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One-point statistics of the magnetic fluctuations in kinematic régime with large Prandtl number
and non δ-correlated in time advecting velocity field are studied. A perturbation expansion in the
ratio of the velocity correlation time to the dynamo growth time is constructed in the spirit of the
Kliatskin-Tatarskii functional method and carried out to first order. The convergence properties are
improved compared to the commonly used van Kampen-Terwiel method. The zeroth-order growth
rate of the magnetic energy is estimated to be reduced (in three dimensions) by approximately 40%.
This reduction is quite close to existing numerical results.
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I. INTRODUCTION

The work on the kinematic dynamo problem, under-
stood as the study of the statistics of magnetic fluctua-
tions excited by a random advecting velocity field with
given Gaussian statistics, also known as the passive vec-
tor problem, was pioneered by Kazantsev [1], and the
dynamo growth rates have in recent years been found
exactly for various parameter régimes by a number of au-
thors [2–7]. In all of these works a paradigm involving a
short-time correlated velocity field was employed, so the
two-time correlation function of the velocities could be
approximated by a delta function, 〈v(t)v(t′)〉 ∝ δ(t− t′).
This Markov property of the velocity greatly simplifies
matters: the equations that relate magnetic correlation
functions and various response functionals take closed
form and yield themselves to exact solution. On the other
hand, allowing for a finite velocity correlation time leads
to an infinite open hierarchy of integrodifferential equa-
tions involving time-history integrals. This is explained
in more detail in what follows.

The short correlation time approximations we have
just mentioned effectively amount to truncating the hier-
archy by retaining only terms that are zeroth-order in the
expansion parameter λ0 ∼ τcorrγ0 ∼ (τcorr/τeddy)2, where
τcorr is the velocity correlation time, γ0 is the dynamo
(magnetic energy) growth rate, and τeddy ∼ (∇v)−1 is
the “eddy-turnover” time.

We will see that, in terms of the spectral character-
istics of the velocity field, λ0 typically turns out to be
λ0 ∝ log(Λ/Λ̃), where Λ and Λ̃ are the ultraviolet and
infrared cutoff wave numbers of the model velocity spec-
trum. One would therefore expect that, depending on
the exact form of λ0 and convergence criteria, only a
relatively narrow band of velocity modes can technically
be treated by perturbative methods. However, physical
considerations allow one to introduce an effective infrared

cutoff Λ̃eff which essentially limits the active part of the
velocity spectrum to “one smallest eddy.” In order for the
perturbation expansion to have practical value, it should
not be too sensitive to deviations of Λ/Λ̃eff from unity.

The extant evidence as to the nature of the finite cor-
relation time effect on the dynamo action is twofold. On
the one hand, Chandran’s numerical simulation [8] sug-
gests that a growth rate reduction of about 50% takes
place. On the other hand, it was demonstrated by Gruzi-
nov, Cowley, and Sudan in a rather compelling argument
[9] (which unfortunately fell short of a conclusive proof)
that introduction of a non-zero correlation time could
not fully suppress the growth of the small-scale magnetic
fluctuations.

Quantitative estimation of λ0 and calculation of the
higher-order terms in the expansion are necessary for spe-
cific understanding of how the finiteness of the velocity
correlation time affects the well-known results valid for
zero correlation time. Theoretical efforts in this direction
were undertaken by Knobloch [10] and Chandran [8], who
used the van Kampen-Terwiel perturbative method for
solving stochastic differential equations [11,12]. Rather
forbiddingly cumbersome calculations were involved, and
a first-order reduction of the dynamo (magnetic energy)
growth rate was derived that was valid only for extremely
small values of (Λ/Λ̃)−1. Plausible quantitative estimate
of this reduction therefore remained elusive.

