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Some aspects of low-frequency, long-wavelength fluctuations are considered. A stochastic model
is used to show that power-law time correlations need not arise from self-organized criticality. A
formula for the frequency spectrum of uncorrelated, overlapping avalanches is shown to be a special
case of the spectral balance equation of renormalized statistical turbulence theory. It is argued that
there need be no contradiction between the presence of long-time correlations and the existence of
local transport coefficients.
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I. INTRODUCTION

Recently there have been serious attempts to introduce
new physical and mathematical ingredients to the reper-
toire of tools available for calculating plasma transport.
One research thread relates to the possible relevance of
self-organized criticality1 (SOC), originally discussed in the
context of plasma physics by Diamond and Hahm.2 Rep-
resentative subsequent references include calculations on
highly simplified SOC models by Newman and coworkers,3
reviews of the key ideas by Carreras et al.4 and Newman,5
simulations by Carreras et al.,6 discussions of self-similarity
properties of edge fluctuations by Carreras et al.,7 ex-
perimental measurements of avalanche-like behavior by
Politzer,8 and analysis of simulation data by Nevins.9

The theory of SOC is intended to introduce a new
perspective to certain kinds of highly nonlinear phenom-
ena. Various authors have found appealing the idea that
in self-organized systems avalanches can be generated on
all scales, leading to low-frequency, long-wavelength, self-
similar correlations. This observation leads to a second
thread relating to the possible significance of long-time
correlations in certain experimentally observed time series,
as reported for example by Carreras et al.10–13 Carreras11

suggested that “the measurements [on long-time tails] are
consistent with the SOC paradigm of turbulent transport.”
(He cautioned “However, it does not prove that this model
offers the only explanation. . . We are not aware of other dy-
namical mechanisms that may provide an alternative an-
swer, but it may exist.”) He also suggested12 that the
existence of long-time tails may require that the “standard
transport paradigm” (of local, diffusive transport) be aban-
doned. These suggestions motivated the present work.

The phrase “SOC paradigm” appears to have multi-
ple connotations, with scenarios involving one or more
of avalanches, power-law spectra, nearly marginal profiles
with instability thresholds, strong intermittency, and non-
diffusive motion. Confusion arises because none of those
features are intrinsically linked to SOC, although any of
them may have interesting consequences for transport and
is worthy of study in its own right. A basic question is
whether formalism and/or ideas specific to SOC need to be

invoked in order to explain observations, or whether stan-
dard turbulence theory suffices.

Frequently SOC systems are said to exhibit self-tuning
to a preferred nonequilibrium state with power-law (self-
similar) spectra, thereby being distinguished from situa-
tions in equilibrium critical phenomena in which param-
eters must be carefully adjusted in order to achieve the
critical state. However, it has been argued14 that true
SOC behavior arises only in the limit that the forcing rate
approaches 0, that rate playing the role of a tuning param-
eter. The unusual limiting value of 0 forces one to worry
about an interchange of limits. If a characteristic macro-
scopic time associated with avalanches is τA and the inverse
of the forcing rate is τf , then one has

τf � τA (conventional), τA � τf (SOC). (1a,b)

Note that internal forcing due to microinstabilities proba-
bly obeys ordering (1a); that is, realistic systems are ob-
served in the limit of highly overlapping “avalanches” (read
“elementary excitations”).

Another way of characterizing SOC regimes is with the
concept of local rigidity, a measure of the importance of the
threshold condition for linear instability, clearly discussed
by Cafiero et al.15 SOC behavior with a power-law distri-
bution of avalanches emerges in the limit of very large local
rigidity. Further unifying remarks were made by Jensen.16

It would thus appear that pure SOC behavior lives in an
asymptotic corner of parameter space. Realistically, one
has neither infinitely slow forcing nor infinitely large lo-
cal rigidity, so it is difficult to make a case for pure SOC.
Therefore, attention has focused on qualitative features
of some of the SOC models. For example, it has been
suggested that submarginal (linearly stable) mean profiles
are important, in that fluctuations that transiently in-
duce local instability might lead to intermittent states with
avalanches, long-time correlations, and nonlocal transport.

