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The δf simulation method is revisited. Statistical coarse-graining is used to rigorously derive the
equation for the fluctuation δf in the particle distribution. It is argued that completely collisionless
simulation is incompatible with the achievement of true statistically steady states with nonzero tur-
bulent fluxes because the variance of the particle weights w grows with time. To ensure such steady
states, it is shown that for dynamically collisionless situations a generalized thermostat or “W -stat”
may be used in lieu of a full collision operator to absorb the flow of entropy to unresolved fine scales
in velocity space. The simplest W -stat can be implemented as a self-consistently determined, time-
dependent damping applied to w. A precise kinematic analogy to thermostatted nonequilibrium
molecular dynamics (NEMD) is pointed out, and the justification of W -stats for simulations of tur-
bulence is discussed. An extrapolation procedure is proposed such that the long-time, steady-state,
collisionless flux can be deduced from several short W -statted runs with large effective collisionality,
and a numerical demonstration is given.

PACS: 52.35.Ra, 52.65.Rr

I. INTRODUCTION

The δf simulation method (elaborated upon in Sec. II
and Appendix A) is a standard approach to the numeri-
cal description of collisionless or nearly collisionless plas-
mas. However, in a commonly used form of the algorithm
the variance W of the marker weights w (which describe
the turbulent fluctuations) increases indefinitely in time
for collisionless simulations that predict nonzero turbu-
lent flux Γ. (Γ is used here as a generic notation for
either particle flux Γn or thermal flux ΓT .) This is trou-
bling for both conceptual and practical reasons. Concep-
tually, such simulations cannot achieve true statistically
steady states (although low-order moments such as the
electrostatic potential may saturate), raising the issue of
whether a turbulent steady state is, in fact, being simu-
lated. Practically, the indefinite increase of marker vari-
ance leads to enhanced noise that eventually limits the
effective duration of the simulation. In the present work,
I attempt to address these problems. I argue that for
collisionless simulations the current algorithm must be
augmented to include a W -stat, which is a generalized
thermostat constructed such that W (or at least its time
average) is frozen to a specified value. The W -stat intro-
duces an effective dissipation that balances against the
turbulent production of fluctuations (a measure of which
is Γ) in just such a way that a true steady state can be
achieved. It can be implemented at negligible computa-
tional expense by a simple modification to the evolution
equation for the weights.

The W -stat is intended to be used for situations that
are dynamically collisionless—i.e., those for which the

classical Coulomb collision frequency ν is much less than
a dynamical mode or eddy-turnover frequency. For com-
pletely collisionless dynamics, the δf method is a Monte–
Carlo sampling technique in which an ensemble of marker
points is integrated along Hamiltonian characteristic tra-
jectories. Such dynamics obey a Liouville theorem in the
phase space z

.= (x, v) ( .= denotes definition). It can be
shown that in the presence of turbulence with nonzero
flux the marker weights diffuse—i.e., the variance of the
weights increases linearly with time. That variance can
be related to an appropriate information-theoretic en-
tropy of the turbulence. Introduction of the W -stat de-
liberately violates Liouville’s theorem in the extended
phase space (z, w) in such a way that the turbulent diffu-
sion is balanced by an effective dissipation that represents
the flow of entropy to unresolved fine scales in velocity
space. Of course, dissipative collision operators such as
the Landau operator [Eq. (A4)] violate Liouville’s theo-
rem as well. The W -stat is an artifice that is intended to
replace the complicated details of a collision operator in
the limit where those details should not matter.

In order to formulate the W -stat, a precise definition
of, and dynamical equation for the marker weights are
required. That definition and the theoretical basis for
the δf algorithm have been inadequately discussed in the
literature, so I will give a systematic reformulation based
on statistical averages of the Klimontovich equation, gen-
eralizing and unifying techniques first presented in Ref. 1.
The derivation emphasizes that the “background” proba-
bility density function (PDF) that appears in the familiar
decomposition

“full f” = “background f” + δf, (1)
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where the background f is assumed to involve macro-
scopic, smoothly varying profiles in x or v, is the PDF
in the presence of all turbulent transport effects—an in-
terpretation not in accord with that of most previous
workers. The new derivation has the desirable property
of maintaining 〈δf〉 = 0, where 〈. . .〉 is the statistical (en-
semble) average.2 If the algorithm is implemented cor-
rectly, spurious long-wavelength fluctuations will not be
generated and initial profiles will not relax during the
course of a steady-state simulation, as does happen in
some extant codes for which 〈δf〉 6= 0.

If the introduction of a W -stat is not to change
the value of the simulated turbulent flux Γ, one must
show that Γ(W ) becomes sensibly independent of W for
W much greater than a threshold value Wc. That this
should be so can be argued both theoretically3 and from
the consistent empirical observation that saturated or
quasi-saturated values of Γ are observed in extant col-
lisionless simulations. I will present the results of some
preliminary simulations, using a simple two-dimensional
(2D) δf code, that support the expected behavior of the
W -statted dynamics. Although a number of important
and difficult questions remain to be answered, the gen-
eral conclusion is that for the challenging limit ν → 0
W -stats may provide viable, computationally inexpen-
sive alternatives to nontrivial numerical implementations
of full collision operators; they should be studied further.

The outline of the paper is as follows. In Sec. II I
give a careful derivation of a δf algorithm that main-
tains 〈δf〉 = 0. In Sec. III I introduce an appropriate
entropy functional and discuss its properties. I describe
the derivation, interpretation, and numerical application
of an appropriate W -stat in Sec. IV. I discuss the results
in Sec. V. In Appendix A I provide additional discus-
sion of both collisionless and collisional δf algorithms.
Finally, I devote Appendix B to some technical details
relating to entropy and dissipation.

II. REVIEW AND REINTERPRETATION OF
THE δf METHOD

In the formulations of the δf method that appear in
the literature (for background and historical references,
see Refs. 4, 5, and 1), various distribution functions and
averaging procedures are frequently confused or speci-
fied imprecisely. I therefore give a review and systematic
derivation of the δf equation that emphasizes several lev-
els of statistical coarse-graining, the preferred role of the
one-particle PDF as a “background” distribution, the im-
portance of maintaining 〈δf〉 = 0, and the distinction be-
tween the distributions of the physical particles and of
the Monte–Carlo markers (sampling points).

A. Statistical averaging, the background PDF, and
fluctuations

One considers two classes of particles: (i) the physical
ones, whose almost collisionless dynamics are to be simu-
lated (physical distribution functions carry no subscript);
(ii) marker particles, used in a Monte–Carlo phase-
space sampling technique to implement the δf algorithm
(marker distributions and related quantities carry the
subscript m; for consistency with other literature,6 I
sometimes write g instead of fm). For either class, there
are three levels of description: (i) fully microscopic, de-
scribed by the singular Klimontovich microdensity f̂ of
Ns particles of species s in a volume V (with mean den-
sity ns

.= Ns/V ):

f̂s(z, t) .=
1
ns

Ns∑
i=1

δ(z − z̃i(t)), (2)

where z denotes the set of phase-space observer coordi-
nates of a single (generic) particle and z̃i denotes the
actual (random) trajectory of the ith particle; (ii) a fine-
scale average, 〈. . .〉fine, that replaces particle discreteness
with a collision operator but leaves macroscopic, collec-
tive random fluctuations unaveraged (random fluctua-
tions are indicated by a tilde); (iii) an ensemble average
〈. . .〉 over the macroscopic turbulent fluctuations (and
over the fine scales as well if that has not already been
done). Thus one introduces

f̃ = 〈f̂〉fine, f = 〈f̃〉 = 〈f̂〉. (3a,b)

Equation (3b) is the standard Klimontovich relation be-
tween the one-particle PDF7 f (a smooth function) and
the singular microdensity f̂ . However, the partially av-
eraged f̃ (also a smooth function) is often a useful in-
termediary. The difference between f̃ and f defines the
fluctuation δf (smooth on a microscopic scale but turbu-
lent on a macroscopic scale):

f̃︸︷︷︸
fullf

= f︸︷︷︸
background

+ δf︸︷︷︸
fluctuations

. (4)

These definitions are such that δf is a true fluctuation:

〈δf〉 = 0. (5)

Virtually all theories of turbulence begin with a decompo-
sition analogous to Eq. (4), with the fluctuations defined
relative to the mean field.8 For spatially homogeneous
statistics, Eq. (5) states that δf has no k = 0 component.
For inhomogeneous statistics, such as occur for global
simulations with boundary conditions, profile variations,
and/or magnetic shear, the requirement 〈δf〉(x) = 0
means that δf should not develop long-wavelength, time-
independent spatial variations.

The distinction between the “background” (statisti-
cally averaged) PDF f and the “full distribution” f̃ is
crucial. The smoothly varying mean density or temper-
ature profiles employed in theoretical or experimentally
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coarse-grained descriptions are properties of the statisti-
cally averaged f , not the randomly fluctuating f̃ . When
one speaks of a local Maxwellian flM parametrized by
background density n(x) and temperature T (x) with gra-
dients d lnn/dx = −κn, d lnT/dx = −κT (in a global
simulation the κ’s may depend on x; in local simulations
they are usually taken to be constants), one is referring
to f ; thus

d lnflM/dx = −κ(v), (6a)

where

κ(v) .= κn +
(

1
2

v2

v2
t

− 3
2

)
κT , (6b)

where vt
.= (T/m)1/2 is the thermal velocity.

