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1. Introduction

Two fundamental challenges in the systematic analytical theory of plasma turbulence

are to (i) extract statistical information from the Klimontovich or Vlasov equation (or

their gyrokinetic analogs) for the microscopic density f̃ , where the electric field Ẽ is

treated as random; (ii) exhibit and analyze detailed dynamical mechanisms that give

rise to the statistics. In this paper I attempt to put into perspective some recent results

on (i), and I describe some new calculations that bear on (ii).

Statistical information can be gathered either through the values of moments

or cumulants (useful for simple descriptions of transport processes and fluctuation

spectra) or through the shape of entire probability density functions (PDF’s) (useful

for highly intermittent and non-Gaussian processes). The moment description leads

one immediately to the hierarchal structure that the n-point cumulants (such as f
.
=

〈f̃ 〉 for n = 1, where
.
= denotes definition and 〈. . .〉 denotes an ensemble average)
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are driven by (n+ 1)-point cumulants (such as 〈δE δf〉 for n + 1 = 2, where

δf
.
= f̃ − f). This gives rise to the most familiar form of the statistical closure

problem [Kraichnan (1959); Kraichnan (1961); Krommes (1984)], which is how to relate

high-order cumulants to lower-order ones. Attempts to find closed equations for

restricted (single-point, say) PDF’s lead to even more fundamental closure difficulties

[Chen, Chen and Kraichnan (1989)].

In plasma physics, most attention has been paid to moment closures. Physical rea-

soning based on natural extensions of perturbation theory [Drummond and Ross (1973)]

was reasonably successful in identifying the natural building blocks of a complete

theory of strong plasma turbulence, such as waves, particles, and non-wave-like

phase-space granulations (clumps or holes) [Dupree (1969); Dupree (1972)]. How-

ever, attempts to systematize these notions with formal mathematics encountered

signficant difficulties. Dupree (1966) discussed an elaborate test-wave formalism,

but workable truncations of the general equations turn out to be at best appro-

priate for problems of passive advection (statistically specified random fields), not

for the practically important self-consistent problems in which the fields are deter-

mined from f̃ via Poisson’s equation. As a consequence, the resulting resonance-

broadening theory [Dupree (1966); Dupree (1967); Dupree (1968)] does not conserve

energy [Dupree and Tetreault (1978); Similon (1981); Krommes (1984)].

Superficially, the general philosophy of Dupree’s approach appears to have

much in common with Kraichnan’s earlier direct-interaction approximation (DIA)

[Kraichnan (1959)]. However, the derivation of the DIA is substantially more robust

and systematic; the formalism conserves quadratic energy-like invariants and exhibits

other important consistency properties. The DIA was proposed for Vlasov turbulence by

Orszag and Kraichnan (1967), but their comprehensive work was substantially ignored

for at least a decade, until the work of Montgomery (1977). However, gradually it

was realized that the DIA provides not only a reasonable description of many aspects

of plasma turbulence [DuBois and Espedal (1978)] but also a robust starting point

for recovering some of the simpler, asystematic approximations such as resonance-

broadening theory or clump theory [Krommes (1978)]. DuBois and Rose (1981) made

detailed DIA calculations for Langmuir turbulence. In the context of fusion, Krommes

(1982) showed in the context of a simple three-mode model that the DIA was capable of

quantitatively predicting saturation levels of linearly unstable modes interacting through

a Terry–Horton nonlinearity [Terry and Horton (1982)]. More detailed discussion and

further references on statistical plasma physics were given by Krommes (1997b).

