CONCLUSION

A fully three-dimensional gyrokinetic particle code
using magnetic coordinates for general geometry has
been developed and applied to the investigation of
ion-temperature-gradient turbulence in toroidal geome-
try. Our results yield the important conclusion that
turbulence-driven E �B zonal 
ows can signi�cantly
reduce the turbulent transport. Nonlinear simulations
show that the turbulent transport increases with ion-ion
collision frequency because of the neoclassical damping
of zonal 
ows which regulate the turbulence.
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