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Abstract. Drift waves are investigated in a real three-dimensional stellarator geometry. A linear
system, based on the cold ion fluid model and a ballooning mode formalism, is solved numerically
in the geometry of the stellarator H1-NF. The spectra of stable and unstable modes, as well
as localization, are discussed. The dependence of the spectrum of the unstable modes on the
wavevector, plasma density variation, and the location in the plasma is presented.

1. Introduction

Drift wave instabilities are considered as a strong candidate to explain the large cross-field
anomalous energy transport in plasma fusion devices (Tanget al 1986, Boozeret al 1990,
Stroth 1998, Reddet al 1999). They have therefore been intensively investigated over the
last few decades (Rutherford and Frieman 1968, Pearlstein and Berk 1969, Ross and Mahajan
1978, Hastieet al 1979, Strandet al 1998). However, most studies are carried out using
simplified magnetic field configurations. This is true for stellarators although, with their three-
dimensional geometry, they lend themselves poorly to such treatment.

In this paper we investigate drift instabilities in three-dimensional stellarator geometry
using the VMEC code (Hirshman and Betancourt 1991) to generate the equilibria. In particular,
we focus on the H1-NF heliac (Hambergeret al 1990). In doing so we extend earlier
work (Bhattacharjeeet al 1983, Perssonet al 1996, Persson and Lewandowski 1997) using
helically symmetric models and complement the work on the ATF stellarator (Dominguez
et al 1992). We have developed a computer code that calculates the necessary quantities in
Boozer coordinates from VMEC output and solves an eigenvalue problem for the cold ion
drift wave. In the absence of an explicit driving mechanism, wide spectra of highly stable and
marginally stable eigenmodes are found around every selected point in the plasma. The former
have low frequencies and are extended along the field lines. The latter have larger frequencies
and are localized along the field line. The localized modes can be driven unstable through
dissipative or resonance mechanisms. The existence of unstable localized modes then depends
on the orientation of the perpendicular wavevector and the plasma density variation, with the
highly localized modes being excited only around the symmetry points of the magnetic field
configuration.
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This paper is organized as follows: in section 2 we explain the magnetic field configuration
and the coordinate systems used; the drift wave model is discussed in section 3; the numerical
results are presented in section 4; and the paper is concluded with a discussion of the results
in section 5.

2. Magnetic field configuration

After a coordinate transformation from the VMEC coordinate system the equilibrium field
configurations are expressed in terms of Boozer coordinates(s, θ, ζ ) (D’haeseleeret al1991),
whereθ andζ are generalized poloidal and toroidal angles ands = 2πψ/ψp is the normalized
flux (radial) coordinate. Here 2πψ is the poloidal magnetic flux bounded by the magnetic axis
and theψ = const surface, andψp = πBoā

2/q is the total poloidal magnetic flux, whereBo

is the magnetic field at the magnetic axis,ā is the average minor radius,q = 2π/ι is the safety
factor andι = ι(ψ) is the rotational transform.

In this coordinate system the magnetic fieldB is expressed as

B = ∇α × ∇ψ = ψ̇∇α × ∇s with ψ̇ ≡ dψ

ds
= Boā

2

2q
andα = ζ − qθ. (1)

This fulfills ∇ · B = 0 andB · ∇ψ = B · ∇α = 0, which implies thatψ andα are stream
functions of the magnetic field. It further implies thatψ = const is a magnetic flux surface
andα = const is a field line label on this surface. Topologically, the magnetic flux surface is a
square cell, 06 θ < 2π , 0 6 ζ < 2π , in which the field lines are straight. For the eigenvalue
problem, along the field line discussed in the next section, complete straight magnetic field
lines lie in the topological space−∞ < θ < ∞, −∞ < ζ < ∞, which is usually referred to
as a covering space (Dewar and Glasser 1983).