Key to the practical success of the DIA is its rigorous derivation from an underlying

stochastic amplitude equation, the random-coupling model (RCM) [Kraichnan (1961);

Orszag and Kraichnan (1967); Krommes (1996)]. The mere existence of such a

stochastic model, and hence of a positive-definite probability density functional

of the random amplitude, implies an infinite number of realizability constraints

[Kraichnan (1980)] between cumulants of different orders. The significance of those

constraints will be further discussed in the next section.
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Although the DIA is very useful theoretically, it is difficult to work with in

highly anisotropic situations. It is possible to systematically develop Markovian

approximations to the DIA; the most popular one is the eddy-damped quasi-normal

Markovian (EDQNM) approximation [Orszag (1977)]. For incompressible Navier–

Stokes turbulence, the second-order statistics predicted by that theory are statistically

realizable. However, it was an unwelcome surprise to find that realizability fails

when the EDQNM is applied to certain problems with linear waves [Bowman (1992);

Bowman et al. (1993)]. Since such waves are ubiquitous in fusion and other plasma

applications, it was urgent to develop a realizable generalization of the EDQNM.

That was accomplished in the form of Bowman’s Realizable Markovian Closure (RMC)

[Bowman (1992); Bowman et al. (1993); Bowman and Krommes (1997)].

In Sec. 2 I will very briefly review the development and successes of the RMC.

Although it likely does not represent the ultimate Markovian closure, it brings the

theory of moment closure in plasmas to a relatively satisfactory plateau.

Current research focuses on a quantitatively detailed theory of submarginal

turbulence—i.e., self-sustained turbulence that persists in the face of a linearly stable

spectrum. Both dynamical mechanisms and their statistical description are of interest.

This subject is in its infancy; some limited recent progress and promising lines of research

are described in Sec. 3. The topic is not unrelated to certain ideas about self-organized

criticality (SOC), also mentioned briefly in Sec. 3. The paper concludes with brief

discussion in Sec. 4.

2. Statistical realizability and the Realizable Markovian Closure

The ultimate goal of a statistical theory is to predict the fully multivariate space–time

probability density functional. In practical situations, that goal is unrealistic and one

is content with reduced information such as low-order cumulants. Because PDF’s are

positive-definite, cumulants obey an infinite number of realizability inequalities. Most

importantly, the covariance matrix must be positive-definite.

Unfortunately, statistical closures do not usually predict cumulants directly;

instead, they assert time-evolution equations for them. Because those equations are

nonlinear, it is not guaranteed that realizability inequalities remain satisfied for all

times even if they are initially. A well-known counterexample is the quasinormal closure

[Ogura (1963) and references therein], which can predict fluctuation levels that diverge

toward −∞ after one eddy-turnover time of an initially excited mode. This difficulty is

well understood [Orszag (1977)] as the failure of the theory to take account of nonlinear

scrambling, which provides a nonlinear correlation time that limits the effective temporal

range of interaction. The renormalization inherent to the DIA cures that problem, yet it

is not guaranteed on plausibility arguments alone that an arbitrary renormalization that

merely includes a nonlinear correlation time will be well-behaved [Kraichnan (1961)].

What makes the DIA special is the underlying random-coupling model. The second-

order statistics predicted by the DIA are the exact ones for the RCM, so they must
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obey the second-order realizability inequalities. Indeed, for statistics of any order one

can define the DIA to be the statistical description of the RCM [Krommes (1996)].

Although the RCM is most fundamental, an alternative Langevin representation

is frequently useful. That has been discovered not only for the DIA itself, but also for

the EDQNM [Leith (1971); Kraichnan (1970)]. For the generic amplitude equation

(∂t + iΩk)ψk =
1

2

∑
∆

Mkpqψ
∗
pψ
∗
q , (1)

where Ωk is complex and ∆ indicates all p, q such that k + p + q = 0, second-order

statistics of the EDQNM are predicted by the Langevin equation

(∂t + iΩk + µ̂k)ψk(t) = f̃k(t) ≡ w̃(t)
∑
∆

Mkpq

√
θkpq ξ

∗
p (t)ξ∗q (t). (2)

Here µ̂k
.
= −∑

∆MkpqM
∗
pqkθ

∗
kpq〈|δψq|2〉, w̃(t) is a Gaussian white-noise process of unit

amplitude whose presence ensures the Markovian nature of the resulting approximation,

and the auxiliary random field ξk is constrained to have variance identical to that

of ψk. The term
√
θ is necessary on dimensional grounds. Physically, θkpq is the

interaction time between the three directly interacting modes (k,p, q) that form the

triad k+p+q = 0. It obeys ∂tθkpq +(iΩk + µ̂k +c.p.)θkpq = 1. Note that its dynamics

involves the same linear and nonlinear physics as does ψk itself.