A general goal is to understand the connections between
the physical and mathematical descriptions of SOC and the
better-understood intuition and formalism of renormalized
statistical turbulence theory. That is by no means fully ac-
complished in the present paper; however, some introduc-
tory steps are taken, mostly focused on the interpretation
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of the so-called spectral balance equation employed ubiqui-
tously in statistical turbulence theory. That general equa-
tion applies to all regions of parameter space; for example,
it embraces both of the ordering regimes (1a) and (1b) and
thus copes with the likelihood that the observed turbulent
states lie in the regime of strongly overlapping avalanches.
I consider the possibility that long-time correlations of the
kind observed experimentally can have relatively prosaic
origins unrelated to esoteric (e.g., submarginal or rigid-
threshold) SOC scenarios, and I explain why long-time cor-
relations do not inevitably lead to the breakdown of con-
ventional transport theory. Specifically, in Sec. II I describe
a stochastic model that possesses long-time correlations yet
lacks significant features of some SOC scenarios discussed
in the plasma-physics literature. In Sec. III I show that a
well-known SOC formula for the spectral density of over-
lapping avalanches is a special case of the spectral balance
equation. In Sec. IV I argue that there need be no con-
tradiction between the presence of long-time correlations
and the existence of local transport coefficients. To do so,
I emphasize the distinction between Eulerian correlation
functions (easily measured) and Lagrangian correlation fuc-
ntions (relevant to transport), illustrating with some analy-
sis based on Hasegawa–Mima and guiding-center dynamics.
Sec. V contains a brief discussion.

II. A STOCHASTIC MODEL WITH LONG-TIME
CORRELATIONS

To a person without prior theoretical or experimental
knowledge of the internal workings of a turbulent confine-
ment device, the machine can profitably be viewed as a
black box that emits certain diagnostic signals that can be
studied. A sufficiently complete set of signals ultimately
enables one to reconstruct all internal details. However,
an incomplete set of signals leads to ambiguity of interpre-
tation. It can be argued that in the context of long-time
correlations the possibility of such ambiguity has not been
adequately emphasized in the literature. Two questions
are: (1) Are long-time tails on correlation functions invari-
ably associated with SOC? (2) Do such tails inevitably im-
ply nonlocal or nondiffusive dynamics? The answers affect
the choice of ingredients for a theoretical description.

In order to shed light on such questions, one can con-
struct a mathematical “black box” (in the form of a stochas-
tic model) that emits signals similar, in some highly sim-
plified sense, to those seen experimentally. The idea, illus-
trated schematically in Fig. 1, is to replace the highly com-
plicated and self-consistent plasma dynamics with a much
simpler stochastic differential equation to which certain sta-
tistical properties are assigned. Boundary conditions are
imposed such that a turbulent flux Γ (say of a scalar field
called “temperature” T ) with nonzero mean flows through
the system. If it is simple enough, the model can be solved
numerically (thereby avoiding possible controversies about
analytical approximations), and various properties such as
the two-time (Eulerian) correlation function CE(τ ) of the

flucuations δT of T at a fixed position can be subsequently
measured. The goal is to show that CE(τ ) can possess
long-time tails even when the underlying dynamics of the
stochastic model look nothing like the discrete sandpile dy-
namics frequently used to illustrate SOC phenomena and
do not obey the ordering (1b). Of course, this proves noth-
ing about the actual experiments; it merely emphasizes the
substantial ambiguity that exists with a restricted set of
measurements. However, it is not implausible that the real
plasma has features in common with an appropriately con-
structed stochastic model.

Although models of any dimensionality can be con-
structed in principle, in practice it is highly convenient to
work in one dimension (1D) in order that direct numerical
simulations can be done and adequate statistics collected.
(1D stochastic models with multiplicative statistics effec-
tively emulate higher-dimensional systems and are more
realistic than the additively forced 1D Burgers equation
that is often discussed.2) A particular 1D model of tur-
bulent thermal transport was recently studied by Krom-
mes and Ottaviani.17 They considered a passive advection
model for a scalar field T (x, t) in which the advecting ve-
locity Ṽ (x, t) was a Gaussian variable with unit strength
(and no threshold) and specified autocorrelation time τac

and length Lac. Those parameters could be taken to be
small, in which case local transport (with supermarginal
profiles18) was recovered; nevertheless, Eulerian time cor-
relations of δT (measured, say, at the center of the box)
decayed algebraically, CE(τ ) ∼ τ−1/2. A simple analyti-
cal argument that predicted the exponent of −1/2 was also
given. The absence of a threshold means that conventional
avalanches do not occur, as can be verified by measuring a
space–time event distribution following a procedure similar
to that of Nevins.9

.
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FIG. 1. A “black box,” in the form of a stochastic model that intro-

duces a statistically specified advection velocity Ṽ (x, t), can be used
to illustrate that long-time correlations need not arise from SOC and
need not be associated with nonlocal transport.