In this letter, we construct a straightforward perturba-
tion theory in λ0 for the kinematic dynamo problem in
the spirit of the Kliatskin-Tatarskii method [13–15] (used
by its authors in a different context and form). We find
that the zeroth-order dynamo growth rate γ0 is reduced
(in three dimensions) by 6

5 τcorrγ
2
0 ≈ 2

5γ0 (the exact mean-
ing of τcorr in this formula is explained below). The 40%
reduction of the growth rate is quite close to Chandran’s
numerical estimate [8].
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II. THE HIERARCHY OF EQUATIONS FOR THE
PDF AND RESPONSE FUNCTIONS

The magnetic field (or passive vector) passively ad-
vected by the incompressible velocity field v(t, x) evolves
according to the following (induction) equation:

∂tB
i + vkBi

,k = vi
,kBk + η∆Bi, (1)

where vi
,k = ∂vi/∂xk, Bi

,k = ∂Bi/∂xk, and the Einstein
summation convention is used throughout. Spacial ho-
mogeneity is assumed, and we restrict ourselves to one-
point statistics, i. e. to studying integral average charac-
teristics of the magnetic field such as the total magnetic
energy. The one-point statistics of fields passively ad-
vected by an incompressible velocity field are the same
in both Lagrangian and Eulerian framework [7], so the
convective derivative in the left-hand side of Eq. (1) can
be replaced with simple local derivative with respect to
time. In the following derivation, we also omit the resis-
tive term, which does not play an important part during
the initial period of advection for large Prandtl numbers
[3]. Thus, we study the statistics of the following equa-
tion:

∂tB
i = vi

,kBk, (2)

where the velocity gradients’ statistical properties are de-
termined on the assumption that vi(t, x) is a homoge-
neous and isotropic Gaussian random field:〈

vi
,k(t, x)vj

,l(t
′, x)

〉
= κ

ij
kl(t − t′),

κ
ij
kl(τ ) = κ(τ )

(
δijδkl + aδi

kδj
l + aδi

lδ
j
k

)
= κ(τ )T ij

kl (3)

where a = −1/(d+1) due to incompressibility of the flow,
d being the dimension of space (while d = 3 is, of course,
of most practical interest, carrying the dimensional de-
pendences is instructive). T ij

kl as defined by the above
formula contains the tensor structure of κ

ij
kl.

In order to determine the one-point statistics of the
magnetic field, we follow a standard procedure [16,7] and
introduce the characteristic function of B(t, x) at an ar-
bitrary fixed spacial point x:

Z(t; σ) =
〈
Z̃(t, x; σ)

〉
=

〈
exp

{
iσiB

i(t, x)
}〉

. (4)

Here and everywhere in this letter the angle brackets de-
note ensemble average. This function is the Fourier trans-
form of the PDF of the vector elements Bi. Clearly, Z
is independent of x due to spacial homogeneity. Taking
the time derivative of Z̃ and using Eq. (2) we get

∂tZ̃ = vi
,j σi

∂

∂σj
Z̃. (5)

Averaging this equation with the aid of the Novikov
(“Gaussian integration”) formula [17,14], we find that Z
satisfies

∂tZ(t; σ) = T ib
ja σi

∂

∂σj

∫ t

0

dτ κ(τ )Ga
b(t, t− τ ; σ), (6)

where Ga
b (t, t′; σ) =

〈
δZ̃(t; σ)
δvb

,a(t′)

〉

is the average first-order response function. Clearly, it
satisfies causality: Ga

b(t, t
′; σ) = 0 for t′ > t. Integrat-

ing Eq. (5) from 0 to t, taking the functional deriva-
tive δ/δvb

,a(t′), averaging, and setting t′ = t, we find the
response function at t′ = t:

Ga
b (t, t; σ) =

1
2

σb
∂

∂σa
Z(t; σ). (7)

At t′ < t, we take the functional derivative δ/δvb
,a(t′)

of Eq. (5) and find that Ga
b satisfies the following equa-

tion (averaged by the same method that was employed
in deriving Eq. (6)):

∂tG
a
b(t, t

′; σ) = T kn
lm σk

∂

∂σl

∫ t

0

dτ κ(τ )Gam
bn (t, t′, t− τ ; σ), (8)

where Gam
bn (t, t′, t′′; σ) =

〈
δZ̃(t; σ)

δvb
,a(t′)δvn

,m(t′′)

〉

is the second-order average response function. At t′′ = t,
it is, analogously to Eq. (7),

Gam
bn (t, t′, t; σ) =

1
2

σn
∂

∂σm
Ga

b(t, t
′; σ). (9)

An infinite hierarchy can thus be obtained by further
iterating this procedure and introducing response func-
tions of ever-increasing orders. This hierarchy can be
closed if assumptions are made about the smallness of
the correlation time. Indeed, we can formally expand
the velocity correlator up to first order in τcorr as follows:

κ(τ ) = 2κδ(τ )− 2τδ′(τ ) + . . . , (10)

where κ =
∫ ∞

0

dτ κ(τ ) and τ =
∫ ∞

0

dτ τκ(τ ).