In most or all of the previous literature on the
δf method, the decomposition f̃ = f0 +δf has been used,
where f0 is an initial distribution. That is specifically
not done in the present work. In the systematic inter-
pretation developed here, f is the long-time PDF—in
the presence of sources, sinks, and all turbulent trans-
port processes—that would be eventually be achieved by
evolution from arbitrary initial conditions. By specify-
ing a time-independent f such as flM, one commits to
studying the properties of a true steady state parame-
trized by a particular value of κ (analogous to calculat-
ing the statistical properties of a material at a particular
thermodynamic state point). To determine those prop-
erties, one is allowed to integrate infinitely long if that
is necessary to achieve good statistics. Indeed, that inte-
gration may be taken even longer than the confinement
time of a real device. There is no contradiction with the
fact that in reality physical parameters usually evolve on
a transport time scale. Thus, steady-state simulations
might be used to parametrize fluxes as functions of state
point; those parametrizations could then be used in time-
dependent transport codes (cf. Ref. 9). Note that the
distinction between true steady-state simulations, inte-
grated arbitrarily long, and time-dependent simulations
of real devices does not depend on whether the simulation
is local (constant κ’s, periodic boundary conditions) or
global (spanning the whole device, nontrivial boundary
conditions at the walls). It is necessary to insist on this
in order to counter a frequently-voiced objection that it
makes no sense to integrate a global simulation for times
longer than a confinement time. That is not correct. It
may not be necessary to do so, if good asymptotic statis-
tics can be obtained more quickly, but if the simulation
algorithm is robust there must be no harm in integrat-
ing indefinitely long if a time-independent background
is specified, for “steady state” implies the limit t → ∞.
It is the fact that collisionless algorithms as currently
implemented are not robust in this sense (W increases
indefinitely in time) that motivated this work.

Although the present techniques are primarily di-
rected at steady-state simulations, macroscopically time-
dependent simulations are possible as well in which

κ(v, t) or f(x, v, t) are determined self-consistently by
evolution on a transport time scale. The important point
about the decomposition (4) is that it properly segre-
gates macroscopic profile effects into the background f .
In other decompositions, some of those effects can ap-
pear in δf , which is confusing on both mathematical and
physical grounds.

B. Dynamical equations

The goal is to simulate kinetic (velocity-space-
dependent) physics such as described by the electrostatic
Klimontovich equation

∂tf̂ + v·∇f̂ + (Ê + c−1v×B)·∂f̂ = Ŝ. (7)

Here ∂
.= (q/m)∂v , Ê is to be calculated from Pois-

son’s equation with singular charge determined from f̂ ,
and Ŝ is a singular source term for particles and/or
heat. Equation (7) contains the effects of both short-
wavelength, high-frequency classical collisional processes
as well as long-wavelength, low-frequency collective phe-
nomena; the latter are of primary interest here. A fine-
scale average of Eq. (7) changes f̂ to f̃ at the price of
adding an appropriate collision term to the right-hand
side. A further change of variables to the usual gyroki-
netic coordinates10 then leads to the collisional gyroki-
netic equation

Df̃

Dt
= −C̃[f̃ ] + S̃, (8)

where C̃ is an appropriate collision operator, brackets
indicate functional dependence, and

Df̃

Dt
≡ ∂f̃

∂t
+ v‖∇‖f̃ + ṼE·∇f̃ + Ẽ‖∂‖f̃ . (9)

(For simplicity of presentation, the magnetic field is as-
sumed to be constant in space, so gradient and curvature
drifts have been omitted. Of course, those drifts can be
crucial in practical applications.) I will not be concerned
with the detailed form of C̃ in the body of this paper (see
the remarks in Appendix A). However, the mere pres-
ence of that dissipative operator will be critical for the
later discussion.

In Eq. (9), ṼE and Ẽ‖ derive from a fluctuating
electrostatic potential ϕ̃, a macroscopic property of the
turbulence.11 An equation for the usual smooth, positive-
semidefinite PDF f emerges by averaging Eq. (8) [or,
equivalently, Eq. (7)]. In a geometry in which statistical
inhomogeneity is permitted only in the x direction, and
with mean fields and the parallel nonlinearity neglected
for simplicity, f obeys

∂tf + ∂xG = −C[f ] + S, (10)
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where the phase-space flux is

G(x, v) .= 〈δVE,x δf〉 (11)

and C[f ] .= 〈C̃[f̃ ]〉. Velocity moments of G lead to macro-
scopically observable fluxes; for example, the particle flux
relative to n is

Γn(x) .= 〈δVE,x(δn/n)〉 =
∫

dv G(x, v). (12)

(Because of the adopted normalization,7 one has, for
example, δn = n

∫
dv δf .) In principle, the solu-

tion of Eq. (10), including appropriate sources, sinks,
and boundary conditions, defines the background pro-
files. Clearly those profiles are the ones that develop in
the presence of both classical and turbulent transport.
The usual procedure of specifying an analytical, time-
independent form for f , then solving for δf for fixed f ,
can be interpreted as obtaining f from experimental mea-
surements of steady-state turbulence rather than from
the steady-state solution of Eq. (10).

In full-f simulations, initial conditions are sampled
from a given PDF, then integrated along the microscopic
Hamiltonian gyrokinetic characteristics. The phase-
space density of particles at time t then provides an esti-
mate of f̃(z, t). However, that method is noisy; when the
fluctuations are small, the full-f algorithm wastes most
of its resolution sampling f , which may be an analytically
known function such as a local Maxwellian.

In the superior δf method, f is specified and Monte–
Carlo sampling5 is used to resolve just δf . Dealing only
with δf leads to a substantial reduction of order 〈(δf/f)2〉
in the intensity of the sampling noise.12,1

The following discussion is a restatement of material
presented in Ref. 1, slightly generalized to include sources
and collisions. The rigorous equation for δf is obtained
by subtracting Eq. (10) from Eq. (8):

Dδf

Dt
= − δL f︸︷︷︸

1

+ ∂xG︸︷︷︸
2

−C[δf ]︸ ︷︷ ︸
3

+ δS︸︷︷︸
4

, (13a)

where

δL
.= δVE·∇ + δE‖∂‖ (13b)

and C[δf ] .= C̃[f̃ ] − C[f ]. The inhomogeneous equa-
tion (13a) contains four distinct kinds of source terms
on its right-hand side, which I shall now discuss briefly.

Term 1: x-space or v-space gradients of f. Those
can be calculated analytically for simple forms of f ;
cf. Eq. (6). Thus, for a local Maxwellian the Fourier
representation of δL flM is

δL ln flM = −i

(
Te

Ts

)(qs

e

)
(ω∗s − k‖v‖)

(
eϕ

Te

)
, (14)

where the diamagnetic frequency is

ω∗s
.= −ky

(
cTs

qsB

)
κ(v). (15)

Term 2: The divergence of the phase-space flux,
∂xG(x, v). This term, inherited from Eq. (10), is virtually
never written, commented upon, or implemented,13 pre-
sumably because earlier workers have employed different
definitions of δf . In the present formalism, it is required
in order to ensure that Eq. (13a) preserves 〈δf〉 = 0. [The
background achieves steady state by a balance between
(i) the dissipative effects of the turbulent flux G (and
classical collisions, if present), and (ii) sources and/or
boundary conditions.] ∂xG vanishes for a local simu-
lation that enforces strict statistical homogeneity in x
(constant κ’s and periodic boundary conditions). How-
ever, it need not vanish for so-called bounded models in
which, for example, the potential is set to zero at the
simulation boundaries, or more generally for any simu-
lation with inhomogeneous statistics (which includes the
practically important cases of magnetic shear and radial
profile variations). [For all cases the spatial average (in-
dicated by an overline) of this source term does vanish,
∂xG = 0, provided that δf or δVE,x either vanishes at the
boundaries or satisfies periodic boundary conditions.]

To the extent that ∂xG does not vanish,13 its absence
on the right-hand side of the δf equation can be expected
to produce spurious long-wavelength profile relaxation.
That is actually observed in global δf simulations,14 and
can partly account for qualitative differences between lo-
cal and global simulations.

If the parallel nonlinearity is included in the dynam-
ics, the term ∂‖〈δE‖ δf〉 must be added to ∂xG. Because
there is no translational symmetry in v space, this term
does not vanish.

Term 3: A possible collision operator C acting
on δf. By definition, this term is omitted for a strictly
collisionless simulation. The conventional argument is
that C is negligible when the collision frequency is much
smaller than the dynamical time scales of the relevant
turbulent modes. I will challenge that logic below.

Term 4: A fluctuating source δS. This term is
frequently taken to vanish, an experimentally reasonable
assumption.15

C. Monte–Carlo sampling of Eulerian moments

In the present section I review and discuss conventional
algorithms for collisionless δf simulations.

1. Calculation of Eulerian moments

At any time t, Eulerian moments

δM(z, t) .=
∫

dz M̂(z; z)δf(z, t) (16)
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are required, either for dynamical or diagnostic purposes.
(Here M is some moment defined by a specified kernel M̂ ;
a possible species summation is subsumed in the z inte-
gral.) An example of δM is the fluctuating charge den-
sity δρ, required for the gyrokinetic Poisson equation,
whose kernel is

ρ̂(z; z) = (nq)sδ(x− x). (17)

Formula (16) defines a phase-space integral that may
be evaluated by a variety of techniques. For example,
δf might be time-evolved on an Eulerian phase-space grid
and (16) evaluated by a Riemann-sum approximation.
However, a more conventional choice is to use Monte–
Carlo sampling.5 The Monte–Carlo estimate of an inte-
gral

I
.=
∫

dz G̃(z)K(z), (18a)

where K is a given function and G̃ is a given sam-
pling PDF normalized to unity, is the sample mean (in
the usual statistics sense16)

I ≈ 〈K〉N .=
1

Nm

Nm∑
i=1

K(zi). (18b)

This formula requires the sampling distribution only at
the present time t; it does not depend on the particular,
possibly stochastic, way in which the Nm sampling points
evolved from t = 0.

To use Monte–Carlo sampling to estimate for-
mula (16), one may normalize δf to the (smooth) sam-
pling distribution f̃m ≡ g̃

.= V G̃ and define the new field

w(z, t) .= δf(z, t)/g̃(z, t). (19)

Then

δM(z, t) =
∫

dz g̃(z, t)M̂(z; z)w(z, t) (20a)

≈ 1
nm

Nm∑
i=1

[M̂(z; z)w(z, t)]|z=z̃i(t). (20b)

For specific choices of M̂ , it is formula (20b) that is ac-
tually implemented in the numerical codes. To coarse-
grain δM to an Eulerian grid, say in x space, the sum in
Eq. (20b) is merely restricted to the points lying in the
appropriate bin (see the discussion of Fig. 8 in Sec. A 1).