Actually, (2) is physically relevant only for Re Ωk = 0. For Re Ωk 6= 0 (note

that linear waves are ubiquitous in plasma physics), θkpq becomes complex and its

interpretation as an interaction time is lost. It does not help to use only the real part

of θ on the right-hand side of (2), since the real part of an oscillating complex amplitude

can easily be negative. Negative interaction times make no physical sense, nor does the

resulting imaginary noise f̃k. If one ignores these difficulties and attempts to proceed,

one finds [Bowman (1992); Bowman et al. (1993)], both numerically and analytically,

that the complex-valued EDQNM can predict catastrophically negative intensities—the

premier signature of nonrealizability.

A partial cure is to modify the statistical description of the transient dynamics

in such a way that realizability is guaranteed. That was accomplished in Bowman’s

derivation of his Realizable Markovian Closure (RMC), a modification of the EDQNM

that asserts a more symmetrical form of the fluctuation–dissipation ansatz, guarantees

that Re θ remains positive, and asymptotes in steady state to the predictions

of the EDQNM. The theory has been explored for various few-mode models

[Bowman et al. (1993)], the Hasegawa–Mima (HM) [Hasegawa and Mima (1978)]

equation [Bowman and Krommes (1997)], and the Hasegawa–Wakatani (HW) model

[Hu et al. (1995); Hu et al. (1997)]. Hu’s work is particularly striking: for the

HW model [Hasegawa and Wakatani (1983); see equations (3) below], he found excellent

agreement between the predictions of the RMC for the particle flux and spectrum and

the results of direct numerical simulation; see Fig. 10 of Hu et al. (1997). It is clear

that statistical closure theory, much maligned historically, can make very successful

predictions for turbulent transport if it is carefully and quantitatively analyzed.
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Key questions about the statistical dynamics of plasmas remain. A general one

is the proper description of intermittency (highly non-Gaussian statistics). The work

of Hu et al. (1997) shows that second-order closures such as the RMC can capture

some important low-order statistical features (e.g., particle transport) of situations in

which some fields (e.g., vorticity) are highly intermittent. However, it is a challenge to

accurately predict high-order statistics and to understand their influence on low-order

ones. Application of the DIA to statistics of any order is well-defined but can be shown to

be inadequate in general [Chen, Herring, Kerr and Kraichnan (1989); Krommes (1996)].

A promising route is the theory of mapping closures [Chen, Chen and Kraichnan (1989);

Das and Kaw (1995); Krommes (1997b)].

3. Submarginal turbulence

A standard paradigm for turbulence that was used in the interpretation

[Hu et al. (1997)] of the turbulent-transport calculations described above invokes lin-

ear instability (growth rate γk) to drive up fluctuations at forcing wave numbers kf .

Those fluctuations are then transferred to other wave numbers by nonlinear mode cou-

pling and are ultimately dissipated at dissipation wave numbers kd. In this scenario,

the fluctuation level of the resulting forced, dissipative steady state would scale with

(some power of) the linear growth rate and would vanish as γk → 0+. The transition to

turbulence occurs via a supercritical bifurcation. An early analysis of such a bifurcation

for collisional drift waves was done by Hinton and Horton (1971).

In the context of neutral-fluid dynamics governed by the Navier–Stokes equation,

it has been long known that the standard paradigm fails in various important

practical situations involving shear flows. Linear stability analysis of such examples

as planar Couette flow or pipe Hagen–Poiseuille flow show that such flows are stable to

infinitesimal perturbations at all Reynolds numbersR (so the linear-instability threshold

is Rl = ∞), yet in reality turbulence is observed for R greater than a relatively small

and finite critical Reynolds number Rc. Such flows must therefore be unstable to

perturbations of finite amplitude. On the other hand, it can be shown [Joseph (1976)]

that there exists an energy-stability threshold Re below which perturbations of arbitrary

amplitude decay monotonically. In general, then, one must have Re ≤ Rc ≤ Rl. If Rc is

strictly less than Rl, then for Rc < R < Rl one can have subcritical bifurcations and the

possibility of submarginal turbulence—self-sustained random fluctuations that persist in

the face of complete linear stability. In recent fluid simulations of plasmas, submarginal

turbulence has been observed by Waltz (1985), Scott (1992), Drake et al. (1995), and