Here τ is the dimensionless expansion parameter. In the
upper integration limits, t has been replaced by∞, which
is valid for t � τcorr, τcorr = τ/κ being the width of κ(τ ).
The above expansion lies at the base of the Kliatskin-
Tatarskii method [13–15], which is essentially employed
below. We now construct a perturbation theory by using
expansion (10).
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III. THE PERTURBATION EXPANSION

To first order in the expansion (10), Eq. (6) becomes

∂tZ(t; σ) = T ib
ja σi

∂

∂σj

{
κ Ga

b(t, t; σ)+ (11)

+ τ
[
∂τGa

b (t, t− τ ; σ)
]
τ=0

}

The equal-time response function in the first term on the
right-hand is given by Eq. (7), while the derivative of the
response function with respect to τ in the second term
clearly need only be calculated to zeroth order with the
aid of Eq. (8). Using Eq. (9), we find that to zeroth order,
Eq. (8) is, of course, closed:

∂tG
a
b(t, t

′; σ) =
κ

2
T kn

lm σk
∂

∂σl
σn

∂

∂σm
Ga

b (t, t′; σ), (12)

and Eq. (7) serves as initial condition for this equation
at t = t′.

Let us now inverse-Fourier transform all statisti-
cal quantities involved, back to B dependence. The
inverse Fourier transform of Z(t; σ) is the one-point
PDF P (t; B). We will denote the inverse Fourier trans-
form of Ga

b (t, t′; σ) by Ga
b (t, t′; B). Our system of equa-

tions becomes (suppressing B in the arguments):

∂tP (t) =
κ

2
L̂P (t) (13)

− τ T ib
ja

∂

∂Bi
Bj

[
∂τGa

b (t, t− τ )
]

τ=0
,

∂tG
a
b (t, t′) =

κ

2
L̂Ga

b (t, t′), (14)

Ga
b (t′, t′) = −1

2
∂

∂Bb
BaP (t′), (15)

where the operator L̂, which will turn up repeatedly in
this calculation, is

L̂ = T ib
ja

∂

Bi
Bj ∂

Bb
Ba =

d− 1
d + 1

(
B

∂

∂B
+ d

)
B

∂

∂B
, (16)

the latter expression being its isotropic form. Due to
isotropy, we may further write:

P (t; B) = P (t; B), (17)

Ga
b(t, t

′; B) = δa
b H(t, t′; B) +

BaBb

B2
G(t, t′; B), (18)

where P , H , and G are scalar functions of B. Note
that the term δa

b H in (18) will be annihilated by T ib
ja

in Eq. (13) due to incompressibility (T ia
ja = 0). There-

fore, Eq. (13)-(15) now reduce to

∂tP (t) =
κ

2
L̂P (t) (19)

− τ
d− 1
d + 1

(
B

∂

∂B
+ d

)[
∂τG(t, t− τ )

]
τ=0

,

∂tG(t, t′) =
κ

2

(
L̂ − 2d

)
G(t, t′), (20)

G(t′, t′) = −1
2

B
∂

∂B
P (t′; B). (21)

The extra term in Eq. (20) arises because operators
L̂ and BaBb/B2 do not commute.

The solution of Eq. (20)-(21) can be formally written
as G(t, t′) = Ĝ(t − t′)G0(t′), where G0(t′) = G(t′, t′) de-
notes the initial condition at t = t′, and Ĝ is the Green
integral operator with the properties (i) Ĝ(0) = 1 and
(ii) ∂τ Ĝ(τ )G(t, t) = ∂τG(t + τ, t). We have therefore[

∂τG(t, t− τ )
]

τ=0
=

=
[
∂τ Ĝ(τ )

]
τ=0

G0(t) + Ĝ(0)
[
∂τG0(t− τ )

]
τ=0

=
κ

2

(
L̂− 2d

)
G0(t) − ∂tG0(t). (22)

Substituting Eq. (21) into Eq. (22), then Eq. (22)
into Eq. (19), and noting that all the relevant operators
now commute, we obtain a closed equation for the PDF:(

1 +
τ

2
L̂

)
∂tP =

κ

2

{(
1 +

τ

2
L̂

)
− τd

}
L̂P. (23)

Acting on both sides of this equation left to right with

the operator
(
1 + τ

2 L̂
)−1

' 1− τ
2 L̂, we get

∂tP = (1− τd)
κ

2
L̂P. (24)

This is the desired equation for the one-point PDF of the
magnetic field (passive vector) up to first order in τ .