A Cartesian coordinate system(x, y, z) is related to the Boozer system through the
cylindrical coordinates(R, φ, z), whereR is the major axis andφ the cylindrical toroidal
angle as

R =
np∑
m=0

nt∑
n=−nt

Rmn(s) cos(mθ + nNζ)

φ = ζ − 2π

N

np∑
m=0

nt∑
n=−nt

φmn(s) sin(mθ + nNζ)

z =
np∑
m=0

nt∑
n=−nt

zmn(s) sin(mθ + nNζ).

Herenp andnt are the maximum poloidal and toroidal Fourier components, respectively, and
N is the number of field periods of the stellarator studied. The Fourier coefficientsRmn, φmn
andzmn, and the rotational transformι are calculated as functions of the flux coordinates by the
VMEC code (Hirshman and Betancourt 1991) and then mapped over to the Boozer coordinate
system.

The position vectorr of any point (s, θ, ζ ) at a magnetic surfaces in the Cartesian
coordinate system is

r = (R cosφ,R sinφ, z)

with the covariant basis vectors of the Boozer coordinate system

es = ∂r

∂s
eθ = ∂r

∂θ
eζ = ∂r

∂ζ
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and the associated contravariant basis vectors

∇s = eθ × eζ

J
∇θ = eζ × es

J
∇ζ = es × eθ

J
.

Here, the JacobianJ for the Boozer coordinates system is given by

J ≡ es · eθ × eζ = R̄ψ̇

B2
(Bθ + qBζ ) (2)

whereBθ andBζ , the covariant components ofB, are surface quantities, i.e.Bθ = Bθ(s)

andBζ = Bζ (s). Thus, having calculated numerically the derivatives of the cylindrical
coordinatesr, φ, andz w.r.t. s, equation (2) can be used to calculate derivatives ofB w.r.t. θ
andζ analytically, while the derivative w.r.t.s has to be calculated numerically.

By using the fact that the contravariant and covariant basis vectors are reciprocal of each
other, equation (1) can be written as

B = ψ̇

J
(eθ + qeζ ).

So, the operatore‖ · ∇, wheree‖ = B/B, is

e‖ · ∇ = ψ̇

JB

(
∂

∂θ
+ q

∂

∂ζ

)
= ψ̇q

JB

d

dζ

∣∣∣∣
field line

(3)

and the field line curvature vectorκ is

κ ≡ e‖ · ∇e‖ = q

(
ψ̇

JB

)2[ d

dζ
(eθ + qeζ )− 1

2

d lnJ

dζ
(eθ + qeζ )

]
.

The normal and geodesic components ofκ are

κn = κ · ∇s
|∇s| κg = κ ·

( ∇s
|∇s| × e‖

)
.

3. Drift wave model

The emphasis of this work is on the effect of geometry through magnetic field gradient and
field line curvature. The wave spectrum rather than the driving mechanisms are the main
concerns. For this purpose we use the simple cold ion fluid model used by previous authors
(Bhattacharjeeet al 1983, Perssonet al 1996, Persson and Lewandowski 1997), in which
electron response is assumed to be close to adiabatic and the cold ion response is derived from
the fluid dynamic. The resulting equations are closed through the quasi-neutrality condition
to obtain the following electrostatic drift wave eigenvalue equation:[

c2
s

ω2
∇2

‖ − ρ2
s∇2

⊥ +
1

iω
(v∗ + vd) · ∇⊥ + 1 + iδ

]
eφ

Te
= 0 (4)

where the timet dependence of the wave potentialφ is assumed to be of the form exp(iωt),
whereω is the wave frequency. Herecs = √

Te/mi is the ion sound speed at the electron
temperature,ρs = cs/�ci and�ci is the ion cyclotron frequency,

v∗ ≡ − Te

eB
e‖ × ∇ ln no vd ≡ 2Te

eB
e‖ × ∇ lnB

are the diamagnetic and∇B drift velocities, respectively, andno is the equilibrium plasma
density. The last term in equation (4) represents the non-adiabatic part of the electron response
which could be due, for example, to collisions, wave–particle resonance, dissipation due to
electron trapping, or any other mechanism preventing electrons from moving freely along the
field lines.
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Using equation (3) and∇‖ ≡ e‖ · ∇, the operator∇2
‖ can be written as

∇2
‖ =

(
ψ̇q

JB

)2(d lnB

dζ

d

dζ
+

d2

dζ 2

)∣∣∣∣
field line

.