Note that Eq. (20b) can be written in terms of a
Klimontovich marker distribution f̂m as

δM(z, t) ≈
∫

dz M̂(z; z)w(z, t)f̂m(z, t) (21a)

=
∫

dz M̂(z; z)δf̂m(z, t), (21b)

where the effective sampling distribution is

δf̂m(z, t) .=
1

nm

Nm∑
i=1

wiδ(z − z̃i(t)). (22)

Because of the appearance of the wi’s in the
Klimontovich-like expression (22), the w’s are frequently
called the “particle weights.” However, this use of “par-
ticle” is unfortunate; as will be emphasized below, the
marker distribution differs in general from the true par-
ticle PDF that is being simulated. The w’s should more
appropriately be called the “sampling weights” or the
“marker weights”; I shall simply call them the “weights.”

The singular sampling distribution (22) is convenient
for theoretical calculations of statistical sampling noise.1
However, it must not be confused with the smooth func-
tion δf . The goal of the simulation is to calculate δf ; the
discrete collection of markers is merely introduced as a
means to that end.

The problem is now reduced to the evaluation of the
weights at the time-evolved positions of the markers.
Thus, at time t = 0 Nm points are sampled from some
prescribed marker distribution fm. (That distribution
may be unrelated to the initial condition on δf .) Those
points are allowed to evolve according to prescribed equa-
tions of motion, which in principle may be quite arbitrary.
Given those equations (which may include stochastic el-
ements such as random parallel accelerations or perpen-
dicular velocities; see the discussion in Sec. A 2), the Li-
ouville equation for the sampling distribution can be de-
termined theoretically. The δf equation is already known
[cf. Eq. (13a)], so from the definition (19) the evolution
equation for w is fully determined. This conclusion dif-
fers from the recent assertion of Chen and White,6 who
suggested that in the presence of stochastic scattering
of the marker trajectories it was necessary to introduce
an extended phase space in which w played the role of
an independent variable. Although that may provide a
theoretically elegant reformulation, it is unnecessary; the
sampling distribution g̃ exists and obeys a definite equa-
tion of motion even in the presence of stochastic scatter-
ing. To emphasize this point, in Sec. A 2 I rederive the
algorithm of Chen and White directly from the defini-
tion (19).

It is now clear that markers are distinct from physical
particles: They may evolve from different initial condi-
tions, possibly in the presence of different sources, and
they may even obey different equations of motion.

Although the marker trajectories may be arbitrary in
principle, in certain situations advantages accrue to spe-
cific choices. In particular, in collisionless theory it is
useful to require the markers to obey the same charac-
teristic trajectories as do the physical particles. (That
still does not imply that f̃m = f̃ , since the initial condi-
tions and sources may differ for the physical and marker
distributions.) In the presence of collisions, that is not
possible. Markers are true test particles; they are intro-
duced as an artifice to aid in the solution of the specified
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δf equation, and cannot react back on the dynamics of δf
in any way. Physical particles, on the other hand, are not
true test particles. A given particle polarizes the sea of
all other particles; that effect is responsible for frictional
drag and the momentum and energy conservation laws
of the Balescu–Lenard and Landau collision operators.
However, it is useful to assume that the marker charac-
teristics are the physical ones determined by collisionless
dynamics, plus an as-yet unspecified stochastic part re-
lated to collisions. Then, upon coarse-graining over the
stochastic element, one has [cf. Eq. (8)]

Df̃m

Dt
= −C̃m[f̃m] + S̃m, (23)

where the marker collision operator C̃m, implicitly de-
pendent on f̃ , is unspecified at this point.

2. Evolution of the weights

The equation for w follows by substituting δf = wf̃m

into Eq. (13a). In organizing and simplifying the result,
the quantity1

p(z, t) .= f(z, t)/f̃m(z, t) (24)

enters naturally because one wants to refer quantities to f
in order to exploit the given properties of the background,
as in Eq. (6). With the aid of Eq. (23), one obtains

Dw

Dt
= p{−δL ln f

+f−1[∂xG + (δS − δC)−w(S̃m − C̃m)]}. (25)

Equation (25) is a partial differential equation for the
Eulerian field w(z, t). However, if the markers are cho-
sen to obey the characteristic equations of motion of the
physical particles, Eq. (25) becomes an ordinary differ-
ential equation for the weight wi(t) integrated along the
ith trajectory:

dwi

dt
= Ri(t) ≡ R(z̃i(t), t), (26)

where R(z, t) is the right-hand side of Eq. (25).
To obtain a dynamical equation for p, note, from the

definitions (24) and (19), that

p + w = (f + δf)/f̃m = f̃ /f̃m. (27)

Hence

D(p + w)
Dt

=
1

f̃m

Df̃

Dt
− f̃

f̃2
m

Df̃m

Dt
(28a)

= f̃−1
m [(S̃ − C̃)− (p + w)(S̃m − C̃m)]. (28b)

In the absence of both sources and collisional (discrete-
ness) effects, Eq. (28b) shows that p + w is conserved
along the Lagrangian trajectories:

pi(t) + wi(t) = pi(0) + wi(0) .= ci, (29)

where the ci’s are constants. In that case, if one chooses
to load the markers in the same way as is done for the
actual particles, one has p(0) + w(0) = f̃(0)/f̃m(0) = 1,
hence pi(t) = 1 − wi(t); this recovers the “fully nonlin-
ear” scheme of Parker and Lee.4 It must be emphasized
that this is not the only possibility. For example, in a lo-
cal simulation the markers could be loaded uniformly in
space, whereas f would typically be assumed to contain
a weak profile gradient and δf(0) might be initialized to
a small sinusoidal perturbation. For such initializations,
f̃ 6= f̃m, the relative difference being of the order of κLx

(Lx being the x dimension of the simulation box) and δf .
The difference between ci and unity can be large. As

an example, let the background f be a local Maxwell-
ian with density and temperature profiles characterized
by the inverse scale lengths κn and κT , and let the ini-
tial marker distribution be Maxwellian in velocity but
uniform in space (this initialization scheme is used fre-
quently in practice). Then, upon normalizing velocities
to vt, one finds

c(x, v) = exp(−[κn + (1
2v2 − 3

2 )κT ]x). (30)

For positive κ’s, the maximum value of c is attained for
v = 0:

cmax(x) = exp(−(κn − 3
2κT )x) ≈ exp(3

2κT x), (31)

the last approximation holding for the usual case of
ion-temperature-gradient-driven (ITG) fluctuations with
η

.= κT /κn � 1. Although in a local simulation one
would typically have L

.= κT Lx < 1, so that cmax would
not differ substantially from unity, realistic global simu-
lations may well require L > 1; for L = 2, cmax ≈ 20.
A scatter plot of c for the above assumptions is shown
in Fig. 1. (The upper boundary is associated with zero-
velocity particles. Points close to c = 0 stem from su-
perthermal particles.) Another way of quantifying the
size of c is to average it over the marker PDF. For a
Maxwellian distribution, the velocity integral can be per-
formed analytically, leading to

C(L; η) = 〈c〉x,v =
1
L

∫ L

0

dx
exp((3/2− η−1)x)

(1 + x)3/2
. (32)

This function is graphed in Fig. 2.
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FIG. 1. Representative distribution of c
.
= p(0) + w(0) for

a marker distribution of 10 000 points uniform in space and
Maxwellian in velocity. L = 1 and η = ∞.
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FIG. 2. The function C(L; η) defined by Eq. (32). The
curves correspond, from bottom to top, to η = {1, 2, 3, 4, 5}.

In the absence of sources and collisions, there would
appear at first glance to be no technical reason why the
general result

pi(t) = ci −wi(t) (33)

should not be used for arbitrary marker loadings. The
term ci is simply a time-independent N -dimensional vec-
tor that is fully determined by the initial loading scheme
and is trivial to implement in the computer codes. How-
ever, preliminary experiments with this algorithm for
cases where C(L, η) − 1 ≥ O(1) have not been entirely
successful. One question is how to treat markers that
diffuse to wi ∼ ci. Such markers, even if relatively few,
can contribute anomalously large statistical noise that
contaminates the measurements. In preliminary experi-
ments with very long runs using Eq. (33), I have some-
times observed cases of spontaneous symmetry breaking

in which 〈w〉, whose time average should vanish due to
number conservation (see the next section), instead sud-
denly rises from noise and saturates close to C. For-
tunately, the W -statting technique described in Sec. IV
works with small w’s and relatively short times.

3. Number conservation

In the absence of physical sources, the total number of
particles is conserved. For steady state, the mean den-
sity is time-independent, so one focuses on the density
fluctuation δn. From

0 = V −1

∫
dx

δn

n
(34a)

≈ V −1

∫
dx

∫
dz δ(x− x)δf̂m (34b)

=
1

Nm

Nm∑
i=1

wi, (34c)

one concludes that, at any time t, the sum of the weights
[the sample mean 〈w〉N (t)] should vanish. From Eq. (26),
number conservation is preserved if 〈R〉N = 0. That will
not be true if cavalier approximations are made for p.

To demonstrate the consistency of the exact formula-
tion, consider how the sample mean of the first term on
the right-hand side of Eq. (25) vanishes. One has

p δL lnf = f̃−1
m (δVE·∇ + δE‖∂‖)f ; (35)

upon referring to Eqs. (18), one has

〈p δL ln f〉N ≈ 1
V

∫
dz f̃m p δL lnf (36a)

≈ 1
V

∫
dz [∇·(δVEf) + ∂‖(δE‖f)]i (36b)

= 0 (36c)

(the last integrand being a perfect derivative). The same
argument shows that the ∂xG term integrates away.

Of course, this argument ignores statistical sampling
errors; in practice, 〈w〉N will fluctuate randomly. Al-
though mild fluctuations around 〈w〉N = 0 may not be
important, there can be troubling secular effects. In par-
ticular, inconsistent values or dynamics for p can easily
lead to violation of number conservation.

The approximation p ≈ 1 and uniform marker load-
ing preserves number conservation by expression (35),
but for a reason different than the general calculations of
Eqs. (36). Consider just the E×B term for simplicity.
Then for p = 1

p δVE·∇ lnf → −κ δVE,x. (37)

For a uniform initial marker distribution, spatial homo-
geneity is preserved under the time evolution, so the
markers remain uniformly distributed in space. Then
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〈p δVE·∇ ln f〉N =
1
N

∑
i

(−κ δVE,x) (38a)

∝
∫

dx δVE,x = 0, (38b)

the last result following since δVE,x ∝ −∂δϕ/∂y (or,
more generally, by virtue of an ergodicity argument that
equates spatial and ensemble averages).