Itoh et al. (1996), among others. Extensive earlier work on nonlinear instability in

Vlasov plasmas [cf. Berman et al. (1983) and references therein] is relevant but cannot

be discussed here.
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3.1. Dynamical mechanisms for submarginal turbulence

Key challenges in the theory of submarginal turbulence are to predict the value of Rc,

to describe a detailed dynamical mechanism for self-sustainment, and to marry such

a mechanism with a consistent statistical closure. These goals are far from being

achieved; however, some partial results are known. An important technical theorem

is that submarginal turbulence is possible only if the linear evolution operator L

(where ∂tψ = Lψ + n.l. terms) is non-normal‡ [Henningstone and Reddy (1994)].

Such operators can transiently amplify initial perturbations to very large levels,

even though they must ultimately decay if the spectrum is stable. This

observation led to discussion of an “almost-linear” mechanism for self-sustainment

that combined non-normal transient amplification with a particular kind of nonlinear

feedback [Trefethen et al. (1993); Baggett et al. (1995)]. However, Waleffe (1995b) has

challenged the general applicability of this mechanism for physical shear flows and has

proposed an alternate mechanism [Waleffe (1997)] to be discussed further below.

Linear non-normality is necessary, if not sufficient. One immediate conclusion

[Schekochihin (1998)] is that single-field models of the HM variety, of the general

form (1) and where the nonlinear term conserves an appropriate energy, cannot support

submarginal turbulence. An equivalent statement is that for such models the energy-

stability threshold coincides with the threshold for linear instability. This can be

demonstrated by a simple variational calculation.

Although this negative result about single-field models might appear to be trivial,

it has profound consequences. In the context of a statistical description of the turbulent

state, it implies that internal nonlinear noise [cf. the right-hand side of (2)] cannot,

in and of itself, be the underlying mechanism for submarginal turbulence, as seems

to be suggested in some of the literature [Terry and Diamond (1984)]. The statistical

descriptions of all energy-conserving dynamical models include nonlinear noise, yet

not all of them can support submarginal turbulence. One must look deeper for the

mechanism of self-sustainment.

Non-normality appears to be generic for multiple-field models of plasma fluctuations

driven by profile gradients. A specific example is the two-field HW system

(∂t + VE·∇)ω = −D‖∂
2
z(ϕ− n) + µ∇2

⊥ω, (3a)

(∂t + VE·∇)n = −D‖∂2
z(ϕ− n)− κ∂yϕ+D∇2

⊥n, (3b)

where ϕ is the electrostatic potential, ω
.
= ∇2

⊥ϕ is the z component of the vorticity of

the E×B flow VE
.
= ẑ×∇ϕ, n

.
= N −〈N〉 is the fluctuation in the electron density, the

D‖ terms incorporate the effects of resistive dissipation, and κ
.
= −∇ ln 〈N〉. The linear

matrix of Eqs. (3) is non-normal due to the presence of the diamagnetic term in the

density equation. For such systems it is clear that submarginal turbulence, if it exists,

‡ A non-normal matrix is one whose eigenvectors are not orthogonal. An example is L =
(

α 0
κ β

)
.

The eigenvalues α and β are stable for negative α and β, yet exp(Lt) exhibits transient amplification
even for distinct α and β. In plasmas, κ represents the diamagnetic effects involving profile gradients.
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must be driven by the profile gradients (the origin of non-normality). But it is the mere

presence of the gradients, not linear instability, that is essential.