We assume that the wave potentialφ̃ is of the ballooning type, i.e.

φ̃ = φ̂(ζ, ε)exp(−iε−1S(r))

whereε is the aspect ratio andS(r) is a function satisfyinge‖ · ∇S ≡ 0, so thatS = S(α, q).
Then, equation (4) with the transformation

√
Bφ̂ = 8 can be written as:

d28

dζ 2
+

[
Q−

(
JB

qR̄ψ̇

)2

{(�∗ +�d)χ�− (1 +χ2k̂⊥ · k̂⊥ + iδ)�2}
]
8 = 0 (5)

where

Q = Q(ζ) = − 5

16

(
d lnJ

dζ

)2

+
1

4J

d2J

dζ 2
� = R̄ω

cs

�∗ = −2R̄

Ln
L−1

n = −d ln no

ā ds
χ = ε−1qρso

ā

∂S

∂α

�d = �d(ζ, θk) = 2āR̄Bo

qB
(e‖ × ∇ lnB) · (∇α + θkq̇∇s)

k̂⊥ = k̂⊥(ζ, θk) = āBo

qB
(∇α + θkq̇∇s) θk = ∂S

∂q

/
∂S

∂α
.

R̄ is the average major radius,ρso is the ion Larmor radius at the magnetic axis, andā andBo

were defined in the previous section. Using equation (3) we can write

∇ lnB = 1

2

[(
d

ds
ln(Bθ + qBζ )− ∂ ln J

∂s

)
∇s − ∂ ln J

∂θ
∇θ − ∂ ln J

∂ζ
∇ζ

]
.

Equation (5) is an ordinary differential equation to be solved along a magnetic field
line numerically subject to appropriate boundary conditions for large|ζ | and by demanding
continuity of the function and its first derivative at a point(θo, ζo), usually referred to as
a ‘matching point’. Hence, at a given magnetic surfaceψ , the eigenfunction8 and the
corresponding normalized eigenfrequency� are obtained for given values of the equilibrium
plasma density scale length,Ln, and the parametersχ andθk; the former controls the magnitude
of the perpendicular wavevectork⊥ and the latter controls the magnitude of its component along
the outward normal of the flux surface. The vectork⊥ rotates in the perpendicular (toB) plane
whenθk is increased.

4. Results

We have carried out a numerical study of drift waves in a heliac H1-NF magnetic field
configuration. The full equilibrium is obtained from VMEC withnp = 13, nt = 27, and
the field configuration has three-fold toroidal symmetry, so thatN = 3. We solve the drift
wave equation (5) numerically in this configuration, applying the WKB (Wentzel–Kramers–
Brillouin) type boundary conditions for largeζ ; that is8 represents either propagating waves
with outgoing energy (non-localized modes) or standing waves (localized modes) beyond a
certain point away from the mode centre (matching point) along the field line. Details of the
boundary conditions and numerical method used are given in the appendix. The drift wave
spectrum thus obtained in the absence of the driving mechanism (δ = 0.0) and for a finiteδ
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at the matching point(θo = 0, ζo = 0) on the flux surfaces = 0.9ψ̇ for the parameter values
χ = 0.8, θk = 0.0 rad andLn = 5.0 cm is shown in figure 1. The eigenfunctions at different
frequencies in the spectrum are shown as insets. In this spectrum, very low frequency modes
are highly damped and have extended eigenfunctions along the field line. The negative growth
rates of these modes do not depend on the finiteδ. With increasing frequency, the modes are first
weakly localized and then highly localized along the field line. These modes are marginally
stable in the absence of a driving mechanism. For finiteδ, the weakly localized modes become
damped modes and the strongly localized high frequency modes are driven unstable. The most
localized modes have the largest frequency and growth rates. These modes can be classified as
symmetric modes, having the same structure across the point of magnetic field symmetry, and
odd modes, having the opposite structure across the symmetry point. The spectrum is discrete
and may not be fully resolved, especially for intermediate frequencies.