This concludes the systematic derivation of the colli-
sionless δf algorithm. I have stressed (i) the presence of
the ∂xG term for inhomogeneous simulations, and (ii) the
necessity of a consistent treatment of the second weight p.
These points are frequently not dealt with correctly in the
extant codes, and further research is required to bring
their implementation to a satisfactory state. Additional
remarks on collisionless δf are given in Appendix A1,
where the role of the Lagrangian phase-space lattice is
discussed.

In addition to the technical details discussed in this
section, there remains a crucial conceptual problem with
the collisionless algorithm in its present form. Namely, it
can be shown that collisional dissipation is never negligi-
ble even in the limit of vanishing collision frequency. This
is related to the so-called entropy paradox3 discussed in
the next section.

III. ENTROPY EVOLUTION AND δf

The role of collisional dissipation is best understood
from the point of view of information-theoretic entropy.
For some background discussion and references, see
Ref. 3.

A. Information-theoretic entropy

In addition to the ensemble average 〈. . .〉 already in-
troduced, it is convenient to define a barring operation
on an arbitrary random function A(z) by

A
.= V −1

∫
dz f(z)〈A(z)〉. (39)

(f plays the role of a weight function in a scalar
product defined globally on the phase space.) Then
the information-theoretic entropy relative to the back-
ground PDF f and coarse-grained over the fine scales
is17,3

S = −
(

f̃

f

)
ln

(
f̃

f

)
(40a)

= −V −1

∫
dz 〈f̃ ln(f̃ /f)〉. (40b)

As discussed in Ref. 3, processes that drive f̃ away from f
(e.g., turbulent production or flux) tend to reduce S

(make it more negative), whereas ones that relax f̃ to-
ward f (e.g., collisional dissipation) tend to increase S
(drive it toward zero). Through second order in δf , one
has

S ≈ −1
2
(δf/f)2 . (41)

B. Production, dissipation, and the entropy paradox

It is useful to define the positive-definite functional
F .= −S ; then

F =
1
2
(δf/f)2 =

1
2
V −1

∫
dz 〈δf2〉/f. (42a,b)

Early numerical studies of this functional were made in
Ref. 18. In addition to its interpretation in terms of en-
tropy, F is a convenient measure of phase-space fluctu-
ation intensity. As discussed with a variety of examples
in Ref. 3, a generic equation for F is

∂tF = P − D, (43)

where P represents the turbulent production of fluc-
tuations and D is the collisional dissipation (not, it
must be stressed, collisionless dissipation due to Lan-
dau damping1). Such balance equations are very famil-
iar in the theory of neutral fluids; cf. Ref. 19. They also
arise naturally in the theory of variational bounds on
transport.20,21

In Ref. 3, it was stressed that collisional dissipation
cannot be ignored if a statistically steady state is to be
achieved. That is clear from Eq. (43), for if D is ne-
glected, then

F(t) −F(0) =
∫ t

0

dt′P(t′) ∼ P(∞)t (44a,b)

for t > τac, τac being the Lagrangian correlation time of
the turbulence such that P attains its asymptotic steady-
state value P(∞) for t > τac. It was this general behavior
that in Ref. 3 was named the entropy paradox : a statis-
tical observable (F) is changing in time in a purported
steady state, so a true steady state cannot, in fact, have
been achieved. The necessity of including some sort of
real dissipation even in situations in which the nonlinear
dynamics are essentially collisionless will lead me in the
next section to a discussion of W -stats.

It is instructive to rewrite Eq. (42b) in terms of w
and p. Upon appropriately multiplying and dividing
by f̃m, one finds F = 〈F̃〉, where

F̃ =
1
2
V −1

∫
dz f̃m(w2/p) ≈ 1

2
〈w2/p〉N , (45a,b)

where Eqs. (18) were used. Essentially (to the extent
that p ≈ 1), F is half of the mean-squared weights.
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There is a striking and precise analogy between for-
mula (45b) for F̃ and the instantaneous mean kinetic en-
ergy K̃—i.e., the kinetic temperature T—of a many-body
system:

K̃ =
1
2
〈p2/m〉N , (46)

where pi is the canonical momentum and mi is the mass
of the ith particle. Clearly

w ∼ p, p ∼ m. (47a,b)

This analogy will be exploited in the discussion of
W -stats in Sec. IV.

C. Illustration: The Langevin–Fokker–Planck model

To understand the relation between Eq. (25) (for the
evolution of the weights) and Eq. (43) (the generic equa-
tion for entropy evolution), consider the simplified model

ẇ = κ δVE,x − f−1C[δf ]. (48)

I have approximated p ≈ 1 (f̃m ≈ f), ignored parallel
effects, spatial inhomogeneity, sources, and marker dis-
creteness. The approximation p ≡ 1 can never be pre-
cisely correct, because f̃m is a random variable whereas
f is not; however, Eq. (48) captures the essence of the dy-
namical effects and balances of present concern. For def-
initeness, I illustrate with the Langevin–Fokker–Planck
operator (physically appropriate for ion–electron colli-
sions)

C[δf ] = − ∂

∂v

(
νv + Dv

∂

∂v

)
δf, (49)

where v ≡ v‖ and the velocity-space diffusion coefficient
is related to ν via the Einstein relation Dv = v2

t ν . This
operator is linear and annihilates a Maxwellian distribu-
tion, so it is appropriate to take f to be Maxwellian in
velocity space. Then (still ignoring the precise distinction
between f̃m and f),

C[δf ] ≈ C[wf ] = −Dv
∂

∂v

(
f

∂w

∂v

)
. (50)

The collisional contribution to F = 1
2
V −1

∫
dz 〈δf2〉/f is

∂tFcoll = −V −1

∫
dz 〈(δf/f )C[δf ]〉 (51a)

= DvV −1

∫
dz

〈
w

∂

∂v

(
f

∂w

∂v

)〉
(51b)

= −D, (51c)

where

D .= Dv

〈(
∂w

∂v

)2
〉

. (52)

The contribution of turbulent scattering to Ḟ is

d

dt
(
1
2
〈w2〉) = 〈ẇ(t)w(t)〉 (53a)

= 〈κ δVE,x(t)
∫ t

0

dt′ κ δVE,x(t′)〉 (53b)

≈ κ2D, (53c)

where D
.=
∫∞
0

dτ 〈δVE,x(τ )δVE,x(0)〉 is the turbulent
particle diffusion coefficient, the time integral of the
Lagrangian velocity correlation function. [For simplic-
ity, collisions were ignored in writing Eq. (53b); that is
not fundamental, and a more precise calculation can be
done.3] Thus one recovers Eq. (43) with Γ = κD (the
usual Fick’s law for turbulent diffusion) and D given by
Eq. (52). Again, note that to the extent that the tur-
bulent flux is nonzero, F grows without bound when the
collision operator is set to zero:

F(t) −F(0) → (κΓ)t (t > τac, C ≡ 0). (54)

D. The origin of the small velocity scales

As was shown in Ref. 3, a consequence of Eq. (54) is
that if one is interested in true statistically steady states
in which healthy, nonzero turbulent fluxes flow, it is never
correct to study collisionless dynamics; dissipation re-
mains nonzero as ν → 0. This is a consequence of the
fact that the nonlinear dynamics generate finer and finer
velocity-space scales for which the collisional effects are
enhanced. When the nonlinear dynamics are essentially
collisionless (meaning that the collision frequency is much
less than the dynamical frequencies), the dissipation scale
in v space is determined by the nonlinear dynamics in
just such a way that collisional dissipation balances with
turbulent production. There is a precise analogy3 to the
energy cascade in three-dimensional Navier–Stokes tur-
bulence, in which the Kolmogorov dissipation microscale
is determined as a function of the Reynolds number based
on the macroscopic velocity and spatial scale.

The most obvious mechanism for generating small
scales in velocity space is the nonlinear stretching as-
sociated with the parallel acceleration problem ż = v‖,
v̇‖ = (q/m)E‖. In unmagnetized theory, that is the only
possibility. However, in strongly magnetized situations
dominated by E×B drifts, the parallel nonlinearity is
usually small and is frequently neglected. It might then
seem that the velocity derivatives in dissipation function-
als such as (52) would remain bounded as t → ∞, in
which case D would vanish with ν . That is not correct,
however; velocity derivatives can be amplified indirectly
by spatial diffusion, as I now discuss.
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That velocity and spatial derivatives are linked in
the presence of collisional dissipation in a plasma is an
old and elementary idea familiar to all students of the
Chapman–Enskog solution of Landau’s kinetic equation
for the classical plasma transport coefficients.22 Basi-
cally, the velocity-space distortion of the first-order dis-
tribution from a Maxwellian is proportional to spatial
gradients of the fluid quantities, so when fine spatial
scales are generated by any means, the velocity deriva-
tive of δf grows. Small spatial scales can be generated
by the Hamiltonian stretching associated with E×B mo-
tion (cf. the 2D enstrophy cascade), or by nonlinear mode
coupling from perpendicular to parallel directions. It is
those nonlinear spatial processes, not the parallel non-
linearity, that drive the collisional dissipation in typical
tokamak microinstability problems.

For a specific model, I consider in Appendix B the
Chapman–Enskog solution for the PDF of a Brownian
test particle. Such a particle obeys the diffusion equa-
tion

∂

∂t

(
δn

n

)
= D

∂2

∂x2

(
δn

n

)
, (55)

and the collisional contribution to the evolution of a
fluid information–theoretic entropy N .= 1

2 (δn/n)2 is
∂tN = −D, where

D .= D

[
∂

∂x

(
δn

n

)]2
. (56)

The calculations in Appendix B show in quantitative de-
tail how formula (56), which manifestly involves spatial
derivatives, is essentially equal to formula (52), which
involves velocity derivatives.

IV. W -STATTED δf

That collisional dissipation is always important in
guaranteeing statistically steady states poses something
of a problem for particle simulation. In principle, it is
possible to simulate the actual plasma collision opera-
tor. One such scheme for δf simulations has been given
recently by Chen and White6 (who cite earlier work on
this topic); see the discussion in Sec. A 2. If the details of
the collision process [for example, either the magnitude
or the velocity dependence of ν(v)] are important, some
such detailed modelling would appear to be the only op-
tion. However, it is nontrivial to implement the full oper-
ator, and when one wishes to pass to the limit ν → 0 that
approach may be either unnecessary or impractical.23 In-
stead, a W -stat may be useful.