In neutral-fluid shear flows, non-normality is associated with gradients of the

laminar streamwise flow velocity U . For such flows, Waleffe has argued in

convincing detail [Waleffe (1995a); Waleffe (1997)] for a generic three-part mechanism

for self-sustainment, involving (i) advection of mean shear by weak streamwise rolls

(vortices); (ii) linear instability of the resulting streaks (spanwise velocity fluctuations);

(iii) nonlinear self-interaction of the streaks that re-energizes the original streamwise

rolls. Note that linear instability is possible here because the perturbations are made

not around the background profile, which is linearly stable, but around the rolls that

are self-consistently shown to be maintained at a finite level. That non-normality is

associated with background gradients in both the plasma and neutral-fluid cases leads

one to inquire whether key elements of Waleffe’s mechanism should apply to plasmas as

well, even though the detailed linear dynamics may appear to be quite different in the

two cases. Although much work remains undone, the preliminary answer is yes.

In particular, for a natural generalization of the HW system (that included sound-

wave propagation), Drake et al. (1995) have proposed the following self-sustainment

mechanism: (i) generation of a sheared radial§ flow by a (ky 6= 0, kz = 0) mode; (ii) drift-

wave instability (with kz 6= 0) driven by the ∂n/∂y resulting from the radial flow;

(iii) nonlinear self-interaction of the drift waves leading to regeneration of the kz = 0

mode. If one identifies the streamwise direction with the direction of the magnetic

field,‖ the mechanisms sound broadly similar. In both, it is a k‖ = 0 mode that is self-

sustained, where ‖ refers to the streamwise or magnetic-field direction. The physics of

the k‖ 6= 0 linear instabilities that grow on the k‖ = 0 background differ in detail (wake-

like in the neutral fluid, drift-wave-like in the plasma), but that may not be important

to the ultimate regeneration.

By analyzing a low-dimensional model that omitted perpendicular collisional

dissipation (therefore working in a non-stationary, large-amplitude limit), Drake et al.

found a nonlinear instability that supported the physical regeneration mechanism

sketched above. It should be noted that the mere presence of such an instability does

not distinguish the type of underlying bifurcation, which could be either supercritical or

subcritical. A modest contribution was made by Krommes and Boldyrev (1996), who

included dissipation in Drake’s model, analyzed the bifurcation structure in detail, and

§ Note that the directions in items (i) and (ii) are rotated by 90◦ from the frequently discussed sheared
poloidal flow (ky = 0, kz = 0) and conventional drift waves excited by x-directed gradients of the
background profile.
‖ It is an unfortunate annoyance that the standard choice of coordinate systems differs in the
neutral-fluid and plasma literature. For neutral-fluid shear flows, the choice is (x, y, z)fluid =
(streamwise, background gradient, spanwise). For slab approximations to toroidal magnetized plasmas,
one writes instead (x, y, z)plasma = (background gradient, poloidal, toroidal). One proceeds from the
neutral-fluid to the equivalent plasma by cyclically reducing the fluid coordinates by one: (x, y, z)fluid →
(z, x, y)plasma. Waleffe’s streamwise velocity U(y, z) corresponds to plasma density perturbations
N(x, y) with kz = 0.
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found the expected subcritical bifurcation.

A much more refined calculation presently underway [Son (1998)] aspires to raise

the mathematical description of the submarginal plasma dynamics to the level of

Waleffe’s calculations; the HW equations are appropriately illustrative. Ultimately

the analysis must be conducted in a sheared magnetic field (probably with the more

complete equations discussed by Drake et al.) in order to ensure linear stability, but

that formidable calculation has not yet been done. Nevertheless, useful insight can be

extracted from a shear-free model. I merely sketch the analysis here; details will be

presented elsewhere.

