
Long-time tails do not necessarily imply self-organized criticality
or the breakdown of the standard transport paradigm

John A. Krommes
Princeton University, P.O. Box 451, Princeton, New Jersey 08543–0451, USA

Maurizio Ottaviani
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Numerical measurements and analytical studies are performed on a stochastic model with fea-
tures relevant to plasma confinement. Although the model lacks crucial features of self-organized
criticality (SOC) and its transport can be computed by standard techniques, it nevertheless exhibits
intermittency and algebraic time correlations. This suggests that SOC need not be the explanation
for observed long-time tails in experimental fluctuation data. Arguments based on the renormalized
spectral balance equation, and simulation of a standard nonlinear paradigm, predict a range of Hurst
exponents in reasonable agreement with the observations without invoking submarginal dynamics.
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Recently Carreras and coworkers have made interest-
ing measurements of long-time correlations in various ex-
perimental plasma fluctuation data.1,2 The results suggest
that certain two-time correlation functions possess alge-
braic tails of the form |τ |−β (0 < β < 1) for time lags τ
long compared to a characteristic correlation time of the
turbulence. It has been remarked2,3 that such behavior is
compatible with the paradigm4 of self-organized critical-
ity (SOC),5 and asserted6 that such tails imply the break-
down of the standard transport model. However, in the
present paper we argue that long-time tails need neither
be related to SOC nor imply that standard transport cal-
culations must necessarily be forsaken, and we predict non-
trivial β’s without invoking SOC arguments.

The precise definition of the “SOC paradigm” seems to
vary somewhat with author. In the original papers,7,5

which used discrete “sandpile” models as illustrations, SOC
was defined to be a scale-invariant final state achieved with-
out the necessity of fine-tuning a parameter (in contrast
to the situation in critical phenomena8). Perturbations
to that state (by very slow forcing) resulted in avalanches
(transport events) of all scales. In the papers that have
suggested possible relevance to plasma transport,9,10,4 par-
ticular emphasis has been placed on the need for nontrivial
linear thresholds, the importance of submarginal dynamics,
and the intermittent nature of the fluctuations. Note that
it is vacuous to define an SOC system merely as one that ex-
hibits scale similarity, since that embraces a uselessly large
class of systems with vastly different properties.11

We first discuss numerical solutions of a particular
stochastic model, defined by Eq. (1) below, that generates
measurable turbulent fluctuations for a conserved scalar
field that we shall call “temperature” T̃ (it could equally
well be called “density”), a velocity field ũ, and the as-
sociated flux Γ̃ of T̃ through the system. (The tilde de-
notes a random variable. Quantities sans tildes denote the

statistical average—e.g., T ≡ 〈T̃ 〉.) Representative data
are presented in Figs. 1 and 2. Fig. 1 shows the mea-
sured probability density function (PDF) of the turbulent
flux Γ̃tb(x, t) .= (δu δT )(x, t), where, e.g., δT .= T̃ − T .
The flux is clearly intermittent, with a higher than Gaus-
sian probability of large-amplitude events. Fig. 2a shows
that the two-time correlation of T̃ exhibits an almost per-
fect long-time tail with β ≈ 1

2
over more than 30 corre-

lation times of ũ. This is corroborated by analysis of the
Hurst exponent12,2 H = 1 − 1

2β; as shown in Fig. 2b, we
measure H ≈ 0.79. Such intermittent, long-time behav-
ior is in some respects qualitatively similar to the recent
experimental measurements.2 However, although the data
may appear to be consistent with an SOC paradigm, we
shall show that the model does not contain crucial features
of SOC. Therefore, as we will discuss, our results support
the suggestion of Carreras et al.3 that an interpretation of
the observations alternative to SOC may exist.

FIG. 1. The PDF of the turbulent flux Γ̃tb. Comparison with a
reference Gaussian with the same mean and variance confirms the
presence of intermittency. [T̃ (PDF not shown) is also highly inter-
mittent; the analysis of Ref. 13 is inapplicable.]
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FIG. 2. (a) Correlation function of the temperature evolved ac-
cording to Eq. (1) and measured at x = 1

4
. The time lag τ is in units

of the measured autocorrelation time τac [cf. Eq. (2)] of the velocity
field. The dashed line has slope −1

2
. Note the transition to expo-

nential decay at τ/τac
<∼ 100. (b) Analysis of the Hurst exponent H

for the temperature field by the R/S method (cf. Refs. 12 and 2).
Each integer time lag i corresponds to 5 τac’s. Data are plotted every
quarter octave, with 10 (random) samples per lag. The chain-dotted
straight-line fits correspond to the slopes H ≈ 0.79 (τ < τE) and
H ≈ 0.59 (τ � τE). The solid line is the best fit of a ratio of
fifth-order polynomials, intended to qualitatively emphasize the exis-
tence of several regimes. Two reference lines of slope H = 1

2
and one

of slope H = 1 are also plotted.