A. Thermostats in nonequilibrium molecular
dynamics

A W -stat is a generalization of the thermostat that has
long been used in homogeneous nonequilibrium molecular
dynamics (NEMD) simulations24 to stabilize the kinetic
temperature [Eq. (46)]. In homogeneous NEMD, one be-
gins by inventing a fictitious external force that interacts
with the particles (in a generally non-Newtonian way)
and drives, say, a heat flux. The interaction law is chosen
in such a way that the driven flux agrees with the the-
oretical prediction of linear response theory.25 However,
such driving heats the system, which therefore does not
remain at a fixed thermodynamic state point. Measure-
ments made on such time-dependent systems are difficult
to interpret. Of course, if the particles were in contact
with a heat bath in the usual sense of equilibrium statisti-
cal mechanics, net heating would not occur. However, in
the homogeneous simulations particle–wall interactions
are not modelled explicitly and the N simulation parti-
cles form a closed system. In the absence of the thermal
drive, energy rather than temperature is conserved; the
particle distribution is microcanonical, not canonical.

In modern NEMD applications, these difficulties are
overcome by using thermostats to effectively place the
N simulation particles in contact with a heat bath. They
are generally implemented as a simple time-dependent
Langevin-like damping in the momentum equation:

ṗi = F i − ζ̃(t)pi. (57)

Here ζ̃ is the thermostat and F represents the total
forces on the particles (both internal and external, New-
tonian and fictitious). The value of ζ̃ is determined
from appropriate sums over all particles, so ζ̃ carries
no i subscript. (For consistency with previous nota-
tion, pi and F i should also be marked with a tilde,
but that is omitted here to reduce clutter.) In the so-
called Gaussian26 isokinetic thermostat, ζ̃ is constructed
to hold the kinetic temperature precisely constant. Thus,
upon noting that ˙̃K = N−1

∑
i ṗi·pi/mi, one can multi-

ply Eq. (57) by pi/mi and sum over all particles to obtain

˙̃K = 0 =
(

N−1
∑

i

F i·pi/mi

)
− ζ̃

(
N−1

∑
i

p2
i /mi

)
.

(58)

This determines ζ̃, at each time step, to be

ζ̃ =
〈F ·p/m〉N

2K , (59)

where K = K̃ is constant. Alternatively, a differential
equation for ζ̃ can be given such that merely the time
average of K is held constant. The standard choice here
is the Nosé–Hoover thermostat,27,25 which implements
an integral feedback.28
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The thermostat models the flow of heat from the ther-
mally driven system to a heat bath; it allows a true steady
state to develop. By direct analogy, a W -stat may be
used to model the flow of entropy from the plasma sys-
tem (driven by profile and/or velocity gradients) to the
unresolved fine scales in velocity space. If an actual colli-
sion operator is not implemented, then a W -stat or sim-
ilar device must be; otherwise a true statistically steady
state with nonzero turbulent flux cannot be achieved.

B. The Gaussian W -stat

A first attempt at a W -statted version of the model
equation (48) (generalized to p 6= 1) is

ẇi = pi(κVi − ζ̃wi), (60a)
ṗi = −ẇi, (60b)

where I use V = δVE,x for notational simplicity. (Paral-
lel effects can be incorporated simply by generalizing the
definition of V. Possible generalizations of the Krook-
like damping term −ζ̃w will be discussed in Sec. IVD.)
A Gaussian W -stat that holds W̃

.= N−1
∑

i w2
i /pi pre-

cisely constant can be constructed by noting that

d

dt
(
1
2
w2/p) = (w/p)ẇ − 1

2
(w2/p2)ṗ (61a)

=
(

wc′

p2

)
ẇ, (61b)

where

c′ .= p +
1
2
w = c− 1

2
w (62)

[see Eq. (29)]. Thus, upon multiplying Eq. (60)
by (wc′/p2)i and summing over i, one finds

ζ̃ = κΓ̃′/W̃ ′, (63)

where

Γ̃′ .= N−1
∑

i

(Vwc′/p)i, (64a)

W̃ ′ .= N−1
∑

i

(w2c′/p)i; (64b)

the primes denote the presence of the factors c′/p and
W = W̃ is held constant by the Gaussian W -stat. If c′/p

is approximated by 1 (c ≈ 1, w � 1), Γ̃′ → Γ̃ (the in-
stantaneous particle flux as measured in the simulation)
and W̃ ′ → W̃ . Factors analogous to c′/p do not appear
in the NEMD expression (59) because the particle mass
is independent of time, whereas p is not. Note that ζ̃
fluctuates in time (being a ratio of sample means).

A physical interpretation of ζ̃ follows by replacing κΓ̃
in Eq. (63) by the known steady-state dissipation D that

is being modelled; from Eq. (52), the steady-state bal-
ance P = D [see Eq. (43)], and the Einstein relation
between Dv and ν , one obtains

ζ = 〈ζ̃〉 = Dv

〈(
∂w

∂v

)2
〉

/W ∼ ν
( vt

δv

)2 .= νeff. (65)

Here δv is, by definition, the Taylor microscale29,30,3 in
velocity space (not the Kolmogorov velocity dissipation
microscale). ζ is thus an effective collision frequency or
scattering rate based on the Taylor microscale. Accord-
ing to Eq. (B9), an alternative form is

vt/δv = λmfp/δx, (66)

δx being Taylor’s classical spatial microscale.
Another insight into the interpretation of the W -stat

comes from considering the Liouville equation for
W -statted particle dynamics in the extended space
({z}, {w}), where the braces indicate the set of coordi-
nates for all of the N particles:

∂

∂t
P ({z}, {w}, t) +

∑
i

[
∂

∂zi
·(żiP ) +

∂

∂wi
(ẇiP )

]
= 0.

(67)

Although the flow is incompressible in the usual z space
(∂z·ż = 0), it is compressible in the w direction:

∂ẇi

∂wi
≈ −ζ < 0, (68)

where an unimportant term ∂ζ/∂wi of O(1/N) has been
omitted for clarity. That is, the W -stat causes phase-
space volumes to contract in the w direction, consistent
with its interpretation as modelling the dissipative effects
of the unresolved degrees of freedom.

Some discussion of the relationship of the W -stat to
the full plasma collision operator is given in Sec. A 2.

C. Justification of the W -stat for simulations of
turbulence

To this point, the analogy between thermostatted
NEMD and W -statted δf has been precise. However,
the procedures for calculating the steady-state flux dif-
fer substantially. In NEMD, the thermodynamic state
point (the temperature, in particular) is fixed by the
thermostat, and the simulation is run until the ther-
mal flux Q saturates; the saturated value of Q is the
desired answer. In turbulent δf , however, the effective
state point (namely, the value of the steady-state en-
tropy, or equivalently of W ) is not known in advance,
but in principle must be computed by a complete solu-
tion to the turbulence problem (in the presence of colli-
sions). W -statted δf will produce a steady-state flux for
any W , but only one of those W ’s is the physical one
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that corresponds to the balance between turbulent pro-
duction and collisional dissipation in a saturated state.
A conventional collisional simulation would be run as
an initial-value problem until that balance was achieved;
however, in the limit of weak collisions the required run
time may be prohibitive. In the present method, by con-
trast, the steady-state version of Eq. (43) is asserted for
all times. (This does not mean that the value of Γ is
time-independent. There will be a short initial transient
of approximate duration τac during which phase corre-
lations are built up from the random initial conditions.
However, each step in that process corresponds to the
same W , which means that one avoids a possibly long
initial phase during which the weights themselves build
up to their natural level.)

1. An extrapolation procedure for the collisionless flux

To determine the appropriate W to use in parametriz-
ing the steady state, it is necessary to understand the
statistical behavior of the Langevin equation (60). Let
us assume that V is a random variable characterized by a
Lagrangian autocorrelation time τac, and that ζ ≡ νeff is
constant. Then Eq. (60) is identical to the model equa-
tion (119) analyzed in great detail in Ref. 3. Consider
in particular the physical limit νeffτac � 1. Then it was
shown in Ref. 3 that, although the flux asymptotes to
the constant value Γ∞ → κD on the short τac scale, the
entropy has singular behavior that depends on the order
of the limits t →∞ and νeff → 0:

W (t) = κ2D

(
1− e−2νefft

2νeff

)
(69a)

→
{

κ2D/2νeff (νefft →∞),
κ2Dt (νefft → 0). (69b)

The limit νefft → 0 recovers Eq. (54); the physical limit,
however, is fixed, nonzero νeff and νefft →∞.

This behavior may be exploited to determine the phys-
ical flux in W -statted δf . Thus, one expects that in the
physical dynamics with real collisional dissipation, to the
extent that νeffτac � 1 the flux should quickly saturate
on the τac time scale while W (t) should saturate only on
the longer (effective) collisional time scale. This temporal
behavior of the real dynamics of a single (possibly long)
run can be transcribed to the behavior of a series of (rela-
tively short) steady-state W -statted runs parametrized31

by W . That is, Γ(W ) should become asymptotically in-
dependent of W for W > W (τac). Thus, an extrapola-
tion procedure is suggested in which Γ(W ) is computed
(with the W -statted dynamics) for an appropriate range
of relatively small W . (Small W corresponds to large
effective dissipation.) If the results indicate a sensible
trend toward asymptotic independence as W increases
(νeff decreases), the curve can be extrapolated to the
limit W → ∞; the physical flux is Γ(∞). Notice that

this procedure, depicted in Fig. 3, neither requires nor
produces the actual physical value of W (t = ∞), which
according to Eq. (69b) is finite, not infinite.

Γ(    )W

8Γ(    )

W
FIG. 3. Sketch of the proposed extrapolation procedure for

inferring the asymptotic steady-state flux Γ. Solid line is fit
to the several data points; Γ(∞) is the limit of that fit as
W → ∞. In the physical state with nonzero collisionality,
W (t = ∞) is finite.