Because drift-wave fluctuations are driven by density gradients, consider the density

equation (3b) written for total density N :

∂tN(x, y, z) + VE·∇N = −D‖∂2
z (ϕ− n) +D∇2

⊥N. (4)

One may work on the interval x ∈ (−1, 1) and impose the boundary conditionsN(1) = 0,

N(−1) = 2, VE,x(±1) = VE,y(±1) = 0. The −D‖∂2
z term is required for linear instability;

however, fluctuations with kz = 0 are essential for the nonlinear self-sustainment

mechanism. Therefore, temporarily ignore any z-dependent portions of the vorticity

field ω or E×B flow; I will show that a z-independent contribution to ω can be self-

consistently regenerated. Then upon averaging (4) over z (denoted by an overline), one

obtains

∂tN (x, y) + VE·∇N = D∇2
⊥N (5)

—i.e., N obeys a passive advection–diffusion equation. In the spirit of a self-sustaining

mechanism, one may seek stationary solutions of (5).

To proceed, one needs an informed guess about the underlying vorticity field. The

z average of (3a) leads to

∂tω(x, y) + VE·∇ω = µ∇2
⊥ω. (6)

(The overline has been kept outside of the VE for later use.) At sufficiently low Reynolds

number, as a first guess it is not unreasonable to ignore the nonlinearity and to build

the base flow from the eigenvalue problem ∇2
⊥ω = λω, ω = ∇2

⊥ϕ. A (no-slip) solution

is readily obtained:

ϕ = −
[
cos(px)

cos p
− cosh(γx)

cosh(γ)

] [
sin(γy)

γ

]
, (7)

where p tan p + γ tanh γ = 0. For this flow, a steady-state solution of (5) is shown in

Fig. 1a. One sees the development of significant perturbations in the y direction. In the

fluid context, these spanwise fluctuations are called streaks.

If sufficiently large, the density perturbations N(x, y) can be unstable to drift

waves (with nonzero kz) propagating in the x direction. Numerical spectral analysis

of the linearization of Eqs. (3) around N (x, y) and the assumed initial vorticity field is

straightforward with the aid of Chebyshev–Fourier expansion. Until shear is included,

it is not possible to discuss the ultimate effect. However, as a preliminary exercise, one
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Figure 1. (a) Solution of the steady-state advection–diffusion equation for V0 = −0.025, RD = 400,
γ = 5/3. (b) Solid line: steady-state solution of (6) with nonlinear forcing determined by the most
unstable eigenfunction. Dashed line: original potential, formula (7).

can make some contact with the work of Drake et al. by replacing in the diamagnetic

term of the linearized density equation the N (x, y) that follows from solution of the

advection–diffusion equation by its x average, N(y). This eliminates the standard drift-

wave instability driven by ∂xN . A preliminary, low-resolution calculation of the resulting

growth rate has been performed; an instability is still obtained. Partly on the basis of the

physical arguments presented by Drake et al., it is expected that this instability persists

in the presence of magnetic shear. The key idea is to linearize around a self-consistently

generated “streaky” state rather than around a fluctuation-free equilibrium.

The final stage of the proposed self-sustainment mechanism is to re-energize the

assumed kz = 0 vortices. That comes from the VE·∇ω term in (6), which in steady

state is a Poisson equation for ω that ultimately determines ϕ. The x dependence of

the solution of that equation, with the most unstable eigenfunction from the spectral

calculation inserted as a quasilinear forcing, is shown in Fig. 1b for the fundamental

y mode. The shape of the driven solution is in quite reasonable agreement with the initial

assumption (7). (Since the amplitude of the marginal eigenfunction is undetermined

from the linear spectral calculation, it has been normalized such that the driven solution

matches the initial potential at x = 0.) Thus, a plausible mechanism for self-sustainment

has been demonstrated.

It must be stressed that the present work represents technically a very minor

modification of Waleffe’s extensive pioneering efforts. Its conceptual importance is that

the basic nonlinear regeneration mechanism appears to be upheld in this plasma model

even though the details of linear instability differ drastically between the neutral-fluid

shear flows and the magnetized plasma. Thus, the present analysis supports Waleffe’s

belief that the mechanism he investigated is generic and robust.
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The present work should be compared with that of Drake et al. Whereas

those authors ignored explicit perpendicular dissipation and concentrated on the time-

dependent development of the nonlinear instability, the present calculation attempts to

find a self-consistent forced, dissipative steady state; it can be viewed as a generalization

of the work of Krommes and Boldyrev (1996).