This behavior—local, supermarginal, non-avalanching
transport but long-time tails—emphasizes the difficulty of
identifying the details of underlying dynamics from a re-
stricted set of macroscopic measurements. A proper for-
malism should cope with all of these facets, yet should not
eliminate the possibility of avalanches at the outset. One is
therefore motivated to consider the relationship of formulas
derived in specific SOC contexts to more general ones.
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III. THE WEIGHTED LIFETIME DISTRIBUTION AND
THE SPECTRAL BALANCE EQUATION

In SOC theory, one of the central results for the fre-
quency spectra of avalanches is a formula by Jensen19 that
relates the power spectrum of the total dissipation rate to
a particular weighted distribution Λ of avalanche lifetimes.
In general turbulence theory, the most important relation-
ship governing frequency spectra is the so-called spectral
balance equation. I show in the present section how these
formalisms are related, thus establishing a general link be-
tween the superficially distinct lines of research and em-
phasizing the general validity of spectral balance.

Consider a generic (mathematical) sandpile in which an
avalanche is excited by dropping one extra grain of sand
on a random lattice site at some integer time ti. For that
primitive avalanche, the dissipation rate for any subsequent
time tj is defined as the total number of sites that top-
ple during the jth time interval. If grains are dropped
on random sites at each integer time, a signal J(t) can
be defined as the total dissipation rate summed over all
avalanches. Then Jensen’s formula for the spectral power
density CJ(ω) =

∫∞
−∞dτ e

iωτCJ(τ ) of the autocorrelation
function CJ(τ ) of J is

CJ(ω) = 2ν
∫ ∞

0

dT
[1− cos(ωT )]

ω2
Λ(T ), (2)

where Λ(T ) .= T−2
∫∞
0 dS P (S, T )S2, P (S, T ) being the

joint probability density function (PDF) for total signal S
and lifetime T in an avalanche.

I recall the derivation of this formula, closely following
Appendix D of Ref. 19. Let the time signal of an individ-
ual avalanche A be JA(t). The total measured signal J(t)
is assumed to be the sum of individual signals started at
random times: J(τ ) =

∑
ti<tJAi (t − ti). The individ-

ual avalanches are assumed to be uncorrelated for i 6= j
and to have zero mean. Then with τ

.= t − t′ being the
usual time difference in a two-point measurement, one has
for τ > 0 CJ(τ ) = 〈

∑
tj<t−τ JAj (t− tj)JAj (t− τ − tj)〉.

On the average, avalanches are assumed to occur with
rate ν . Upon introducing the mean time step ∆t = ν−1

between avalanches, one can view the sum over j as a
Riemann approximation to a time integral; thus CJ(τ ) =
ν

∫∞
0
dt 〈JA(t+ |τ |)JA(t)〉, where the remaining average is

over the characteristics (size, lifetime, etc.) of the random
avalanches. For a crude but apparently adequate descrip-
tion, Jensen characterizes each signal J by its lifetime T
and integrated signal (area under the curve) S and adopts
the tophat approximation

JA(t) = JS,T (t) =
{
S/T for t ∈ (0, T ),
0 otherwise.

(3)

Then, with H(t) being the unit step function,

CJ(τ ) = ν

∫ ∞

0

dt

∫ ∞

0

dT

∫ ∞

0

dS P (S, T )(S/T )2

×[H(t + |τ |+ T )−H(t+ |τ |)][H(t+ T )−H(t)] (4a)

= ν

∫ ∞

|τ|
dT

∫ ∞

0

dS P (S, T )(S/T )2(T − |τ |). (4b)

It is now straightforward to Fourier transform Eq. (4b) and
recover Eq. (2) after two integrations by parts.

Now let us consider the relation of Eq. (2) to the spectral
balance equation of statistical turbulence theory, which de-
scribes the balance between forcing and dissipation. For
stationary fluctuations, one form of that equation is20,21

C(ω) = |R(ω)|2F (ω), (5)

where R is the mean infinitesimal response function and
F is the covariance of the effective incoherent noise driv-
ing the fluctuations. In general, F consists of both internal
and external parts: F = F (int) + F (ext). Further discus-
sion and examples of the use of Eq. (5) can be found in
Refs. 22 and 23. Perhaps the easiest way to appreciate it
is to note that it is compatible with the formal solution of
the Langevin representation

R−1ψ = f̃ = f̃(int) + f̃(ext), R−1 .= ∂t + Σ ? , (6a,b)

where ? denotes convolution [so R−1(ω) = −i(ω + iΣω)],
Σ includes both linear physics and the (statistically sharp)
turbulent damping, and f̃ is the total random forcing. The
statistics of f̃(int) must be intimately related to Σ in such
a way that energy is conserved by the nonlinear interac-
tions. A Langevin representation of the direct-interaction
approximation (DIA) was given in Refs. 24 and 25; for re-
lated discussion, see Refs. 26 and 22.