2. Numerical demonstration

I have performed preliminary numerical experiments
to test the feasibility of these ideas. I employed a 2D,
unsheared-slab, gyrokinetic simulation code,32 versions
of which have been used frequently in the past to ana-
lyze microinstabilities and develop simulation techniques.
Although the dynamics evolve in two dimensions, paral-
lel motion and Landau damping are included by setting
kz = θky , θ � 1. ITG fluctuations are simulated by
imposing adiabatic electron response.

The Fourier amplitudes (kx, ky, kz) = (kx, 0, 0) [“(0, 0)
modes”] have special importance. They correspond to
random potentials that vary only in the x direction,
hence generate random shear flows (zonal flows) in the
y direction. In modern simulations of toroidal microin-
stabilities, substantial evidence has accrued suggesting
that such modes can dramatically affect and suppress the
overall level of the turbulence. In slab geometry they are
driven entirely nonlinearly, since all linear terms in the
gyrokinetic operator involve either ky or kz [cf. Eq. (14)].
Toroidal effects are thus important to a proper descrip-
tion, but they are still a subject of active research this
article. In the present unsheared-slab simulations it ap-
pears that the fundamental mode (1, 0, 0) does not sat-
urate, possibly a consequence of negative eddy viscos-
ity. Therefore, in the runs reported here the potentials
ϕkx,0,0 were clamped to zero during the solution of the
gyrokinetic Poisson equation, following a long-standing
practice for this 2D model. Note that the goal of the
present numerical experiments is not to perform realis-
tic simulations of confined plasmas but to compare some
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basic properties of thermostatted and non-thermostatted
simulations; for that purpose, this simple model suffices.

The basic code as provided by previous authors32 im-
plemented a bounded model in which the potential was
clamped to zero at x = 0 and x = Lx by employing
a Fourier sine transform. That is convenient for gener-
alization to magnetic shear and arbitrary profiles, but
introduces a weak translational inhomogeneity that can
complicate the interpretation. For periodic boundary
conditions, which I have also implemented and studied,
statistical invariance under translation (κ = constant)
ensures that the flux G(x, v) is rigorously independent
of x [see the discussion after Eq. (15)]. The model that
was actually studied omitted the ∂xG term (as well as
sources and explicit collisions) on the right-hand side of
Eq. (13a) for both kinds of boundary conditions; that is,
the weight equation was the first line of Eq. (25). No
qualitative differences were observed between runs with
different boundary conditions.

As mentioned at the end of Sec. II C 2, runs with p =
c−w encountered fluctuation difficulties that have not yet
been fully resolved, so the runs reported here used p = 1.
All of the runs used a grid of (nx, ny) = (32, 64) cells and
25000 particles, corresponding to about 12 particles per
Eulerian spatial cell. Box lengths of (Lx, Ly) = (32, 64)
(in units of ρs) were used. For the bounded model, those
correspond to fundamental wave numbers (mode spac-
ings) of (π/Lx, 2π/Ly) ≈ (0.1, 0.1), and to maximum k’s
approximately equal to 3 in each direction. I used the
parameters κn = 0, κT = 0.03, and θ = 0.006, which
according to numerical solution of the linear slab ITG
dispersion relation positions the linearly most unstable
mode at (kx, ky) ≈ (0, 0.5).

The relatively small numbers of particles and modes,
necessary for rapid real-time turnaround in this ex-
ploratory phase, mean that instantaneous flux measure-
ments exhibit considerable noise. In modern 3D sim-
ulations that use millions of particles and many modes,
that noise is considerably reduced. Nevertheless, qualita-
tive differences have been observed between thermostat-
ted and unthermostatted runs.

In Fig. 4 is shown the thermal flux ΓT for a typi-
cal unthermostatted simulation that grows from noise;
the corresponding evolution of W

.= 〈δw2〉N is shown in
Fig. 5. ΓT is observed to saturate around t ≈ 5 × 103,
and the mean-square weights W are seen to grow lin-
early with time. However, increased noise on the flux
is observed as W grows beyond 0.2. The run was ter-
minated shortly after that point, partly because of the
enhanced noise, partly because the basic approximation
w � 1 was breaking down.
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FIG. 4. Typical ΓT for unthermostatted simulation. See
text for parameters.
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FIG. 5. W (t) corresponding to Fig. 4.

The Gaussian thermostat −ζw can be implemented
with a minimum of complication. In the original unther-
mostatted version of the code (a second-order predictor–
corrector in time), a single loop was used for both cor-
recting the particle coordinates and weights and accu-
mulating diagnostics. Because ζ depends on the current
values of the fluxes, it was necessary to split that loop
into two: the first corrects the coordinates and accumu-
lates the fluxes (using the predicted weights); the second
corrects w using the new ζ. Such modifications involve
only a few lines of code. More accurate algorithms are
also feasible.

To test the extrapolation procedure, thermostatted
runs were performed for W ∈ {0.0125, 0.025, 0.05, 0.1,
0.15, 0.2}. In practice, the numerical algorithm does not
clamp W precisely to its specified initial value. To com-
pensate for that (small) error, the weights were renor-
malized at each time step to have zero average and the
specified W ; although that procedure is almost certainly
unnecessary, it eliminated one possible source of confu-
sion in interpreting the results. The flux for W = 0.05 is
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shown in Fig. 6. Note that (i) the flux rises quickly to its
saturated value; (ii) the simulation has been run much
longer (measured from the onset of saturation) than the
unthermostatted one shown in Fig. 4, yet the noise level
does not grow; (iii) the time-averaged flux is lower than
in Fig. 4 (this value of W is moderately dissipative). The
steady-state fluxes extracted from the indicated runs are
plotted in Fig. 7; they are seen to exhibit the qualitative
W dependence suggested in Fig. 3. Also shown in Fig. 7
is the least-squares fit to the function

Γ(W ) =
aW

1 + bW
, (70)

dependent on the two parameter a and b. This form is
motivated by the analytical solution of the model prob-
lem in Ref. 3; it is seen to provide a quite reasonable de-
scription of the data. With this form, the extrapolated
collisionless flux is

Γ(∞) = a/b, (71)

which for this particular data evaluates to Γ(∞) ≈
0.00126. This is somewhat higher than, but in not un-
reasonable agreement with the later stages of the unther-
mostatted flux.

0 2000 4000 6000 8000 10000
t

0.0000

0.0002

0.0004

0.0006

0.0008

G
T

FIG. 6. Representative thermal flux for a thermostatted
run; W = 0.05. Note the vertical scale change from Fig. 4;
thermostatted runs have significantly reduced fluctuations.

It should be noted that, for the purposes of Fig. 7,
determination of the steady-state flux was done by a rel-
atively crude time-averaging procedure that could be re-
fined. The fitting process could also be improved by in-
corporating the experimental uncertainties into the rela-
tive weighting of the data points. However, for this initial
qualitative demonstration such refinements did not seem
warranted.
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FIG. 7. Data points (solid squares) from a series of
thermostatted runs, and fit (solid line) to the function
Γ(W ) = aW/(1 + bW ). The dotted line indicates the asymp-
totic value Γ(∞) = a/b.

D. W -statting, conservation laws, and shear-flow
modes

At first glance, one might be tempted to identify the
thermostatting term −ζw with a simple Krook model
−νδf of a collision operator. That interpretation is in-
correct in two (related) ways: (i) a Krook model would
usually involve the actual collision frequency ν , whereas
it has been shown that ζ ∼ νeff � ν ; (ii) the Krook
model is linear (ν is independent of the turbulence level),
whereas thermostatting is nonlinear (ζ is proportional
to Γ and, hence, to the turbulence level). Nevertheless,
simple Krook-like operators do not properly respect the
conservation laws of the true collision operator. A term
−ζw is essentially equivalent to a damping −ζδf in the
equation for ∂tδf ; such damping conserves neither num-
ber, momentum, nor kinetic energy.33

To rectify this problem, one can apply the W -stat not
to δf , but rather to Qδf . Here Q is a projection opera-
tor defined by Q

.= I− P, where I is the unit tensor and
P projects into the null eigenspace of the collision opera-
tor. This is consistent with the idea that in steady state
low-order fluid moments quickly saturate and do not con-
tribute to the time evolution of F . Thus, introduce a
Dirac notation and scalar product in velocity space34

such that | a 〉 ≡ af , 〈 a | ≡ a, 〈a | b〉 .=
∫

dv a(v)b(v)f(v)
(a species summation is omitted for simplicity), and
write δf = δχf = | δχ 〉. Then, upon noting that
| δχ 〉 = (P + Q)| δχ 〉 and that P and Q are orthogonal,
one has

2F = (δf/f)2 (72a)

= 〈 (P + Q)δχ | (P + Q)δχ 〉 (72b)

= 〈 δχ | (P2 + Q2) | δχ 〉 (72c)

= 〈‖Pδχ‖2〉+ 〈‖Qδχ‖2〉; (72d)
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for times t > τac, only the Q term contributes to Ḟ .
The simplest example of this general discussion is to

define P to extract the density fluctuations from δf . Then

δn/n = 〈 1 | δχ 〉, (73)

and the projection operator that extracts the relative
density fluctuation is P = | 1 〉〈 1 |; hence

Q| δχ 〉 = (I− | 1 〉〈 1 |)| δχ 〉= | δf
f
〉 − δn

n
| 1 〉. (74)

Since

δf − δn

n
f = f̃m

[
w − p

(
δn

n

)]
, (75)

one is led to replace the W -stat term −ζw by

−ζw → −ζ(w − p δn/n). (76)

The generalization that subtracts out projections
onto the momentum and kinetic-energy subspaces is
straightforward.35

I have previously commented on the special status
of the (0, 0) modes (subsequently denoted by the sub-
script 0). One may inquire whether addition of the basic
W -stat spuriously damps those modes in realistic sim-
ulations, or conversely whether such damping may help
stabilize those modes in the present slab model. Upon
specializing to homogeneous simulations for simplicity,
one has

∂tδf0(x, v) + ∂x(δVE,x δf)0 = −C[δf ]0 . (77)

After taking the velocity moment, ignoring finite gyrora-
dius effects for simplicity, and noting that the collision
operator conserves number, one obtains

∂tδn0(x) + ∂x(δVE,x δn)0 = 0. (78)

Here

(δVE,x δn)0(x) =
∑

k⊥ 6=0

δV ∗Ex,k⊥δnk⊥ , (79)

where k⊥ ≡ (ky, kz). Obviously there is no direct colli-
sional damping on δn0. That is described correctly if the
projection (75) is used to define the W -stat.