The fluctuation data just described stem from a simple
model of random passive advection. The model comprises
the 1D boundary-value problem

∂tT̃ (x, t) + ∂xΓ̃(x, t) = 0 (0 < x < 1), (1)

where Γ̃(x, t) .= Γ̃tb + Γ̃cl is the total thermal flux, com-
posed of the turbulent flux Γ̃tb and the classical flux Γ̃cl

.=
−R−1∂xT̃ , where R is a constant. The random velocity ũ
is taken to be a centered Gaussian stationary in time and
homogeneous in space, specified by taking the covariance
U(ρ, τ ) .= 〈δu(x+ ρ, t+ τ )δu(x, t)〉 to be

U(ρ, τ ) = u2 exp(−|τ |/τac) exp(−1
2ρ

2/L2
ac) (2)

with u = 1, τac and Lac being adjustable parameters. We
always impose T (1) = 0, but can study either the “fixed”
boundary condition (b.c.) T̃ (0) = 1 [note that Eq. (1) is
linear in T̃ ] or the flux b.c. Γ̃(0, t) = Γ̃0(t), where Γ̃0(t) is a
specified function that may contain both a mean and a fluc-
tuating part. This model shares with realistic confinement
experiments the properties: (i) the mean profile T (x, t) (in-
dependent of t in a steady state) is not specified, but is free
to evolve; (ii) the correlation scales of the velocity field can
be taken to be small (“microscopic”) with respect to macro-
scopic values by choosing τac and Lac to be much smaller
than 1; (iii) the mean temperature obeys ∂tT + ∂xΓ = 0,
which in a steady state reduces to the statement that the
total (mean) flux is a conserved constant, independent of x;

(iv) the fluctuations are not forced by arbitrary additive
noise on the right-hand side of Eq. (1), but by multiplica-
tive noise14 of the usual advective variety.

We choose a 1D model in order to expedite numerical
solution and accumulation of adequate statistics. The ran-
dom nature of ũ is intended to introduce effects that would
in reality arise from multidimensional nonlinear interac-
tions. Unfortunately, the desire to maintain the conser-
vation law, ensured by writing ∂x(ũ T̃ ) rather than ũ ∂xT̃
in Eq. (1), requires that the dynamics be compressible
(∂xũ 6= 0) for Lac 6= ∞. That is an important difference
from more realistic models whose nonlinearities are built
from the incompressible (for constant B) E×B velocity.
Nevertheless, useful qualitative insights can be obtained.

Although Eq. (1) is dynamically linear, it is stochasti-
cally nonlinear15 (involving the product of the random vari-
ables ũ and T̃ ). Dynamically nonlinear saturation processes
that would occur in self-consistent equations are replaced
here by the imposition of a constant u. T̃ evolves to a sta-
tistically steady state arising from the balance between the
random advection and the classical dissipation.

We noted in paragraph 2 that standard models of SOC
require nontrivial linear thresholds and submarginal dy-
namics, and that those features have been associated with
intermittent transport and long-time tails. However, with
the velocity specified by Eq. (2), the present model pos-
sesses no threshold; fluctuations are always present. It is
possible to generalize the model to include the effects of ei-
ther supermarginal or submarginal dynamics, as described
in Ref. 14. That is specifically not done here in order to
emphasize that intermittency and long-time tails can re-
sult even in the absence of more interesting, especially sub-
marginal, fluctuation dynamics.

The representative data described here correspond to the
parameters R = 50, τac = 0.02, Lac = 0.04, and to fixed
b.c.’s. (Similar results are obtained for flux b.c.’s.) One
can predict the observed exponent β ≈ 1

2
by the following

argument. We begin with the exact equation for δT :

∂tδT + ∂x(δu δT )−R−1δT ′′ = −∂x(δu T ) + ∂xΓtb. (3)

This can be formally solved in terms of the random in-
finitesimal response function R̃(x, t; x′, t′), which is Green’s
function for the left-hand side of Eq. (3). Thus δT (x, t) =
−R̃ ? ∂x(δu T −Γtb), where ? denotes convolution in space
and time and an arbitrary initial condition has been ig-
nored, as we wish to discuss the long-time steady state. If
the statistics were strictly homogeneous, the term ∂xΓtb

would rigorously vanish. Although we generate a homoge-
neous velocity field, δT is not exactly homogeneous because
of the b.c.’s. However, for the current parameters the devia-
tion from homogeneity occurs only in thin boundary layers
near the walls, which we shall ignore. We now form the
correlation function C(τ ) .= 〈(δT/T )(τ )(δT/T )(0)〉, where
T is a suitable reference value characteristic of the interior:

C(τ ) ≈
∫ t

−∞
dt

∫ t′

−∞
dt
′
∫ 1

0

dx

∫ 1

0

dx′R(x, t; x, t)
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×R(x, t′; x′, t′)∂x∂x′U(x, t; x′, t′)[T (x)/T ][T (x′)/T ], (4)

where we approximated 〈R̃ R̃ δu δu〉 ≈ 〈R̃〉〈R̃〉〈δu δu〉 =
RRU (R .= 〈R̃〉). We consider long times, t >
min(τac, Lac/u), so U(ρ, τ ) ≈ u2δ(τ/τac)δ(ρ/Lac). Upon
introducing Fourier transforms in space and time, one finds

C(τ ) ≈ τacLacu
2

∫ ∞

−∞

dk

2π

∫ ∞

−∞

dω

2π
e−iωτk2|Rkω|2. (5)

We will find that the wave-number integral is dominated
by the small k’s (kLac � 1). For those k’s, it is ade-
quate to make the usual diffusive approximation Rkω ≈
[−i(ω + ik2D)]−1, where D = Dtb +Dcl is the sum of the
turbulent diffusion coefficient Dtb and the classical coef-
ficient Dcl = R−1. The frequency integral can then be
performed by residues; one finds

C(τ ) =
1

2
√

4π

(
Dq

D

)3/2 (
Lac

uτac

)(
τac

|τ |
)1/2

, (6)

where Dq is the quasilinear value16 Dq
.= u2τac.

One expects that finite-size effects should contaminate
the power-law tail on the energy confinement time scale
τE = a2/D, where a−1 = π (the fundamental wave num-
ber for a sine series satisfying the b.c.’s). Direct measure-
ment of τE leads to τE/τac ≈ 200. That is in reasonable
agreement with the observed transition from power-law to
exponential decay, as shown in Fig. 2a.

One pragmatic difficulty with the measurement of H has
to do with finite-size effects. For very long lags, H should
converge to 0.5 (exponential decay). A tendency in that
direction is confirmed by fitting a ratio of fifth-degree poly-
nomials through the log–log data, showing noticeable cur-
vature. Attempts to fit straight lines through the early
(τ <∼ τE) and late (τ � τE) portions of the data lead to
substantially different H ’s: H ≈ 0.79 for the early times,
H ≈ 0.59 for the late times (the time series is too short to
achieve asymptotic scaling). In general, measurement of H
is delicate when very large time lags are involved.

Even though T̃ possesses long-time correlations, the ther-
mal flux can be estimated by standard means; one can show
that even a quasilinear calculation predicts reasonable re-
sults. For this problem, the “standard transport paradigm”
does not need to be abandoned. To understand this, it is
important to distinguish Green–Kubo integrands (whose
τ integrals are the transport coefficients) from correlation
functions of the dependent variables such as T̃ . The for-
mer can decay on a microscopic time scale, as they can
be dominated by wave numbers in the energy-containing
range (which define the typical τac).

We have thus shown that at least one stochastic model
with small Lac but lacking crucial features of SOC pre-
dicts a long-time algebraic tail. This raises the possibil-
ity that the long-time tails in experimental data may have
nothing to do with SOC; note that the effective dynam-
ical model underlying the experimental measurements is
unknown. However, one may justly wonder to what extent

the results generalize to real multidimensional models with
self-consistent nonlinear dynamics. This is a very difficult
question to which we have no definitive answer. However,
some preliminary general remarks can be made.

We now imagine that the plasma obeys a generic,
quadratically nonlinear, self-consistent equation for some
quantity ψ. (Some support for this hypothesis is given by
mode-coupling analysis17 of numerical gyrokinetic fluctu-
ation data.) Rigorous statistical renormalization18 leads
to the balance equation19 Ck,ω = |Rk,ω|2Fk,ω, where C is
the two-point correlation function of ψ, F is the covariance
of a well-defined internally produced nonlinear noise, R is
again the mean infinitesimal response function, and station-
ary, homogeneous, isotropic statistics have been assumed;
note the similarity to Eq. (4). Of course, this balance is
intricately self-consistent because F depends at least on C,
and R is self-consistently constructed from both C and R.
[For explicit formulas in the direct-interaction approxima-
tion (DIA), cf. Ref. 19.] Nevertheless, one has

C(τ ) =
∫

ddk

(2π)d

∫ ∞

−∞

dω

2π
e−iωτ |Rk,ω|2Fk,ω. (7)

If one assumes that Fk(τ ) is short-ranged, one may ap-
proximate Fk,ω ≈ Fk,0 ≡ Fk. We postulate a gener-
alized diffusive law, Rk,ω ≈ [−i(ω + ik2mD̂)]−1. Then
C(τ ) = 1

2
(2π)−d

∫
ddk e−k2mD̂|τ|Fk(k2mD̂)−1. If one pos-

tulates that Fk = O(k2n) as k → 0, then one finds that
C(τ ) ∼ |τ |−β, with β = (1

2
d + n − m)/m. For d = 1

and n = m = 1, this reproduces the results of the small-
Lac stochastic model, namely β = 1

2 , H = 3
4 . For d = 2

(the most reasonable choice for a generic problem of quasi-
isotropic plasma transport in a strong magnetic field) and
n = m, one has β = 1/m, H = 1− 1/2m.