IV. THE DYNAMO GROWTH RATES

The evolution of all moments of B can be determined
from Eq. (24). The n-th moment is defined by

Mn(t) = 〈Bn〉 =
2πd/2

Γ(d/2)

∫ ∞

0

dB Bd+n−1P (t; B). (25)

Multiplying both sides of Eq. (24) by Bd+n−1 and inte-
grating over B, we find that Mn satisfies:

∂tMn = (1− τd) (n + d)n
d− 1
d + 1

κ

2
Mn. (26)

We note that Eq. (3) implies

κ =
∫ ∞

0

dτ κ(τ ) =
Cd

d

∫ ∞

0

dτ κ
ii
jj(τ ), (27)

where Cd = (d + 1)/(d− 1)(d + 2), and and that, on the
other hand, from Eq. (26), the zeroth-order growth rate
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of the magnetic energy M2 is γ0 = C−1
d κ. Expressing τ

in terms of κ
ii
jj as we did κ in Eq. (27), we see that γ0 is

reduced by

τd = Cdτcorrγ0d = Cd

(
τcorr

τeddy

)2

, (28)

where, by definition, the correlation time is τcorr = τ/κ,
and we have introduced the “eddy-turnover” time:

τeddy =
(

1
τcorr

∫ ∞

0

dτ κ
ii
jj(τ )

)−1/2

∼ (∇v)−1
. (29)

When the ratio µ = τcorr/τeddy varies in the inter-
val 0 < µ ≤ 1, the profiles of the growth rate corre-
sponding to zeroth- and first-order approximations are

γ0(µ) =
µ

τeddyd
and γ(µ) =

µ(1−Cdµ2)
τeddyd

. (30)

If τcorr = τeddy (µ = 1), we find that τd = Cd. Inciden-
tally, the fact that τeddyγ0 ∼ 1/d when τcorr ∼ τeddy , also
follows from a simple physical argument, which consists
in observing that the eddy only streches the magnetic
field line in one of the d available directions during one
turnover time.

Thus, the correction τd is certainly less than unity
for d = 2 and certainly less than a half for d ≥ 3. In
three dimensions, for example, the growth rate is reduced
by 2/5, or 40%, which, as we have already mentioned in
the Introduction, is in qualitative agreement with Chan-
dran’s numerical result [8].

In order compare our result with those of previous au-
thors [10,8], let us calculate τd in terms of the spectral
characteristics of the velocity field v. If, by definition,〈
v2

〉
=

∫
d(log k) v2

k, the correlation/eddy-turnover time
at scale k−1 is τk ∼ (kvk)−1. Hence,

τd ∝
∫ ∞

0

dτ τκ
ii
jj(τ ) ∼

∫ Λ

Λ̃

dk kv2
kτ2

k ∼ log
Λ
Λ̃

, (31)

where we have introduced the infrared cutoff Λ̃, which
corresponds to the largest scale in the system, and the
ultraviolet cutoff Λ, which can be interpreted as “the
scale of the smallest eddy.” On physical grounds, the
infrared cutoff Λ̃ in this expression should be replaced
by some larger effective value Λ̃eff ∼ Λ. This is because
the dominant contribution to the dynamo growth rate is
from the small scales ∼ Λ−1, and the large scales are not
expected to significantly affect the evolution of magnetic
fluctuations [3]. Formally speaking, a perturbation the-
ory with renormalized expansion parameter should be

developed. Such pursuits fall beyond the scope of this
work and will be undertaken elsewhere.

To summarize, we have obtained the correction to the
kinematic dynamo growth rate γ0 [2,3], which is first
order in λ0 = τcorrγ0d = (τcorr/τeddy)2 and well-behaved
even as λ0 approaches unity. In three dimensions, the
latter case corresponds to a reduction of the zeroth-order
growth rate by 40%. On the practical note, in the pro-
togalactic setting, which is the principal application of
the kinematic dynamo theory currently in focus, the
magnetic energy growth rate is very large [18] and is
not expected to be much reduced as far as the order of
magnitude estimates go.
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