Figure 1. The spectrum of the drift wave equation (the growth rateγ ≡ −Im (�) versus the
frequency Re(�)) with δ = 0 (indicated by ‘∗’) and δ = 0.001 (indicated by ‘×’) obtained at the
matching pointθo = ζo = 0.

The potential function (defined as the quantity in square brackets in equation (5)) of the
drift wave equation is strongly dependent on the value of the parameterχ , which controls the
magnitude of the perpendicular (toB) wavenumberk⊥. This is a free parameter and hence
the spectrum variation versus this parameter must be scanned. Figure 2 shows such a scan for
the same values of the other parameters as in figure 1, withδ = 0.001. The eigenfunctions of
the highest frequency modes for differentχ are shown as insets. For smallχ the frequency
spectrum is very narrow. The low frequency modes are the most stable. These modes have
extended eigenfunction structures along the field line. The high frequency modes are unstable,
having a large growth rate, and are well localized in a wide region along the field line, with broad
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potential envelopes. Asχ increases the spectrum spreads into many dispersion branches. The
low frequency stable modes remain almost unaffected, except that their damping rate decreases.
The frequencies and growth rates of the unstable localized modes first rapidly increase and
then slowly decrease. The potential function becomes more and more localized with narrow
envelopes. The growth rate spectrum, shown in figure 2 (right), is somewhat irregular for some
χ . This is probably because of the choice of the functionδ, which gives a larger driving for
extended (weakly localized) modes as it is chosen to be constant along the field line.

Figure 2. The frequency (left) and the growth rate (right) variation withχ .

In a simple slab geometry, when the parallel ion dynamic and temperature are neglected,
the fundamental drift wave dispersion relation is

� = �∗χ

(1 +χ2k̂2
⊥) + iδ

.

This implies that forχ < 1, the frequency Re(�) and the growth rateγ ≡ −Im (�) are

Re(�) ≈ �∗χ γ ≈ �∗δχ

and forχ > 1,

Re(�) ≈ �∗
k̂2

⊥χ
γ ≈ �∗δ

k̂2
⊥χ
.

So, the frequency and the growth rate are directly proportional to the parameterχ whenχ < 1,
and are inversely proportional whenχ > 1. Our numerical results for each mode in the drift
wave spectrum are consistent with the fundamental drift wave theory, though the growth rates
of the damped modes for smallχ and those of unstable modes forχ near zero have a different
behaviour, which is due to neglecting the parallel ion dynamic.

The parameterθk controls the component of the wavevector along the normal to the flux
surface and appears in the wave equation throughk̂⊥. This is also a free parameter and so
the spectrum should be scanned versus this parameter. Results of such a scan, keeping other
involved parameters constant at the values given above, are shown in figure 3. Eigenfunctions
of the highest frequency modes are shown in the insets. Nearθk = 0 the frequency spectrum of
unstable localized modes is broad. Asθk increases, the frequencies and growth rates of these
modes decrease and the corresponding eigenfunctions are shifted away from the symmetry
point of the magnetic field and have a broader envelope. For large values ofθk the strongly
localized modes cease to exist. However, the low frequency stable modes with negative growth
rates exist for all values ofθk and their frequency spectra remain almost the same, though their
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Figure 3. The frequency (left) and the growth rate (right) variation withθk .

damping rates tend to increase withθk. There is some irregular behaviour in the growth rate
spectrum, which could be due to the choice of the instability driving functionδ = const

Of particular experimental interest is the most localized unstable mode on theχ−θk plane.
Such a scan, obtained at the matching point(θo = 0, ζo = 0) for the parameter Łn = 5 cm and
δ = 0.001, is shown in figure 4. The frequency and growth rate of the mode first increase and
then decay asχ increases, and decay asθk increases. The maximum frequency and growth
rate are obtained aroundχ = 1.0, θk = 0.0.