If one analyzes Hasegawa–Mima (HM) dynamics [a
generic nonlinear model of drift waves with d = 2 (ψ =
potential)] with second-order statistical closure, one finds
n = m = 2 if the spectra are assumed to be local-
ized around some k � k, so one again predicts β = 1

2 ,
H = 3

4
. However, the HM paradigm, with adiabatic

electrons, is an inadequate representation of the actual
physics. A better paradigm for edge fluctuations is the
Hasegawa–Wakatani (HW) model.20,21 We have simulated
the 2D version of that model (fixed k‖) in the absence
of magnetic shear22 at resolution 5122 (before dealiasing)
and adiabaticity parameter20 α = 0.1 for t/τac

>∼ 1000,
τac being the measured density correlation time. (That is
≈ 1/2 of the τE based on the measured particle flux and
kx,min = 0.01.) Direct calculation of the two-time density
autocorrelation function reveals (Fig. 3a) an initial decay of
the form exp(−1

2
(τ/τ∗)2) [corresponding to a microscopic

autocorrelation time τ∗ac
.= (π/2)1/2τ∗] and some evidence

of a tail, slightly steeper than (τ/τ∗)−1, that persists for
τ/τ∗ac

>∼ 4–6 until it is disguised by a weak oscillation, then
statistical noise. (The vorticity does not evince such a tail.)
A d = 2, β = 1 tail corresponds to n = m = 1, H = 1

2 and
is consistent with turbulent density diffusion. Note that a
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tail steeper than τ−1, or τ−1 with oscillations, has a finite
τac � τE . An R/S measurement (Fig. 3b) is compatible
with H = 1

2 (which does not distinguish between short-
time decay and a τ−1 tail). (Note that R/S measurements
on limited data samples are difficult because of statistical
noise, which spuriously enhances the predicted H , as do
measurements in pre-asymptotic regimes.)

C
(τ

)

R
/S

FIG. 3. (a) Time-lagged density autocorrelation function for the
2D HW model. Solid line: simulation. Dashed line: exp(−1

2
(τ/τ∗)2)

(τ∗ = 1.3). Dotted line: exp(−τ/τ∗ac) for τ∗ac = (π/2)1/2τ∗.
Chain-dotted lines: (τ/τ∗)−β for (top to bottom) β = ( 1

2
,1, 3

2
).

(b) Corresponding R/S data (5 samples per octave). Left-hand slope
(2 ≤ i ≤ 200): H = 0.95. Right-hand slope (500 ≤ i ≤ 10 000):
H = 0.58. Solid line: ratio of fifth-order polynomials (right-most
derivative H = 0.55). (The identical data with 4 samples per octave
predicts H = 0.62, showing variability due to random sampling of the
database for short lags.)

For comparison, the quoted experimental values2 for fluc-
tuations within the last closed flux surface lie mostly in
the range 0.62 ± 0.01 < H < 0.72 ± 0.07. Although
the agreement of these values with the above estimates
1
2
≤ H ≤ 3

4
is intriguing, we do not claim to have mod-

elled the observed values; the paradigms are too simple.
Also, the analysis of Eq. (7) may fail for various reasons,
including lack of isotropy, the possible presence of branch
cuts, corrections to asymptotic scaling, and the influence
of strongly non-Gaussian statistics. Note that although
highly non-Gaussian effects need not be well described by
the DIA,23 the Realizable Markovian Closure,24 a close rel-
ative of the DIA and a standard transport paradigm, has
been shown to be an excellent approximation for the calcu-
lation of the turbulent flux in the HW model.20,21 As one
consistency check, the calculations leading to the |τ |−d/2

tail predicted for n = m = 1 are compatible with a well-
known result for thermal equilibrium many-particle fluids
and plasmas;25 note that the balance equation is compati-
ble with the fluctuation–dissipation theorem.26

In conclusion, both passive stochastic and dynamically
self-consistent models that do not possess crucial features of
SOC systems (e.g., fluctuation thresholds and submarginal

dynamics) can exhibit intermittency and long-time corre-
lations that bear some qualitative resemblance to those
observed experimentally but do not necessarily imply the
breakdown of the standard transport paradigm. Realistic
tails can be produced from long-wavelength fluctuations
unrelated to SOC. Further research is required to deter-
mine whether or not an SOC paradigm is relevant to the
interpretation or calculation of plasma transport.
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