A special case of Eq. (5) can be found in the classical
Langevin equation27 v̇ + νv = a(t), where

F (τ ) .= 〈a(t + τ )a(t)〉 = 2Dvδ(τ ), F (ω) = 2Dv. (7a,b)

Here the velocity-space diffusion coefficient Dv is related
to ν and the steady-state velocity fluctuation level I = v2

t

via Einstein’s relationDv = v2
t ν . The steady-state solution

for the velocity covariance is

C(τ ) = v2
t e
−ν|τ|, C(ω) = (ω2 + ν2)−12νv2

t , (8a,b)

which can be written in the form (5) by identifying ν
with Σω and recalling Eq. (7b). Note that the damping
rate ν can also be interpreted as the steady-state forcing
rate ν = F (ω)/I.

In the classical Langevin example, the parameters ν
and I (or ν and F ) are given parameters; although they
ultimately depend on microscopic noise, the details of that
noise are not “opened up” by the coarse-grained Langevin
description. More generally, however, Eq. (5) is a nontrivial
self-consistent integral equation (both Σ and F (int) depend
on C) that determines the two-point statistics of the tur-
bulent noise. Imagine exciting a response in a nonlinear
system (such as a sandpile) by external forcing δf̃(ext). If
δf̃(ext) were infinitesimal, Green’s solution would be
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δψ(t) =
∫ t

−∞
dt R̃(t; t)δf̃(ext), (9)

where R̃ is random to the extent that the undisturbed sys-
tem is stochastic. Although the properties of the undis-
turbed system can be assumed to be independent of the
external forcing, so for first-order response the covariance
of δf̃(ext) can be factored from the covariance of Eq. (9), one
is not led to Eq. (5) with F = F (ext) because 〈R̃ R̃〉 6= RR.
Moreover, for finite, possibly large forcing the causal re-
sponse δψ[δf̃(ext)] is a functional (indicated by the bracket
notation) containing terms of all orders in δf̃(ext), so the
statistical average 〈δψ[δf̃(ext)]δψ[δf̃(ext)]〉 is extremely dif-
ficult to perform. The beauty of Eq. (5) is that it presents
that average in terms of factored infinitesimal response
functions (even though δf̃(ext) need not be infinitesimal),
making up the difference with the covariance F (int) of the
internally produced noise. Of course, it may be very dif-
ficult to determine F (int); however, the DIA and related
Markovian approximations28 lead to workable formulas.

Equation (5) permits arbitrary correlations between the
fluctuations at different times. It must therefore be a gen-
eralization of Jensen’s result (2). Indeed, one can pro-
cess Eq. (5) to obtain a formula for a generalized weighted
lifetime distribution. Consider first the interpretation of
the integral I .=

∫∞
0
dT Λ(T ) = Λ(ω = 0) that appears

in Eq. (2). One has I =
∫∞
0
dT

∫∞
0
dS P (S, T )(S/T )2.

Note that S/T = A, where A is the amplitude of a
primitive avalanche in the tophat approximation. Upon
using {A, T} instead of {S, T} as variables and employ-
ing the normalization properties of a joint PDF, one has
I =

∫∞
0
dT

∫∞
−∞dA P̂ (A, T )A2 =

∫∞
−∞dA P̂ (A)A2 = 〈A2〉.

Thus I is just the mean-square level of the fluctuations. It
is then natural to consider a lifetime distribution Λ̂ nor-
malized to that level. Since Jensen assumed uncorrelated
avalanches, the ν in formula (2) is completely analogous to
the ν in the classical Langevin example. If one identifies
ν → F/I, then one finds [1− Λ̂(ω)]/ω2 → |R(ω)|2. Thus

Λ̂(ω) = 1− ω2|R(ω)|2. (10)

If one assumes that Σ is nonzero as ω → 0 (there is at least
classical dissipation), then as a consistency check one can
readily verify that limω→0 Λ̂(ω) = 1, limω→∞ Λ̂(ω) = 0.