Figure 4. The frequency (left) and the growth rate (right) of the most localized mode versusχ–θk
space.

The density scale length Łn, which appears in the wave equation through diamagnetic drift
velocity, is given by the plasma density profile. Figure 5 shows a scan of drift wave frequency
and growth rate spectra versus Łn, where the insets show the wave potential for the first and
second most localized modes. For a steep density profile, Łn is small and the spectrum is
very wide. The frequencies and growth rates of the localized unstable modes and of damped
modes are large. The eigenfunctions of the localized modes have very narrow envelopes. As
the density profile is made flat and Łn is increased, the frequencies and growth rates of these
modes decrease exponentially, the spectrum gets more narrow and the eigenfunction envelopes
of the localized modes broaden. When the density profile is flat and Łn is large, only highly
localized modes are excited with small growth rates.
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Figure 5. The frequency (left) and the growth rate (right) variation with the density scale length
Ln.

The spectrum can also vary with the position of the matching point on the flux surface
because of the variation in the equilibrium quantities. We have calculated this variation by
moving the matching point(θo, ζo)along the field line, passing through the point(θ = 0, ζ = 0)
for the same values of the parameters as in figure 1, withδ = 0.001 andθk = θo. The results
are shown in figure 6, where the insets show the potential function of the most localized
mode at different positions along the field line. The high frequency localized unstable modes
are excited in the regions of maximum normal curvature where the field line is completely
concave outward or inward. These modes are localized around the points of symmetry of
the field configuration, which occur in the covering space atθ = nπ , ζ = nπ/3, where
n = 0,1,2, . . .. The eigenfunctions have either symmetric or antisymmetric structures across
these points. The low frequency, weakly localized modes are found everywhere and their
frequency spectra vary along the field line in the form of many interacting branches. The
spectrum of the very low frequency damped modes remains almost the same along the field
line, though their damping rate spectrum varies. The variation in the normal and geodesic
components of the curvature vector and the magnetic field strength along the field are also
shown in figure 6. The spectrum has no clear relation with curvature and magnetic field,
except that in the region where normal curvature and magnetic field are large, only strongly
localized modes are excited at high frequencies and their spectra are very discrete.

The localization of the drift waves on the magnetic surface is of great interest. We have
calculated the drift wave spectrum for the same parameter values as in figure 1, withθk = θo.
The variation in the spectrum along theθ = 0.0 andζ = 0.0 lines on the magnetic surface are
shown in figure 7, where the insets show the eigenfunctions of the most localized modes in
different regions along the line. The variation in the curvature components and magnetic field
strength are also shown. The strongly localized high frequency modes are excited only around
the points of symmetry of the field configuration. The low frequency, weakly localized modes
are excited everywhere. Their frequency spectra vary in the form of interacting branches
along theθ = 0.0 line and do not vary much along theζ = 0.0 line. The spectrum of the
low frequency damped modes remains almost unchanged, while the damping rate spectrum
changes significantly in the region where the normal curvature and magnetic field are large.
Apparently, the frequency spectra do not show any remarkable relation with the curvature
and magnetic field variation, except that in the region of large normal curvature and magnetic
field, only strongly localized modes are excited at high frequencies and their spectrum is very
discrete.
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Figure 6. Variation in the frequency (top) and growth rate (middle) spectra and change inB, κn
andκg (bottom) along the field line passing throughθ = ζ = 0. B is the dashed–dotted curve,κg
is the dashed curve, andκn is the solid curve.

The frequency and growth rate for the most localized mode on the magnetic surface are
shown in figure 8. They change periodically over the surface, attaining large values at the
symmetry points where the field lines are completely concave outward or inward.

