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A previous calculation [P. H. Diamond and T.–S. Hahm, Phys. Plasmas 2, 3640 (1995)] of the
renormalized dissipation in the nonconservatively forced one-dimensional Burgers equation, which
encountered a catastrophic long-wavelength divergence ∼ k−3

min, is reconsidered. In the absence of
velocity shear, analysis of the eddy-damped quasi-normal Markovian closure predicts only a benign
logarithmic dependence on kmin. The original divergence is traced to an inconsistent resonance-
broadening type of diffusive approximation, which fails in the present problem. Ballistic scaling
of renormalized pulses is retained, but such scaling does not, by itself, imply a paradigm of self-
organized criticality. An improved scaling formula for a model with velocity shear is also given.
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In a famous calculation of the “large-distance and long-
time properties of a randomly stirred fluid,” Forster, Nel-
son, and Stephen1 (FNS) analyzed the consequences of var-
ious forcing scenarios for the Navier–Stokes equation and,
to some extent, Burgers equation. They considered both a
conservative forcing (Model A) and a nonconservative one
(Model B),2 and predicted nontrivial properties for the low-
frequency, small-wave-number limits of the two-point corre-
lation and response functions. They did not explicitly con-
sider Model B for Burgers equation; however, that was later
studied in considerable detail by Hwa and Kardar3 (HK).
Recently Diamond and Hahm4 (DH) attempted to use the
Burgers Model B in support of a paradigm of self-organized
criticality5,6 (SOC) for plasma transport. In the course of
their discussion, they performed a calculation of the renor-
malized dissipation coefficient ηk that describes the mean
propagation of small-amplitude pulses with Fourier compo-
nents k. In the absence of macroscopic velocity shear V ′,
they invoked a wave-number scaling for the turbulent dissi-
pation (ηk ∼ k2) that disagreed with that predicted by HK
(ηk ∼ |k|). As a consequence, they encountered a catas-
trophic long-wavelength divergence ∼ ∫

kmin
dq/q4, where

kmin is a minimum wave-number cutoff. Their result for
V ′ 6= 0 also exhibited pathologies. In the present work, I
reconsider the calculations. For V ′ = 0, I find only a be-
nign logarithmic divergence and a wave-number scaling in
agreement with HK. I remark that such scaling, although
anomalous, does not by itself point to an SOC paradigm.
Finally, I deduce a more satisfactory scaling formula for
V ′ 6= 0.

The 1-D forced Burgers equation is

∂tu(x, t) + u ∂xu− µ∂2
xu = f(ext)(x, t), (1)

where µ is a small parameter and in Model B it is assumed
that the random noise f(ext), taken to be a centered Gaus-
sian with variance F (ext), is nonconservative:

F (ext)(ρ, τ ) .= 〈f(ext)(x+ ρ, t+ τ )f(ext)(x, t)〉 (2a)

= F
(ext)
0 δ(ρ)δ(τ ) (2b)

( .= means definition), or

F
(ext)
k,ω

.=
∫ ∞

−∞
dρ e−ikρ

∫ ∞

−∞
dτ eiωτF (ext)(ρ, τ ) (3a)

= F
(ext)
0 = const. (3b)

[Model A of FNS corresponds to conservative forcing with
F

(ext)
k,ω = 2k2D.] Equation (1) can be represented in the

standard mode-coupling form

(∂t + k2µ)uk =
1
2

∑
∆

Mkpqu
∗
pu
∗
q (Mkpq = −ik), (4)

where
∑

∆ means the sum over all triangles such that
k + p+ q = 0.

The statistical theory of equations such as (4) is well
developed,7–9 with the Eulerian direct-interaction approxi-
mation (DIA)10 being unique from several points of view.11

DH asserted that they were solving the DIA, but in fact
they were not. The DIA is a particular, rather compli-
cated set of cubically nonlinear integro-differential equa-
tions involving time-history integrations, and DH made no
attempt to deal with those. Rather, they quite reason-
ably attempted to analyze the consequences of the self-
consistency embodied not only in the DIA but also in more
workable closures such as the eddy-damped quasi-normal
Markovian (EDQNM) approximation12 and even Dupree’s
early resonance-broadening theory (RBT).13 Their analy-
sis is closest in spirit to the RBT. Unfortunately, one of
the fundamental postulates of RBT—that turbulent dissi-
pation can be approximated at small k’s by a term k2D
that renormalizes the classical viscous damping—turns out
to be violated in the present problem, as was shown quite
generally by HK and will be demonstrated more specifically
here.