It is useful to check that formula (10) makes physical
sense. For purposes of illustration, I shall temporarily as-
sume that Σω is real. (Usually the causal function Σω

contains an imaginary part; the Kramers–Kronig relations
must be respected.) At linear order, that means that waves
are assumed to be absent. One then finds the esthetically
pleasing result Λ̂(ω) = Σ2

ω/(ω
2 + Σ2

ω). This formula is a
generalization of the characteristic function (Fourier trans-
form) of the PDF for an event in a Poisson process. Thus, if
one lets Σω → ν (a constant), then Λ̂(τ ) = 1

2νe
−ν|τ|, which

is just 1
2
dP (τ )/dτ , where P (τ ) = 1 − e−ντ is the proba-

bility of having at least one event (occurring with mean

frequency ν) in the time interval (0, τ ). The factor of 1/2
accounts for the fact that τ may be negative.

Jensen showed that if Λ̂(T ) ∼ T ae−νT , then CJ(ω) ∼
ω−(3+a) (a ≤ −1) or ω−2 (a ≥ −1); he noted that for
the cases studied one invariably has a > −1, leading to
an ω−2 spectrum of the dissipation rate. (It is a miscon-
ception that all SOC-related signals have a spectrum close
to ω−1.) Provided that the relevant Fourier transforms ex-
ist, Eq. (10) shows that R(ω) and Λ̂(ω) [or Σω and Λ̂(ω)]
carry the same information. Given a Λ̂, the determination
of Σω is not immediate because of the Kramers–Kronig
relations, but that is never necessary in practice, as one
need never introduce the weighted lifetime distribution. In
fact, Eq. (5) provides a more direct route to the frequency
dependence of C(ω) because Σω is a natural object in sta-
tistical theory. Nonanalytic frequency dependence of Σω,
which can arise from certain kinds of nonexponential time
decay of Σ(τ ), can in principle give rise to frequency spectra
different from ω−2. The balance equation also shows that
nontrivial ω dependence of F (ω) can influence the result. A
difficulty is that sufficiently unusual (e.g., fractal or inter-
mittent) nonlinear behavior may not be properly captured
by low-order statistical closures. But the balance equation
itself holds even in the presence of strong intermittency.

So far the discussion has focused on purely temporal sig-
nals and the associated frequency spectra. But the spectral
balance representation also permits a ready generalization
to include spatial fluctuations and wave-number spectra.
In the next section I shall show how particular superpo-
sitions of wave-number amplitudes can lead to decidedly
nontrivial time dependence even when the behavior of an
individual Fourier component is benign. Such possibilities
further complicate the interpretation of long-time tails from
black-box measurements of the type discussed in Sec. II.

IV. CORRELATIONS AND THE STANDARD
TRANSPORT PARADIGM

With a general theory of spectral balance in hand, I now
turn to a discussion of some issues related to the calcula-
tion of turbulent transport coefficients. I recall Carreras’
suggestion12 that in the face of long-time tails the “stan-
dard transport paradigm” might have to be abandoned.
Although this remains a possibility, I shall argue that the
conclusion is not inevitable.

It is difficult to find a comprehensive discussion of trans-
port paradigms in the literature. The cleanest scenario
is to envision turbulent noise with short wavelengths and
correlation times, and to inquire about transport at long
wavelengths and times. Then transport coefficients are well
defined and can be estimated by simple random-walk con-
siderations. This familiar situation can be illustrated by
the stochastic passive advection equation ∂tψ(x, t)+ Ṽ (t) ·
∇ψ = 0, where Ṽ is a centered Gaussian time series. One
can make analytical progress by assuming that Ṽ is inde-
pendent of x; then one can Fourier transform to obtain
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∂tψ(t) + iω̃(t)ψ = 0, (11)

where ψ(t) ≡ ψk(t) and ω̃(t) .= k · Ṽ (t). Since ω̃ is a
centered Gaussian, it is uniquely specified by its covari-
ance S(t, t′) .= 〈δω̃(t)δω̃(t′)〉, which is commonly taken to
be S(τ ) = β2e−|τ|/τac . The unique dimensionless parame-
ter for this problem is then the Kubo number29 K .= βτac,
which is a measure of the slowness of the velocity fluctua-
tions. In terms of τ .= βτ , S(τ ) = e−|τ |/K.