I have noted35 that there is some uncertainty in the
proper choice of projection Q. I will now argue that the
addition of a W -stat does not significantly affect the non-
linear dynamics of δn0, even when the simplest, nonpro-
jected W -stat (60a) is used. First rewrite Eq. (78) as

∂tδn0(x, t) = −∂x(δVE,x δn)0 ≡ g̃0(x, t). (80)

Note that g̃0 is functionally dependent on δn0.
The theory of Langevin representations for statistical
closures36,37,21 suggests that an adequate representation
is

g̃0 = −νT δn0 + g̃, (81)

where νT describes coherent response and g̃ is statisti-
cally independent of δn0. In systems that achieve steady
state, νT must be positive for linearly unstable modes;
however, in general it can be negative and that appears
to be the case for the present slab model. Dimensionally,
νT ∼ k

2

xD, where kx is a typical kx and D, having the
dimensions (although not necessarily the sign) of a cross-
field diffusion coefficient, is determined by fluctuations of
the short-wavelength, non-shear-flow modes.

The simplest unprojected W -stat would effectively re-
place νT by νT + ζ, so ζ is unimportant to the extent
that ζ/|νT | � 1. This criterion can be rewritten with
the aid of Eq. (65) as (νeffτac)/(|νT |τac) � 1. But in or-
der of magnitude one expects that |νT |τac = O(1); hence
the dynamical effects of ζ on the shear modes are unim-
portant for νeffτac � 1, the same limit in which the flux
has been argued to be independent of the presence of the
W -stat. This is a satisfying consistency, and the conclu-
sion is independent of the sign of νT . Again, this issue
does not arise if the projected W -stat, Eq. (76), is used.

V. DISCUSSION

The purpose of this work is to provide a solution to
the frequent criticism that fluctuation noise in collision-
less δf simulations, as measured by the variance W of the
marker weights, diffusively increases at long times. This
behavior has been called the entropy paradox3: a statis-
tical observable in a purported steady state is changing
in time, so a true steady state has not, in fact, been
achieved.

First, a rigorous derivation of the δf equation was
given, paying close attention to the distinction be-
tween the background PDF f ; the complete, randomly-
fluctuating distribution f̃ ; and the associated marker
distributions. It was noted that not all extant algo-
rithms implement that equation consistently. In particu-
lar, many inhomogeneous global simulations do not main-
tain 〈δf〉 = 0 as they should. In principle, that problem
can be cured by a systematically derived modification to
the weight equation [see the ∂xG term in Eq. (25)], but no
attempt was made to implement that term in the present
work.

Next, following the work of Ref. 3, it was pointed
out that the effective collisional dissipation νeff remains
nonzero as the collision frequency ν is taken to zero.
Strictly collisionless simulations are never correct; the
limit ν → 0 is asymptotically singular. It was proposed
to take νeff into account by modifying the marker weight
equation to include a W -stat—a time-dependent damp-
ing constructed such that W is frozen in time. This pro-
cedure deliberately violates Liouville’s theorem; phase-
space volumes contract in the w direction, in accord
with the interpretation of the W -stat as representing
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the dissipative effects of the unresolved degrees of free-
dom. A close analogy to the thermostats of nonequilib-
rium molecular dynamics was noted, although the ratio-
nale for turbulent W -stats differs from that for NEMD.
For NEMD, one proves that the thermostat does not
change the prediction of linear response theory. For δf ,
one instead argues that fluxes saturate on a short au-
tocorrelation scale whereas entropy saturates on the
longer time scale of the effective dissipation, so there is
a critical W above which Γ is essentially independent
of W . Preliminary numerical experiments with a simple
unsheared-slab model of ITG fluctuations were consistent
with this prediction. This behavior leads to an extrapola-
tion procedure wherein the time-asymptotic collisionless
flux can be inferred from a series of short W -statted runs
with high effective collisionality.

I considered explicitly only the Gaussian W -stat. Fur-
ther consideration should be given to the relative merits
of Nosé–Hoover W -stats.

The technique guarantees that entropy, a particular
second-order phase-space statistical observable, is con-
stant in time. It therefore resolves the entropy paradox
by permitting a true steady state for fluxes and entropy
simultaneously. No proof has been given that all other
phase-space observables attain a statistical steady state
as well. That is at least plausible; the dissipation intro-
duced by the W -stat represents a qualitative improve-
ment over the conservative Hamiltonian dynamics con-
tained in collisionless δf , so some sort of statistical bal-
ance can be expected. However, steady states or not, it is
asking too much to hope that fine-scale statistics are rep-
resented correctly by W -statted dynamics. The W -stat
implements only a global phase-space constraint, in a
way that eliminates long initial transients and allows for
sensible, low-noise and long-time measurements of low-
order fluid moments. For refined studies of phase-space
structure functions and the like, one must presumably
resort to detailed modelling of collisional effects, perhaps
along the lines of the collisional δf algorithm of Chen and
White.6

The method of W -statted steady states represents an
attempt to be “clever” in the description of the singular
limit ν → 0. As computer power increases, there will
likely be a strong tendency to instead use brute force—
i.e., full collisional modelling—for most simulations, in-
cluding almost collisionless ones. Perhaps that is the
correct approach, and it should certainly be explored.
However, a general philosophy is that singular limits are
dangerous, difficult, and very instructive. The work in
this paper adds to one’s understanding of the important
singular limit ν → 0 by providing an alternative route
to computing steady-state fluxes in that limit that can
be used to benchmark fully collisional simulations. Such
benchmarking represents an interesting goal for the fu-
ture.
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APPENDIX A: ADDITIONAL REMARKS ON δf
ALGORITHMS

In this section I provide some additional discussion
about collisionless and collisional δf algorithms.

1. Collisionless δf and the Lagrangian phase-space
lattice

It is sometimes useful to view the markers as defin-
ing the vertices of volume elements ∆Ai of a random
Lagrangian phase-space lattice. For example, one might
determined the ∆A’s by Delaunay triangulation38 or its
generalization to higher dimensions. In collisionless the-
ory, that lattice evolves in a simple way. To the extent
that the phase-space flow is incompressible, the elemen-
tary volumes are conserved; however, generalization to
compressible flow is straightforward1 and the δf algo-
rithm does not require that the volume elements be con-
served. If the marker collision operator is negligible, and
in the absence of a marker source, the effective number
of marker trajectories within each elementary volume el-
ement is conserved:∫

∆Ai

dz f̂m(z, t) ≈ ∆Ai(t)f̃m(z̃i, t) (A1a)

= ∆Ai(0)f̃m(z̃i(0), 0) (A1b)
= n−1

m . (A1c)

Equation (A1c), which states that there is exactly one
representative marker trajectory at the center of each
volume element, is taken to be a precise equality, so the
∆Ai’s are not uniformly distributed in space even at t = 0
unless f̃m(0) is independent of x. The Eulerian moments
can then be approximated as a Riemann sum1 over the
time-evolved Lagrangian lattice:

δM(z, t) =
Nm∑
i=1

∆Ai(t)f̃m(z, t)|z=z̃i(t)

× M̂(z; z)w(z, t)|z=z̃i(t) (A2a)

≈ 1
nm

Nm∑
i=1

[M̂(z; z)w(z, t)]|z=z̃i(t). (A2b)
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This reproduces formula (20b).
This discussion provides a characterization of the way

in which a collisionless sampling distribution evolves.
However, it is important to stress that it is unnecessary
to introduce the Lagrangian lattice or calculate the ∆A’s
in order to proceed with the general δf formalism. That
depends only on the existence of the sampling distribu-
tion g̃, which evolves in a definite way both in the pres-
ence of collisions and in their absence. For more discus-
sion of collisional effects, see Sec. A 2.

In collisionless theory, an initial triangulation evolves
smoothly and continuously, preserving positive ∆A’s. In
the presence of collisions (Sec. A 2), stochastic scattering
can change the relative orientation of the initial vertices,
making some ∆A’s negative if one attempts to maintain
the initial topology. However, the sampling technique
does not require that a given triangulation be continu-
ously evolved. At any time t, there always exists a trian-
gulation with all ∆A’s positive.

The Lagrangian, time-evolving phase-space lat-
tice ∆Ai(t) should not be confused with the fixed, Eu-
lerian spatial grid that is used to calculate discretized
quantities such as δρ(x) in the course of solving Poisson’s
equation; see Fig. 8. Knowledge of the Lagrangian lat-
tice is simply not required in order to evolve the weights.
However, it may be useful in conjunction with a the-
ory of marker sources and/or sinks. Although collision-
less dynamics conserve the volume ∆A of an elemen-
tary simplex, ∆A may become highly elongated in the
course of time, possibly stretching well over localized re-
gions of important perturbations to δf . Such situations
can be efficiently recognized and extra markers added
to selectively improve the resolution. The inverse pro-
cess of removing unnecessary markers is also possible.
One possibility for such adaptive resolution involves cal-
culation of a Delaunay triangulation, which affords one
access to extensive results and computer subroutines for
adaptive grid refinement in computational fluid dynamics
(CFD).39 Note that although triangulation is computa-
tionally expensive, it need be done only occasionally, not
at every time step. Also, the sophisticated triangulations
used in CFD enforce certain criteria that may be unnec-
essary for the present application. The relative merits of
triangulation-based refinement vs various particle split-
ting schemes remain to be explored.
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FIG. 8. The 486 triangles generated by Delaunay trian-
gulation of an x–v phase space containing 250 points sam-
pled from a Gaussian distribution centered around x = 1
and v = 2.5 with standard deviation σ = 0.5 in both direc-
tions. For purposes of illustration, a sample Eulerian grid
represented by the dotted lines is imposed in the x direction.
Calculation of potentials by Monte–Carlo sampling involves
vertical sums over each bin, independent of with which trian-
gles a point is associated. But the triangulation may be useful
for adaptive refinement or coarsening of the random particle
distribution.