Much remains to be done. In the absence of shear, it is feasible [Son (1998)] to

extract from the HW equations a low-order dynamical system that exhibits the principal

self-sustainment loop; this is an energy-conserving, dissipative generalization of Drake’s

model that will be described elsewhere. Preliminary numerical investigations show that

chaotic behavior akin to the Lorenz strange attractor ensues for some parameter regimes.

Quantitative calculations in the presence of shear are daunting, but well-defined. Work

on both of these topics is in progress.

3.2. Statistical closures and submarginal turbulence

There is ultimately no substitute for a detailed dynamical description of submarginal

self-sustainment (or of any other turbulent state). However, to the extent that the

result is steady-state turbulence, coarse-grained statistical descriptions are also relevant

and may ultimately be simpler, as they focus on average intensities and are not forced

to deal with complicated, microscopic phase information. Unfortunately, the ability

of conventional closures such as the DIA to faithfully represent interesting bifurcation

scenarios remains only poorly understood.

In the context of thermal convection, Kraichnan (1964) noted that the DIA likely

predicted a bifurcation between a static (ω = 0) steady state and a fluctuating one,

the latter being stable for sufficiently large Prandtl number. Similar observations were

made by Herring (1969). On the other hand, McLaughlin (1974) applied the DIA to the

famous Lorenz equations, known to exhibit a strange attractor for certain parameters

whose onset is subcritical [McLaughlin and Martin (1975)]; he concluded that the DIA

was not particularly faithful and did not recognize the subcritical bifurcation at all.

Technically, the problem is that the nonlinear structure of the DIA and similar

closures is more complicated than that of the original primitive dynamics, so is difficult

to analyze. One might expect, however, that a closure that properly captures gross

dynamical properties of the physical state, including linear non-normality, energy

conservation, and sensible mode coupling between k‖ = 0 and k‖ 6= 0 modes, could in

principle suffice to predict submarginal turbulent intensities. In that spirit, Schekochihin

and Krommes (1997) have analyzed the structure of the DIA for a truncated HW model

with just three planes of constant k‖: one for k‖ = 0; the other two describing complex

conjugates of a typical k‖ 6= 0 mode. Many k⊥’s are allowed on each plane. The virtue of

this calculation is that it is readily possible to demonstrate approximations that retain

nonlinear noise and properly conserve energy. Preliminary calculations suggest that

energy-conserving statistical models can be built that are compatible with the scenarios

of Scott (1992), Biskamp and Zeiler (1995), and Drake et al. (1995). Further discussion
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will be presented elsewhere.

A more heuristic approach to the statistical description of submarginal turbulence

has been taken by K. Itoh, S. Itoh, and coworkers in a series of detailed papers,

representative ones of which include Itoh et al. (1994) and Itoh et al. (1996). They

use a Dupree-style Markovian renormalization in which the effects of turbulence are

represented by eddy-viscosity-like transport coefficients added to linear theory. The

dependence of those coefficients on fluctuation intensity is obtained through a series

of additional technical approximations that can be understood as a severe reduction

of the EDQNM in which the symmetry of the triad interaction time θkpq is lost and

off-diagonal terms are ignored. Nonlinear noise [f̃k in (2)] is neglected, so analysis of the

steady state reduces to study of a nonlinear dispersion relation. Subcritical solutions are

predicted for several multi-field models (including the HW system, according to recent

unpublished work by the author). In some cases, those appear to be in tantalizing

agreement with numerical simulations [Itoh et al. (1996)]. Such an approach, founded

on the structure of linear theory, at least qualitatively captures the requisite non-

normality. On the other hand, the neglect of nonlinear noise is a significant omission

that would seem to vitiate any quantitative predictions, as its effect enters at the

same order as the eddy viscosities. Furthermore, in some single-field model problems

[Krommes and Boldyrev (1996)] the bifurcation properties of the intensity vs gradient

curve are strongly influenced by the presence or absence of noise: intensity bifurcations

that are subcritical in the unjustified absence of noise become supercritical in its

presence. (Recall that single-field models can exhibit only supercritical excitation.)