Theoretically, as discussed by Dewar and Glasser (1983), since all the equilibrium
quantities are periodic functions of the coordinatesθ and ζ , with periods 2π and 2π/3,
respectively, in the H1-NF device, all the eigenvalues�must have the same periodicity over the
matching points(θo, ζo)-space. This is provided that whenθo is varied,θk is also varied by the
same amount so that the orientation of the perpendicular wavevectork⊥ remains the same. Our
numerical results shown in figures 7 and 8 are consistent with this, that is, the frequency Re(�)

and the growth rateγ of each mode in the spectrum have the periodicity predicted by theory.
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Figure 7. Variation in the frequency (top) and growth rate (middle) spectra and change inB, κn
andκg (bottom) along theζ = 0 (left) andθ = 0 (right) lines.B is the dashed–dotted curve,κg is
the dashed curve, andκn is the solid curve.

The variation in the magnetic field and the normal, and the components of the curvature
vector on the real three-dimensional magnetic flux surface are shown in figures 9 and 10. The
magnetic fieldB and the normal curvatureκn are maximum in the region where field lines
are concave inward and are minimum where field lines are concave outward. The geodesic
curvatureκg have extreme values around the points where the maximum twist of the field lines
is in the poloidal direction.
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5. Discussion and conclusion

In the straight stellarator model geometry study by Persson and Lewandowski (1996) the lower
frequency modes were more localized and the non-localized modes were found at higher
frequencies. In the present three-dimensional study this trend is quite reversed. The more
localized modes were found at higher frequencies and the non-localized modes had lower
frequencies. This difference is due to the toroidal curvature of the three-dimensional magnetic
field configuration. This type of spectral behaviour is obtained when the potential function
of the wave equation is a monotonically decreasing function of the frequency. The spectral
behaviour found in the straight case is obtained when it is a monotonically increasing function
of the frequency, which can easily be seen by solving a simple eigenvalue problem analytically.
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In the straight case, this behaviour of the potential function is obtained because the function
|k̂⊥|, on average strongly increases along the field line. In real stellarator geometry, however,
this function is almost constant, on average, which makes the potential function a decreasing
function of the frequency over the interval the spectrum is found.

To conclude, we have discussed a method of calculating the real three-dimensional
stellarator equilibrium magnetic field configuration. Using this method a computer code has
been developed which can compute any stellarator equilibria. With this code, drift waves
are investigated in a stellarator called heliac H1-NF using ballooning mode formalism. The
drift wave frequency spectrum and the corresponding growth rate spectrum are found for
typical values of the parameters. In this spectrum low frequency modes are very stable and
their negative growth rate does not depend on the instability mechanism. The high frequency
modes are marginally stable and localized along the field line, which can be driven unstable
by a dissipative mechanism. For a steep plasma density profile, the spectrum is very wide
and the frequencies and growth rates of the localized unstable modes are large, and for flat
density profiles, the spectrum is very narrow with only highly localized modes being excited,
the growth rates of which are small. The spectrum of the long wavelength modes is very
narrow and almost continuous. As the wavelength is reduced, the spectrum splits into many
discrete branches at large frequencies; first the frequencies and growth rates increase rapidly
and then slowly decrease. The drift wave spectrum is also found to be strongly dependent on the
orientation of the wavevector and the position in plasma. The strongly localized high frequency
modes are dispersed in a small angle, around a direction in the magnetic surface perpendicular
to the magnetic field. These modes are excited only in the regions around the symmetry points
of the magnetic field configuration, where the field lines are completely concave outward or
inward. The spectrum in the region where the normal curvature and magnetic field are large
is very discrete, with only highly localized modes being excited at high frequencies.