Equation (11) is exactly solvable30–32,21 and is also
amenable to various statistical closures. For K � 1, quasi-
linear theory is an adequate description for coarse-grained
times long compared to τac. The quasilinear approximation
to Eq. (11) is ∂t〈ψ〉 + η〈ψ〉 = 0, where η = β2τac = k2DQL

and DQL
.= V

2
τac, a conventional random-walk formula.

For small k, one sees that the consequence of rapid veloc-
ity fluctuations is to set up a slow (hydrodynamic) diffu-
sion mode with decay time (k2DQL)−1. This result is very
well known. However, it is useful to consider this behav-
ior from the point of view of the exact correlation function
of ψ, which is C(τ ) = exp(−K2(|τ |/K− 1 + e−|τ |/K)). For
τ � 1 (τ � τac), one has C(τ ) → e−K|τ | = e−β2τac |τ|,
in agreement with the solution of the quasilinear approxi-
mation. Compare the K dependence of C (an exponent of
−Kτ ; slow decay for K � 1) with that of the underlying S
(an exponent of −τ/K; rapid decay). Now suppose that
Eq. (11) describes an actual physical system and that one
makes direct diagnostic measurements of the time correla-
tions of ψ, say by inserting a probe. Even if they decay
slowly (K � 1), clearly one is not justified in inferring that
a local description of transport does not exist; indeed, the
opposite is true for this model. This point is trivial, but
it emphasizes that the nature of the variable whose time
correlations are being analyzed matters.

The above model fails to capture the essence of real
turbulent systems in one important respect: in general,
the turbulent velocity depends importantly on x. With
Ṽ = Ṽ (x, t), useful exact solutions for the ψ statistics are
not forthcoming and one must resort to numerical simula-
tions, statistical closure approximations, or general consid-
erations based on spectral balance (see below). In so doing,
it is important to keep in mind the distinction between Eu-
lerian and Lagrangian correlation functions. In particular,
whereas it is typically Eulerian correlation functions that
are readily measured experimentally, it is Lagrangian cor-
relation functions that are relevant to the calculation of
transport coefficients. The behavior of those two classes of
functions can be very different, as I will discuss.

In early seminal work, G. I. Taylor proved33 that a tur-
bulent velocity field u(x, t) gives rise to a particle diffusion
coefficient D whose value is D =

∫∞
0
dτ CL(τ ), where CL is

the Lagrangian correlation function. With V being any
Cartesian component of u, one has (assuming spatially ho-
mogeneous and temporally stationary statistics)

CL(τ ) .= 〈δV (x(t+τ ), t+τ) δV (x(t), t)〉. (12)

The well-known difficulty34 of evaluating formula (12),

hence D, is that the random trajectory x(t) is unknown.
The most general Eulerian correlation function

CE(x, t,x′, t′) .= 〈δV (x, t)δV (x′, t′)〉 (13)

depends on two space and two time points, specified in-
dependently. This function is relatively easy to measure
experimentally, e.g. by inserting probes (at least in prin-
ciple). A reduced function depending only on time differ-
ence can be defined by specializing to equal space points:
CE(τ ) .= CE(x, t,x, t′). In general, CE(τ ) behaves radi-
cally differently from CL(τ ). To illustrate this, consider 1D
for simplicity and suppose that ψ(x, t) = X(x)T (t), where
the random functionsX and T are statistically independent
and the two-time correlation function T of T is arbitrary.
For spatially homogeneous statistics, one has

CE(τ ) = 〈X2〉〈T (t+ τ )T (t)〉 = const.× T (τ ), (14)

so CE decays slowly if T does and can easily be noninte-
grable. However, that need not be the case for the La-
grangian function because x(t) evolves randomly. As a
primitive illustration, suppose that x(t) = x + vt, where
v has a Gaussian distribution of width v. Consider for def-
initeness a single Fourier mode with random phase θ uni-
formly distributed on [0, 2π), namely X(x) = cos(kx + θ).
One readily calculates that

CL(τ ) =
1
2
〈cos(kvτ)〉T (τ ) =

1
2
e−k2v2τ2/2T (τ ). (15a,b)

For algebraic or even pure exponential decay of T (τ ), the
decay of CL is dominated at long times by the streaming
contribution. More realistic evolution laws for x(t) need not
change this conclusion if the motion is random. Additional
decay emerges when a spectrum of modes is considered.