Nevertheless, a speculation is that if the actual dynamics exhibit submarginal turbulence

and if that is predicted by a sensible noise-free closure, as Itoh et al. find, then the

proper nature of the bifurcation may be preserved by the addition of nonlinear noise.

Having positive-definite covariance, that noise will tend to raise the predicted steady-

state fluctuation level, but need not alter the qualitative submarginal dependence of

intensity on parameters. A systematic and quantitative calculation of a nontrivial

multifield model is sorely needed here; such research is in progress [Son (1998)].

3.3. Submarginal turbulence and self-organized criticality

Recently it has been suggested that ideas of self-organized criticality (SOC) may be

relevant to problems of turbulent transport in plasmas [Diamond and Hahm (1995)].

The basic philosophy and mathematics underlying what is conventionally called SOC

have been well spelled out in the original references [Bak et al. (1987); Bak et al. (1988)]

and in more popular accounts [Bak and Tang (1989); Bak (1996)]. Some recent plasma-

physics-oriented discussion was given by Dendy and Helander (1997). Briefly, it is shown

that simple discrete automata that implement particle-conserving toppling rules with

nonlinear thresholds can exhibit avalanches at all scales, and that such systems when

driven with random additive forcing can achieve steady states with submarginal profiles;

this is the link to the work of the last several subsections. It is argued that the long-
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ranged correlations exhibited in such systems may be somehow relevant to observable

tokamak transport phenomena.

It is intriguing that such simple models can exhibit submarginal behavior, but

one should be very cautious about generalizing to the real types of multidimensional,

partial-differential advection–diffusion equations encountered in practice. Krommes

(1997a) has emphasized that in practice the proper forcing is multiplicative (e.g.,

random E×B drifts), not additive as in a conventional sandpile model. The space–

time correlation properties of the random coefficient are crucial in determining the

ultimate dynamical behavior. In particular, a coefficient effectively white in time gives

rise to a standard diffusion equation with entirely local transport. To the extent that the

diffusion coefficient depends on space, the solutions to the transport equation subject to

macroscopic boundary conditions may be unusual, yet would (or should) not be invoked

as evidence of SOC.

The key to the global physics is thus the dynamical (or statistical) properties

of the advecting field. Within the context of a simple stochastic model, Krommes

(1997a) showed that with some effort it is possible to arrange those properties such that

submarginal profiles result over at least part of the domain. This was done, essentially,

by building in the answer in the form of a subcritical bifurcation for the turbulent

intensity; no first-principles dynamical calculation was done. The significance of that

calculation is therefore not its dynamical fidelity, which is minimal, but rather that it

shows that there need be no link between submarginal profiles and discrete or long-

ranged transport events; the latter were absent in the model described by Krommes

(1997a).

On the other hand, low-order dynamical models of submarginal self-sustainment

can exhibit intermittency that can lead to anomalous scaling and may be related to

the transport events discussed in the SOC literature. However, whether or not the

discrete models of SOC live in the same universality class as continuum models with

E×B nonlinearity is still an open question. A proper answer requires a much deeper

understanding of the nonlinear dynamics and self-sustainment mechanisms of continuum

models such as described in the last section. Considerable further work is required.

4. Discussion

I have briefly discussed various topics of current interest in basic nonlinear plasma

turbulence theory. A recent success was the development of a realizable Markovian

statistical closure, the RMC; excellent agreement was found between its predictions and

direct numerical simulation. Current research focuses on the dynamical mechanisms

for submarginal turbulence and the extent to which that phenomenon is correctly

handled in statistical theory. The outline of a proper theory is beginning to emerge,

although quantitative calculations are very difficult. The interplay between submarginal

turbulence, intermittency, and self-organized criticality is also of great interest, although

there are very few solid results as yet. All in all, the systematic mathematical description
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of random nonlinear phenomena in plasmas is slowly yielding to detailed analysis, but

still presents major and enticing challenges.
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