The DIA-based EDQNM14,15 possesses the same self-
consistency, mode-coupling, and scaling properties as
the DIA itself; it is adequate for a rough analysis.16 The
approximation can be defined in terms of the nonlinear
Langevin equation17
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(∂t + k2µ+ η̂k)uk = f
(int)
k + f

(ext)
k , (5)

where η̂k represents turbulent damping and f(int)
k is inter-

nal nonlinear noise [with variance F (int)(τ )] arising from
the mode coupling. In terms of the (equal-time) fluctua-
tion spectrum Ck

.= 〈|δuk|2〉 and the triad interaction time
θkpq, one has

η̂k = −
∑
∆

MkpqM
∗
pqkθ

∗
kpqCq (6)

and F (int)
k (τ ) = F

(int)
k δ(τ ), with

F
(int)
k

.=
1
2

∑
∆

|Mkpq|2 Re θkpqCpCq. (7)

In general, θkpq evolves according to

∂tθkpq + (ηk + ηp + ηq)θkpq = 1, (8)

where ηk
.= k2µ + η̂k is the total dissipation. For

present purposes, one may use the time-asymptotic result
limt→∞ θkpq = (ηk + ηp + ηq)−1 in the calculations of η̂k

and F (int)
k .

According to FNS, the exact infinitesimal response func-
tion Rk,ω should at small k and ω obey the scaling

R−1
k,ω ∼ |k|−zgR(ω/|k|z) (9)

for some undetermined scaling function gR and scaling ex-
ponent z. If their results for the Model-B Navier–Stokes
problem are extended to spatial dimensionality d = 1, they
imply18 z = 1, in agreement with the explicit calculations
of HK for the 1-D Burgers equation. Now in steady state
the response function for the dynamics described by Eq. (5)
is R−1

k,ω = −i(ω + iηk). Thus, the result z = 1 implies
ηk ∝ |k|.

The turbulent damping η̂k must be self-consistently cal-
culated from Eq. (6), given the steady-state spectrum Cq.
That is determined from the time-asymptotic solution of
the spectral balance equation

∂tCk + 2 Re ηkCk = 2(F (int)
k + F

(ext)
k ), (10)

or

Ck(t = ∞) = (F (int)
k + F

(ext)
k )/Re ηk. (11)

Subsequently, I shall write Ck ≡ Ck(t = ∞). According
to Eqs. (6) and (7), Eq. (11) is a self-consistent equation
for Ck.

With the scaling ηk ∼ |k|, the classical dissipation can
be neglected for small k (ηk → η̂k), whereupon Eq. (11)
suggests that Ck ∼ |k|−1. If so, then the internal noise
scales as

F
(int)
k ∼ k2

∫
dq

1
|k|+ |k + q|+ |q|

1
|k + q|

1
|q| , (12)

or F (int)
k ∼ const. Thus the internal noise renormalizes19

F (ext), giving rise to a total forcing Fk = F
(int)
k + F

(ext)
k

that approaches a constant F0 as k → kmin. I shall not
attempt to calculate the details of Fk in the present pa-
per, since I wish to focus on the scaling properties of ηk.
Equation (6) becomes

η̂k =
∫
dq

2π
k(k + q)

(
1

η̂k + η̂k+q + η̂q

) (
Fq

η̂q

)
. (13)

(Note that the existence of kmin implies additional con-
straints, not written here, on the integration domain that
ensure that the triangle relation k+ p+ q = 0 is satisfied.)
Because of the last factor of η̂−1

q , the q integral in Eq. (13)
is dominated by the small q’s, so again the classical dissi-
pation can be neglected. To determine the self-consistent
k scaling implied by Eq. (13), one may scale q to k. One
readily finds that

η̂k = |k|V (k̂), (14)

where a dependence of V on k̂
.= |k|/kmin is allowed. To

the extent that dependence on k̂ is ignored, Eq. (14) agrees
with Eq. (9) with the HK result z = 1.

The precise functional form of V cannot be obtained an-
alytically; it is approximately

V (k̂) = (F0/2π)1/3ψ(k̂), ψ(k̂) ≈ ln k̂ +
1
2
k̂−1. (15a,b)

This k̂ dependence requires some discussion, since for k ∼
kmin one has η̂k ∼ kmin, which appears to violate the ba-
sic linear scaling with |k|. The resolution is that in the
renormalization-group (RNG) calculations of FNS and HK
it was assumed that kmin → 0 (in which case kmin cannot
enter into any dimensional result). That limit also implies
|k|/kmin ≡ k̂ � 1. The slowly varying logarithmic correc-
tion that one obtains in that regime cannot be obtained
from simple RNG calculations.

In contrast with the above self-consistent EDQNM cal-
culation, DH postulated (in the spirit of RBT) that η̂k ∼
k2D, leading them to encounter a divergence

∫
kmin

dq/q4

(it would be
∫
kmin

dq/q2 in an analysis parallel to the one
above) and to misleading attempts to interpret the strong
dependence of η̂k on the cutoff kmin. However, η̂k ∼ k2D
is not a self-consistent solution for this particular forcing
scenario and 1-D model.