Admittedly, the factored form assumed above likely does
not hold in practice. Determining the precise spectral rep-
resentation of a self-consistent velocity field is very difficult
and requires numerical simulations or detailed statistical
closure calculations. However, some general remarks about
Eulerian and Lagrangian correlations can be made by con-
sidering some robust aspects of renormalized turbulence
theory. An exact formula for CE(τ ) is [cf. Eq. (5)]

CE(τ ) =
∫

dk

(2π)d

∫ ∞

−∞

dω

2π
e−iωτ |R(k, ω)|2F (k, ω), (16)

where d is the dimension of space. Some attempts to ana-
lyze this formula were made in Ref. 17. It was concluded
that algebraic tails for CE(τ ) followed with only mild as-
sumptions; the key was to argue that the integral was dom-
inated by the small k’s and ω’s. Here I shall illustrate such
behavior by employing, instead of the proper solution of
the balance equation (say in the DIA), the so-called self-
consistent field approximation35,36

Ck(τ ) = Rk(τ )Ck(τ = 0) (τ > 0). (17)

In thermal equilibrium Eq. (17) is an exact statement of the
fluctuation–dissipation theorem,37,38 but it has qualitative
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validity in general and is also closely related to Langevin
representations of successful Markovian closures.28 Then

CE(τ ) =
Ωd

(2π)d

∫ ∞

0

dk kd−1 Rk(τ )Ck (τ > 0), (18)

where Ω is the solid angle and spatial homogeneity was
used. If one reasonably assumes that Ck is well behaved as
k→ 0 and if one also assumes that Rk(τ ) ∼ e−k2Dτ in that
same limit, then a stationary-phase evaluation of Eq. (18)
for large τ leads to the asymptotic scaling

CE(τ ) ∼ τ−d/2. (19)

(For d = 1, this agrees with the τ−1/2 behavior found for
the stochastic model discussed in Sec. II.) Different as-
sumptions about Rk(τ ) lead17 to different decay exponents,
although the power-law behavior is preserved.

The formula (19) for the Eulerian function is reminiscent
of the famous result of Alder and Wainwright39 for the de-
cay of the Lagrangian velocity autocorrelation function in
equilibrium many-body theory. As applied to CL, it was re-
discovered in plasma physics by Krommes and Oberman40

in the context of convective cells in 2D, strongly magnetized
plasmas. The significance of a τ−d/2 decay of CL is that
it is nonintegrable for d ≤ 2, in which case local transport
coefficients do not exist.

Although in the examples cited in the previous paragraph
the Eulerian and Lagrangian functions decay asymptoti-
cally at the same rate, that is not the case in general. A La-
grangian function can be integrable (and a local transport
coefficient well defined) even when the associated Eulerian
function is nonintegrable. To see that, one could analyze
the time dependence of the mass operator. If the dependent
variable is expected to diffuse at long wavelengths (as would
be the case for a passively advected scalar, for example),
then to within a factor of k2 Σk(τ ) is the relevant integrand
whose time integral determines the turbulent transport co-
efficient µ in the hydrodynamic limit, namely41

µ =
∫ ∞

0

dτ CL(τ ), CL(τ ) = lim
k→0

k−2Σk(τ ). (20a,b)

For example, in the DIA

Σk(τ ) = −
∑
∆

MkpqM
∗
pqkRp(τ )Cq(τ ). (21)

[Here ∆ ≡ ∆(k; p, q) means the set of all p’s and q’s such
that k+p+q = 0.] A problem is that solutions of the DIA
are very difficult to obtain.

An alternative procedure is to directly consider the ex-
pression for the turbulent damping rate ηk that follows
from a Markovian statistical closure approximation. For
example, in the eddy-damped quasi-normal Markovian
(EDQNM) approximation one has

ηk = −
∑
∆

MkpqM
∗
pqkθ

∗
kpqCq, (22)

where θkpq
.= (ηk + ηp + ηq)−1 is the steady-state triad

interaction time. If diffusion is appropriate, then µ =
limk→0 ηk/k

2; if that limit is finite, one concludes that
CL is integrable. To illustrate, I consider the expression
for the turbulent damping rate (not the density diffusion
coefficient) in the undriven Hasegawa–Mima equation:42

ηk = −
∑
∆

|ẑ · p × q|2(p−2 − q−2)(q−2 − k−2)
([k−2] + 1)([p−2] + 1)

× (η∗k + η∗p + η∗q )−1Cq. (23)

The bracketed terms in the denominator stem from adia-
batic electron response; when they are omitted, the model
reduces to the 2D guiding-center model.43 For simplicity, I
shall assume homogeneity, even though that is not strictly
valid for nonzero diamagnetic velocity V?; alternatively, one
may simply assume thermal equilibrium, for which V? rig-
orously vanishes. Then