2. Collisional δf and the algorithm of Chen and
White

Recently Chen and White6 proposed a collisional ex-
tension of the standard collisionless δf algorithm. Their
procedure relied on (i) introduction of an extended (z, w)
phase space; (ii) scattering the markers according to the
binary-collision algorithm of Takizuka and Abe.40 Their
final results relied on the restrictive choice f̃m = f̃ . I
have already noted in general terms (Sec. II C 1) that in-
troduction of the extended phase space is unnecessary.
However, it is useful to see that more explicitly by red-
eriving the results of Chen and White directly from the
definition (19). The discussion of this section has bene-
fitted from an ongoing collaboration with S. Brunner and
E. Valeo.

It is sufficient to focus only on binary collisions; for
simplicity, I consider a single species. Thus, assume that
the given dynamical equation to be solved is

∂tf̃ = −C[f̃ , f̃ ], (A3)

where C is the Landau operator, a bilinear operator that
in general operates on two distinct functions a and b.
Thus,

C[a, b] .= −Γ
∂

∂v
·
∫

dv′ U(v − v′)

·
(

∂

∂v
− ∂

∂v′

)
a(v′)b(v), (A4)
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where U(u) .= (I − û û)/u and Γ is proportional to the
collision frequency.

Effectively, the algorithm of Takizuka and Abe sim-
ulates the Landau operator by numerically solving the
random Klimontovich equation

∂tf̂ + ∂·(â[f̂ ]f̂) = 0, (A5)

where during any time interval ∆t the random white-
noise acceleration â, functionally dependent on the
statistics of the physical particles, leads to a velocity in-
crement ∆v that obeys Eqs. (25)–(29) of Ref. 6. Those
increments are consistent with the Fokker–Planck de-
scription of small-angle velocity scattering in a plasma.
That is, the fine-scaled statistical average of Eq. (A5) re-
duces to Eq. (A3) in the limit of small plasma parameter
εp

.= 1/nλ3
D. Note that the fine-scaled statistical average

of the generalized equation

∂tĝ = −∂·(â[f̂ ]ĝ) (A6a)

is

∂tg̃ = −C[f̃ , g̃]. (A6b)

Now consider the reduction of Eq. (A3) to colli-
sional δf . The procedure detailed in Sec. II B leads to

∂tδf = −{C[f̃ , f̃ ]− (C[f, f ] + 〈C[δf, δf ]〉)} (A7a)
= −(C[f, δf ] + C[δf, f ]

+ C[δf, δf ] − 〈C[δf, δf ]〉). (A7b)

The corresponding equation of Chen and White did not
include the term 〈C[δf, δf ]〉 because, following the pro-
cedures of previous workers, their definition did not in-
clude an average over macroscopic turbulent fluctuations
or initial conditions, so did not satisfy 〈δf〉 = 0.

From the definition w
.= δf/g̃, the evolution equation

for the Eulerian field w follows directly by partial time
differentation:

∂w

∂t
=

1
g̃

(
−w

∂g̃

∂t
+

∂δf

∂t

)
(A8a)

= g̃−1{w C[f̃ , g̃]︸ ︷︷ ︸
(a)

−(C[f, δf ]︸ ︷︷ ︸
(b)

+C[δf, f ]︸ ︷︷ ︸
(c)

+ C[δf, δf ]︸ ︷︷ ︸
(d)

−〈C[δf, δf ]〉︸ ︷︷ ︸
(e)

)}. (A8b)

Note that although this equation inherits the structure
of Eq. (A7b), necessary to ensure 〈δf〉 = 0, w does not
itself have zero mean.

The goal is to find a workable equation for a stochas-
tic ŵ whose fine-scaled average is w: w = 〈ŵ〉fine. To
that end, notice that because C is a bilinear operator
terms (b) and (d) combine to give

C[f̃ , δf ] = C[f̃ , 〈δf̂〉fine] (A9a)

= 〈C[f̃ , δf̂ ]〉fine (A9b)

= 〈∂·(â[f̂ ]δf̂)〉fine, (A9c)

where δf̂
.= w ĝ. [The latter result strictly follows only

when δf̂ obeys an equation of the form (A6a). That is not
quite true due to collisional corrections represented by
terms (c) and (e), but those are unimportant on the rapid
time scale of the random velocity increments.] Upon re-
calling Eq. (A5), one then has

∂tw = g̃−1{w〈∂·(â[f̂ ]ĝ)〉fine − 〈∂·(â[f̂ ]ĝw)〉fine

− (C[δf, f ] − 〈C[δf, δf ]〉)}. (A10)

The corresponding equation for ŵ is naturally defined by
removing the first two averages on the right-hand side.
Upon noting a partial cancellation between the â terms,
one then finds

∂tŵ = g̃−1{−ĝâ[f̂ ]·∂w − (C[δf, f ] − 〈C[δf, δf ]〉)}.
(A11)

If one approximates ĝ ≈ g̃ and w ≈ ŵ, one may take the
acceleration term to the left-hand side, which becomes
the total time derivative along the stochastic trajectories
defined by the algorithm of Takizuka and Abe:

(∂tŵ + â[f̂ ]·∂ŵ) = −g̃−1(C[δf, f ] − 〈C[δf, δf ]〉). (A12)

Note that here the acceleration is outside the velocity
derivative; compare Eq. (A6a). Also note that the statis-
tics of â[f̂ ] are determined by the physical particle dis-
tribution (including δf), not the marker distribution g̃.
That is problematical, since the physical δf statistics are
not known (finding them is the goal of the simulation).
However, following Chen and White, I note that if the
marker initial conditions and source are taken to be equal
to those of f̂ , then Eq. (A6a) is compatible with the so-
lution g̃ = f̃ , and Eq. (A12) becomes, with f̂ → ĝ,

(∂tŵ + â[ĝ]·∂ŵ) ≡ dŵ

dt
= −g̃−1(C[δf, f ] − 〈C[δf, δf ]〉).

(A13)

With the exception of the 〈C[δf, δf ]〉 term, this is the al-
gorithm deduced by Chen and White; see their Eq. (32).

In general, requiring g̃ = f̃ is unsatisfactory because
it forces one to waste resolution modelling the back-
ground f , which may be known analytically. General-
izations of the above procedure are possible in which g̃ is
arranged to follow more closely δf than f̃ . Those will be
described elsewhere.

In the context of the present paper, the importance
of Eq. (A13) is that it clearly shows what physics is
being replaced by the thermostatting procedure. The
W -stat replaces both the stochastic acceleration â[ĝ] as
well as the right-hand side of Eq. (A13). For example,
the model collision operator (49) is represented entirely
by â = −νv + δâ(t), δâ being Gaussian white noise with
appropriate variance. For that model, the right-hand side
of Eq. (A13) vanishes (for the Brownian test particle,
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there is no additional back-reaction of the test particle
on the background in addition to the frictional drag in-
corporated in the −νv term). The W -stat then provides
a replacement for the time-averaged effects of â.

APPENDIX B: ENTROPY, DISSIPATION, AND
THE BROWNIAN TEST PARTICLE

In this section I will use a simple Langevin–Fokker–
Planck model to illustrate how the velocity-space dissi-
pation functional (52) is in fact determined by spatial
diffusion.

Consider a Brownian test ion of mass M moving in a
sea of electrons of uniform temperature T . Its distribu-
tion obeys41

∂f̃

∂t
+ v

∂f̃

∂z
= −C[f̃ ] = ν

∂

∂v

(
v +

∂

∂v

)
f̃ , (B1)

where velocities are normalized to vT
.= (T/M)1/2. The

steady-state solution of (B1) is a spatially uniform Max-
wellian, f(z, v) = fM(v). The fluctuation δf

.= f̃ −f also
obeys Eq. (B1). That equation can be solved exactly for
all times,42 but it is more instructive to proceed via the
Chapman–Enskog procedure. In Chapman–Enskog, one
orders lengths to a characteristic system size L and times
to the transit time L/vT . This introduces the dimen-
sionless parameter ε

.= λmfp/L � 1, where λmfp
.= vT /ν

is the mean free path, in the denominator of the right-
hand side of Eq. (B1). For macroscopic (hydrodynamic)
motions, the lowest-order solution of Eq. (B1) is then
C[δf(0)], or

δf(0)(z, v) =
δn(z,t)

n
fM(v), (B2)

where δn must be determined. At first order,

∂δf(0)

∂t
+ v

∂δf(0)

∂z
= −C[δf(1)]. (B3)

It can be shown that density is the only quantity con-
served by C, so the solvability constraint on the solution
of Eq. (B3) is that the velocity integral of the left-hand
side vanishes:

∂

∂t

(
δn

n

)
= 0. (B4)

This is a degenerate Euler equation that states that δn is
constant on the transit time scale: δn = δn(z, εt). For
the first-order solution write δf(1) = fMχ; then the so-
lution to v ∂zδf

(0) = −C[δf(1)] can readily be shown to
be

χ = −v

ν

∂

∂z

(
δn

n

)
. (B5)

Long-time evolution follows from the rigorous continuity
equation

∂

∂t

(
δn

n

)
= −∂Γ

∂z
, (B6)

where

Γ .=
∫ ∞

−∞
dv v δf ≈

∫ ∞

−∞
dv v δf(1) = −D

∂

∂z

(
δn

n

)
(B7)

and D
.= v2

T /ν .
Now consider the entropy evolution from both kinetic

and fluid points of view. With w
.= δf/f , one has

[cf. Eqs. (51)]

∂

∂t

(
1
2
w2

)
= −Dv

(
∂w

∂v

)2

. (B8a)

On the other hand, from Eq. (B6) one obtains

∂

∂t

[
1
2

(
δn

n

)2
]

= −D

[
∂

∂z

(
δn

n

)]2
. (B8b)

To lowest order, w ≈ w(0) = δf(0)/f = δn/n, so the left-
hand sides of Eqs. (B8) are essentially equal. w(0) does
not contribute to the right-hand side of Eq. (B8a) be-
cause δn/n is independent of v, but w(1) = χ does. From
Eq. (B5), one finds

∂χ

∂v
= −1

ν

∂

∂z

(
δn

n

)
, (B9)

and upon substituting this result into Eq. (B8a), one con-
sistently shows that the right-hand sides of Eqs. (B8) are
equal as well. Equation (B9) is the simplest example of
the link, asserted in Sec. III D, between velocity gradients
and spatial gradients.
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