Now consider the generalization to d = 2. By definition,
the model studied by DH possesses an advective nonlinear-
ity acting only in the x direction. I initially ignore velocity
shear. One must therefore analyze the 2-D integral equa-
tion

η̂k =
∫

dq

(2π)2
kx(kx + qx)

(
1

η̂k + η̂k+q + η̂q

)(Fq

η̂q

)
, (16)

where Fq is the 2-D generalization of Fq. If ones ig-
nores classical dissipation, the only qy dependence comes
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from Fq. In order that the qy integral be well defined and
that the model reduces properly to d = 1, one must as-
sume that the forcing is integrable, (2π)−1

∫
dqy Fq = F0;

for later estimates, I assume that F(qy) falls off rapidly for
qy greater than some characteristic wave number k∗. It can
then be seen that one recovers Eq. (14) with k→ kx. (Had
the advective nonlinearity been more physically generalized
to d = 2, different results would have been obtained.)

Next, I follow DH and consider the consequences of a
shearing term V ′x ∂yu added to the left-hand side of the
2-D version of Eq. (1). That term is directly analogous
to the k‖(x)v‖ = kyxL

−1
s v‖ streaming term encountered in

the theory of particle motion in sheared magnetic fields
(Ls being the magnetic shear length), and in that con-
text was analyzed extensively in Ref. 20. The fundamen-
tal result, which dates back to earlier work by Dupree21

on the RBT of the 1-D Vlasov equation (there the roles
of x and v are interchanged), is that in the presence of an
assumed x-space diffusion k2

xD the competition between
shear and diffusion leads to a reduced autocorrelation time
τc(ky) ∼ (k2

yV
′2D)−1/3 comprising 2/3 shear and 1/3 dif-

fusion [cf. Eq. (52) of Ref. 20]. This result was later used in
Ref. 22 to discuss the effects of macroscopic velocity shear
on the reduction of turbulent transport.23 For the Burgers
model, DH made the important observation that when the
shearing effect dominates, the wave-number scaling of ηk

becomes k2
x rather than |kx|, in accord with the diffusion

hypothesis. That follows immediately from Eq. (16) if the
denominator is assumed to be independent of qx.

DH attempted to calculate the diffusion coefficient in the
presence of shear. Their result is suspect for two reasons:
(i) it diverges with an inverse power of a ky,min; (ii) it
does not obey the same transport-reduction scaling that
was found in Ref. 22. I shall sketch an improved estimate.
(Although a complete numerical solution of the inhomoge-
neous and anistropic EDQNM closure is marginally feasi-
ble, it has not yet been done.) The basic idea is to per-
form the q integral in Eq. (16) in polar coordinates, inte-
grating only over the region for which τ−1

c (qy) dominates
over the shear-free result (14). I specifically consider D =
limky→0 η̂k/k

2
x. The condition (q2yV ′2D)1/3 > |qx|V can be

written in polar coordinates (qx = q cos θ, qy = q sin θ) as

q < f(θ)V ′2D/V
3

= f(θ)S3k∗, (17a,b)

where f(θ) .= sin2 θ/| cos3 θ| and

S .=
(
V ′

k2∗D
)1/3

=
(
V ′

V k∗

)1/2

. (18a,b)

In writing Eqs. (17b) and (18b), I anticipated the final re-
sult (19a). S is an appropriately dimensionless measure of
the shearing rate.24

With τ−1
c (qy) replacing η̂ in the denominator of Eq. (16),

and if any dependence of F on q is temporarily ignored, the
q integral

∫
q dq/q4/3 ∝ q2/3 is convergent as q → 0. How-

ever, the resulting integral V
−2 ∫

dθ cos−2 θ = V
−2

tan θ is
divergent at θ = π/2, 3π/2 (i.e., at qx = 0). At those points

the upper bound (17) diverges, contradicting the condition
that F cuts off for qy > k∗. From Eq. (17b), the condition
|qy,max| < k∗ can be written as | tan3 θ| < S−6β−3, where
one postulated that D = βF

1/3
0 /k∗ and the dimensionless

parameter β is to be determined. This gives the scaling of
the θ integral as V

−2S−2β−1. If one estimates F ∼ F0/k∗
and notes that V ∼ F

1/3
0 , self-consistency gives β ∼ S−1

and the final results

D ∼ S−1F
1/3
0 k−1∗ , τ−1

c ∼ S(k∗F 1/3
0 ). (19a,b)

The validity condition τ−1
c (ky) > |kx|V , which defines the

regime of strong shear, can then be written as S > |kx|/k∗,
essentially S >∼ 1 for an isotropic spectrum. One can also
check that in this same regime one has k2

xD < |kx|V . The
S−1 reduction factor in Eq. (19a) is the same one that
arises in the discussion23 of Ref. 22 (appearing there as the
scaling with a reduced correlation time τf). In making the
connection, one must remember that the forcing scenarios
differ between the two calculations.