ηk = − 2
(2π)2

∫
∆

dp dq p2q2| sinα| (p
−2 − q−2)(q−2 − k−2)

([k−2] + 1)([p−2] + 1)
× (η∗k + η∗p + η∗q )−1Cq, (24)

where α = 6 (p, q) and the domain ∆(k; p, q) is depicted,
for example, in Fig. 5.5.1 of Ref. 21. Note that Cq = q2Vq,
where Vq is the velocity spectrum. I shall consider two
spectral forms for Cq: a “ring” model in which the spec-
trum is concentrated in an energy-containing range such
that p, q � k as k → 0; and a thermal-equilibrium model,
in which Vq = (a+ bq2)−1, where a and b are constants.

In the ring model, one has sinα = O(k), p ∼ q (so one
can write p = q + εk, where −1 ≤ ε ≤ 1). It is then
straightforward to verify that ηk = O(−k4). [One power
of k comes from the p integration (of extent k), one from
sinα, and two from p−2 − q−2 [the O(k) term vanishes by
symmetry]. A definite calculation that retains numerical
coefficients can be done by postulating the shell spectrum
Cq = (2πq)−1δ(q − q)C.] The power of k4 is consistent
with the expectation of an eddy viscosity acting on vor-
ticity ω. [One must remember that the dependent vari-
able in the Hasegawa–Mima equation is the potential ϕ, for
which vorticity diffusion is represented as k2 × k2, where
the first k2 arises from the diffusion law and the second k2

arises from ω = ∇2ϕ. The divisors in formulas such as
Eq. (20b) must be modified to k4 for this case.] Thus one
concludes that the vorticity viscosity coefficient µ is finite
and CL is integrable. That µ is negative is consistent with
known results for eddy viscosity in systems with two con-
served quantities,44 which possess inverse energy cascades.

In thermal equilibrium, one can follow the outlines of the
guiding-center calculation performed in Ref. 43. Upon not-
ing denominator terms of the form 1+p2 or a+bq2, one can
deduce that a large-wave-number cutoff exists; further in-
spection shows that the dominant contributions come from
wave numbers of O(k). If one neglects small terms and
assumes that Vq = const., one can symmetrize (24) to find
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ηk =
1

(2π)2

∫
∆

dp dq | sinα|(p2 − q2)2
V

ηk + ηp + ηq
, (25)

a manifestly positive form that can be shown to be ∝ k4.
Analysis shows that ηk is convergent, so again one con-
cludes that CL is integrable.

If the adiabatic electron response is ignored, one recovers
the guiding-center plasma model and the results of Ref. 43,
namely that ηk = k2µk, where µk is positive and involves
the square root of the logarithmic divergence ln(k−1). That
divergence is the remnant of the τ−d/2 tail for d = 2,
which for the guiding-center model only contaminates the
Lagrangian correlation function as well as the Eulerian one.
Evidently, whereas slow decay of CE is quite general, the
behavior of CL depends on subtle details of wave-number
distributions and physical assumptions. One must not infer
properties of transport coefficients from Eulerian functions.

V. SUMMARY

I have (i) discussed the use of stochastic models to pro-
vide additional perspectives on the statistical behavior of
turbulent systems, and mentioned a simple model that pro-
duces long-time Eulerian tails although it is not SOC-like
and has quasilinear transport coefficients; (ii) reviewed the
spectral balance equation and described how a formula
for the frequency spectrum of uncorrelated overlapping
avalanches is a special case of that equation; (iii) argued
that there need be no contradiction between observations
of long-time tails on Eulerian correlation functions and the
existence of local transport coefficients.

This work does not specifically address the possible role
of avalanches in creating the observable fluctuations and
transport, or the possibility that actual transport is in fact
nondiffusive.45 In general turbulence theory, avalanches are
not singled out for special treatment; they are simply ran-
dom fluctuations with a particular (threshold-related) driv-
ing mechanism. Of course, specific properties of such fluc-
tuations (e.g., intermittent PDF’s7) are of considerable in-
terest, particularly in submarginal scenarios46 (although
transport need not depend strongly on the details of higher-
order statistics47). In any case, further work must be done
to elucidate the actual nonlinear dynamics underlying the
experimental observations, to determine whether specific
results or theories about the asymptotic SOC limit are use-
ful, and to obtain a unified formalism that quantitatively
describes all regimes of turbulence and transport.
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