PPPL-3429 is available in pdf or postscript formats.
Robustness and Flexibility in Compact Quasiaxial Stellarators: Global Ideal MHD Stability and Energetic Particle Transport
Authors: M.H. Redi, A. Diallo, W.A. Cooper, G.Y. Fu, J.L. Johnson, C. Nuhrenberg, N. Pomphrey, A.H. Reiman, R.B. White, M.C. Zarnstorff, and the NCSX Team
Date of PPPL Report: January 2000
PPPL-3429 is an expanded version of PPPL-3351 and PPPL-3358.
Published in: Phys. Plasmas 7 (June 2000) 2508-2516. (Title and author list changed to: Robustness and Flexibility in Compact Quasiaxial Stellarators: Global Ideal Magnetohydrodynamic Stability and Energetic Particle Transport by M.H. Redi, A. Diallo, W.A. Cooper, G.Y. Fu, C. Nührenberg, N. Pomphrey, A.H. Reiman, M.C. Zarnstorff, and the NCSX Team.)
Concerns about the flexibility and robustness of a compact quasiaxial stellarator design are addressed by studying the effects of varied pressure and rotational transform profiles on expected performance. For thirty, related, fully three-dimensional configurations the global, ideal magnetohydrodynamic stability is evaluated as well as energetic particle transport. It is found that tokamak intuition is relevant to understanding the magnetohydrodynamic stability, with pressure gradient driving terms and shear stabilization controlling both the periodicity preserving, N=0, and the non-periodicity preserving, N=1, unstable kink modes. Global kink modes are generated by steeply peaked pressure profiles near the half radius and edge localized kink modes are found for plasmas with steep pressure profiles at the edge as well as with edge rotational transform above 0.5. Energetic particle transport is not strongly dependent on these changes of pressure and current (or rotational transform) profiles, although a weak inverse dependence on pressure peaking through the corresponding Shafranov shift is found. While good transport and MHD stability are not anticorrelated in these equilibria, stability only results from a delicate balance of the pressure and shear stabilization forces. A range of interesting MHD behaviors is found for this large set of equilibria, exhibiting similar particle transport properties.