The previous analysis corrects some technical errors in
the calculations of DH and serves as an interesting exam-
ple of the use of the EDQNM. Let us now turn to the
scaling properties of the solution. The salient feature of
the HK result is that for the 1-D Burgers equation with
Model-B forcing the scaling (9) holds in the absence of
shear. That corresponds to small pulses propagating, on
the average, with the ballistic scaling x ∼ V t. DH at-
tempted to draw a connection between this result and an
SOC paradigm (for further discussion of such paradigms,
see Ref. 25 and references therein) by reiterating a sugges-
tion of HK that the 1-D Burgers equation is the appropri-
ate continuum description of a sandpile model. Note, how-
ever, that dynamically diverse stochastic models can lead
to the same scaling (9). For example, the random advection
equation26,27 ∂tu+ Ṽ ∂xu = 0, where Ṽ is a Gaussian ran-
dom variable independent of space and time, has the exact
response function Rk(τ ) = H(τ ) exp(−1

2k
2V

2
τ2) (H is the

unit step function, V .= 〈Ṽ 2〉1/2
), which also scales accord-

ing to Eq. (9). That model is devoid of the intermittent
avalanche dynamics characteristic of the sandpile models
of SOC.6

The additively and nonconservatively forced 1–D Burg-
ers equation is not inevitably the proper description of
long-wavelength phenomena in a real multidimensional sys-
tem for reasons ranging from trivial to profound. For the
mean fields, although it is true that statistical averages of
multidimensional models lead to 1-D equations that gov-
ern mean profile dynamics, such equations contain no ran-
dom forcing by construction. For the fluctuations, realistic
turbulent systems involve multiplicative rather than addi-
tive forcing.28 Although an advective nonlinear term can
always be placed on the right-hand side of the dynami-
cal equation and be called an additive forcing, that may
not be useful because (i) the statistics of such a term are
not arbitrary and specifically cannot be Gaussian (even for
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passive advection); (ii) such forcing would be conservative
(Model A). But according to the results of FNS, Models A
and B belong to different universality classes. Deeper is-
sues relating to the effective long-wavelength noise for the
Navier–Stokes equation were addressed in Ref. 29. Also,
proper representation of realistic multidimensional plasma
dynamics must take wave effects into account, which in
general give a short (“microscopic”) correlation time to the
advecting velocity;28,25 that effect is not captured by the
Burgers model.

This is not to say that the possibility that SOC may
somehow be involved in plasma transport should not be
investigated seriously. But it can be misleading to in-
voke SOC as the likely explanation for a variety of inter-
esting long-wavelength, low-frequency self-similar scaling
phenomena,30 because those can frequently be explained
by simpler means. For example, in Ref. 25 it was shown by
direct numerical simulation that a nontrivial and physically
relevant stochastic model, possessing multiplicative forcing
with short autocorrelation time but not obeying various
central tenets of SOC such as submarginal dynamics,31

generates long-time tails on certain two-time correlations
similar to those observed in experiment,32 as does the dy-
namically self-consistent Hasegawa–Wakatani model.

In conclusion, I have used the eddy-damped quasi-
normal Markovian statistical closure to calculate the long-
wavelength scaling of the turbulent dissipation η̂k for
the nonconservatively forced Burgers models discussed in
Ref. 4. In the absence of velocity shear, the result η̂k ∝ |k|
agrees with general results of Forster, Nelson, and Stephen1

and Hwa and Kardar;3 the postulate η̂k ≈ k2D fails for this
problem. In the presence of shear, I proposed the new scal-
ing results (19). The dependence on the shear parameter S
[defined by Eq. (18b)] can be summarized by

η̂k ∼
{
|kx|V (S < |kx|/k∗),
(kx/k∗)2S−1(k∗V ) (S > |kx|/k∗), (20)

where V
.= F

1/3
0 , F0 is the strength of the (renormal-

ized) forcing, and k∗ is a characteristic wave number in
the y direction. This result is properly continuous across
the boundary S = |kx|/k∗ = O(1) and demonstrates the
expected transport reduction for large shear with fixed forc-
ing. For weak shear, the ballistic scaling x ∼ V t obtains
not just for this model, but for other, dynamically diverse
stochastic systems as well. Accordingly, it cannot by itself
be used to support a paradigm of self-organized criticality
that involves sandpile-like dynamics.
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