The driving mechanism appears in our drift wave equation through the functionδ, which
we have kept as a fixed constant in the present study. In a more realistic model,δ is a complex
function depending on both geometry and physics. Another limitation of the present study is
that we have used a cold ion model to derive our wave equation and ignored particle trapping
in the local magnetic wells, as well as toroidal trapping which may only be justified in the
electron–neutral collision dominated regime where the electron temperature is much larger than
the ion temperature. Furthermore, by assuming that the wave potentials are of a ballooning
type we have solved the wave equation locally, neglecting the radial structure of the wave
potential. To investigate the global drift wave spectrum either the wave equation should be
solved simultaneously in radial and parallel (toB) directions, or the local structure should
be coupled to a ray tracing algorithm, as done by Dewar and Glasser (1983) or to a surface
construction algorithm like that used by Cooperet al (1996).

Appendix. Boundary conditions and numerical method

The boundary conditions for8 far away from the matching point are that8 either represents
outgoing waves or standing waves along the field line. That is, at a largeζ = ζmax

8 = 8o exp(ϕ(ζ,�)) (6)

where8o is a constant andϕ is a complex function satisfying either of the following conditions:

Im (ϕ(ζmax, �)) > 0 Im (ϕ(−ζmax, �)) < 0 for outgoing waves

Re(ϕ(±ζmax, �)) ≈ 0 Re(ϕ(±ζmax, �)) < 0 for standing waves.

}
(7)
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Writing the eigenvalue equation (5) in the form

d28

dζ 2
+ F(ζ,�)8 = 0

and substituting equation (6) into this, we get

(ϕ′)2 + ϕ′′ + F = 0.

Here the prime represents a derivative w.r.t.ζ . Assuming thatϕ′ is a slowly varying function
of ζ , so thatϕ′′ � ϕ′, the solutions of this nonlinear equation up to the first order of smallness
parameterϕ′′/ϕ′ are given by the equation

ϕ′ = ±i
√
F − 1

4(ln(F ))
′.

Substituting this into equation (6), one obtains

8′ = [±i
√
F − 1

4(ln(F ))
′]8. (8)

These are the standard WKB boundary conditions. The solution fulfilling condition (7) is
given by

8′ = [−i|Re(
√
F)| − sign(Re(

√
F))Im (

√
F)− 1

4(ln(F ))
′]8 at ζ = ζmax

= [i |Re(
√
F)| − sign(Re(

√
F))Im (

√
F)− 1

4(ln(F ))
′]8 at ζ = −ζmax

when Re(
√
F) ≈ 0

8′ = [−|Im (
√
F)| − 1

4(ln(F ))
′]8 at ζ = ±ζmax.




(9)

The functionF(ζ,�) is pre-calculated on the domain [−ζmax + ζo, ζmax + ζo] for a given
�. The eigenfunction8 at ζ = ±ζmax is fixed arbitrarily, the corresponding value of8′ is
calculated using equation (9), and8 atζ = ±(ζmax−1zt) (1zt is the integration step length)
is calculated using the Taylors expansion. Then8 is determined all over the domain using a
sixth-order Numerov scheme (Gladd and Horton 1973):

8(ζ −1ζ)

[
1 +

(1ζ)2

12
F(ζ −1ζ)

]
=

[
2 − 5

6
(1ζ)2F(ζ )

]
8(ζ)

−
[
1 +

(1ζ)2

12
F(ζ +1ζ)

]
8(ζ +1ζ).

The function8 is calculated at the matching pointζo from the right, say8+, and from the
left, say8−, for a given frequency�. The values of� at which8+ and8− match are the
eigenfrequencies. These are calculated by finding roots (zeros) of the function

f (�) = 8′
+

8+
− 8′

−
8−

on the complex frequency plane. The plane is divided into a number of small areas, each of
which is then independently searched to find the roots using a Müller algorithm (Presset al
1992), which generalizes the secant method by using quadratic interpolations.

The computer program solving this eigenvalue problem takes about 2 min to calculate the
equilibrium part of the functionF(ζ,�) and less than 3 min to calculate the whole spectrum
presented in figure 1 on a SGI Cray Origin 2000 super computer.
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