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Abstract

Recent stability results of external kink modes and vertical modes in compact

stellarators are presented. The vertical mode is found to be stabilized by

externally generated poloidal flux. A simple stability criterion is derived in

the limit of large aspect ratio and constant current density. For a wall at

infinite distance from the plasma, the amount of external flux needed for

stabilization is given by Fi = (κ2 − κ)/(κ2 + 1), where κ is the axisymmetric

elongation and Fi is the fraction of the external rotational transform. A

systematic parameter study shows that the external kink mode in QAS can

be stabilized at high beta (∼ 5%) without a conducting wall by magnetic shear

via 3D shaping. It is found that external kinks are driven by both parallel

current and pressure gradient. The pressure contributes significantly to the

overall drive through the curvature term and the Pfirsch-Schluter current.
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I. INTRODUCTION

The design of the proposed National Compact Stellarator Experiment(NCSX) [1–3] aims

at combining the best features of both tokamak and stellarator to achieve reactor-relevant

plasma performance: high beta, good particle confinement, disruption-free steady state

operation with little need for current drive, and compact size. The NCSX is based on

the concept of a quasi-axisymmetric stellarator (QAS) [4,5]. Quasi-axisymmetry denotes

a magnetic field strength that is approximately axisymmetric in Boozer coordinate, hence

the particle confinement of a quasi-axisymmetric device is nearly as good as that of an

axisymmetric tokamak. Our QAS configurations are obtained from tokamaks by adding

rotational transform generated by 3D shaping (nonaxisymmetric coils) in such a way that

the Boozer spectrum of field strength is approximately axisymmetric.

At high beta, quasi-axisymmetry necessarily leads to substantial bootstrap currents.

The bootstrap current generates an internal rotational transform which always adds to the

externally generated transform. This large current helps to generate poloidal flux needed

for good confinement, but it may also destabilize kink modes as in tokamaks. In this work,

we investigate the stability of ideal Magnetohydrodynamics(MHD) modes, such as external

kink modes and vertical mode, in QAS.

Early work considered current-driven external kink modes and recognized the stabilizing

role of magnetic shear [6–8]. More recently, Mikhajlov and Shafranov [9] have shown ana-

lytically that a sufficient magnetic shear generated by helical coils can stabilize the external

kink modes. With only a few exceptions [10,11], previous work on current-driven kinks as-

sumed large aspect ratio and low beta. More recently, Johnson et al. [11], assuming large

aspect ratio, found that the effects of bootstrap current on kinks are strongly destabilizing

at finite beta in the Large Helical Device (LHD) [12]. In other work, Ardelea and Cooper

[10] found that external kink modes in tokamaks can be stabilized by 3D deformation for

q < 2 at moderate beta values (β < 2%). In this work, we use fully 3D calculations for high

beta compact stellarators where the external kinks are driven by both bootstrap current and
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pressure gradient.

We find that external kink modes in high beta QAS can be stabilized by global and

local magnetic shear using appropriate 3D shaping without a conducting wall. In contrast,

advanced tokamaks with high bootstrap fraction tend to have much lower beta limits with-

out wall stabilization. Initial results of external kink stability in QAS have been reported

elsewhere [13]. Here the stability results are refined by using more Fourier harmonics for

the perturbation.

Here, we also study for the first time the vertical mode in QAS configurations. We

find that highly shaped QAS configurations are much more stable to vertical modes than

tokamaks. Physically, this is because the externally generated poloidal flux enhances the

field line bending energy relative to the current-driven term.

In addition to QAS, we have recently investigated the MHD stability in Quasi-

Omnigeneous Stellarators (QOS) [3,14]. QOS devices are ones where the contours of the

second adiabatic invariant J =
∫

v‖dl approximately coincide with magnetic flux surfaces

so that the trapped particle orbit deviation from flux surfaces is minimal and the particle

confinement is much improved over that of conventional stellarators. QOS configurations

typically have much larger helical component than QAS configurations. One consequence

of this is that in QOS devices the bootstrap current is smaller than that of QAS devices be-

cause of cancellation between the n = 0 component and n 6= 0 components of the bootstrap

current. Also, the bootstrap current can be of either sign so it can add to, or subtract from,

the vacuum rotational transform. For the compact QOS configuration considered here, the

bootstrap current subtracts from the vacuum transform. This negative bootstrap current is

shown to lead to kink stability for monotonic increasing iota profile.

II. THE 3D STABILITY CODE TERPSICHORE

In this work, the three dimensional ideal MHD stability code Terpsichore [15] is used

to calculate the stability of free boundary external kink modes. The code determines the
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eigenvalues of the ideal MHD equations by minimizing the plasma potential energy as defined

in the energy principle [16],

ω2δWk = δWp + δWvac (1)

where δWp is the plasma potential energy, δWvac is the magnetic energy in the vacuum

region between plasma and conducting wall, and ω2δWk is the kinetic energy. An explicit

form of δWp will be given in Sec. III. The Terpsichore code takes as input full 3D numerical

equilibria obtained by the VMEC [17] code. It uses a finite hybrid element method for

radial discretization and Fourier decomposition in poloidal and toroidal angles. The radial

and surface component of the plasma displacement vector ξ is represented by

ξs(s, θ, φ) =
∑

l

ξl(s) sin(mlθ − nlφ + δ) (2)

η(s, θ, φ) =
∑

l

ηl(s) cos(mlθ − nlφ + δ) (3)

where ξs = ξ · ∇s and η = ξ · B × ∇s/|∇s|2 with s being the flux variable. It should be

pointed out, that in the present study, an artificial kinetic energy is used for simplicity. This

artificial kinetic energy is given by δWk = (1/2)
∫

d3x[(ξs)2+(η)2]. As a result, the calculated

eigenvalue does not correspond to the physical growth rate. However, the marginal stability

boundary remains the same.

Assuming stellarator symmetry with field period Np, modes with mode number n are

coupled to n + kNp, where k is an arbitrary integer. There are Np/2 + 1 families for even

Np and (Np− 1)/2 +1 families for odd Np. For example, there are n = 0 and n = 1 families

for Np = 3 and there are n = 0, n = 1 and n = 2 families for Np = 4. Usually, the n 6= 0

families are called kink modes and n = 0 family is called vertical mode. However, when the

dominating component is of n 6= 0, the n = 0 family of modes are more characteristic of

kink modes than vertical modes and we will refer to them as such.

It can be shown that the stability of n 6= 0 families does not depend on the phase δ

except for the n = Np/2 family when Np is even. The phase is zero for the vertical mode of

the n = 0 family.
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The Terpsichore code has been benchmarked extensively. Earlier it was shown [18] that

the Terpsichore’s stability results agree well with other stability codes for growth rates of

fixed boundary MHD modes in 2D analytic Solov’ev equilibria. In the present work, we

have benchmarked Terpsichore against the 2D stability code PEST [19] and the 3D code

CAS3D [20] for external kink modes for an optimized reversed shear tokamak equilibrium

from the ARIES studies [21]. The calculated beta limit of the n = 1 external kink mode

using Terpsichore is 2.34%, which agrees well with the PEST result of 2.4% and the CAS3D

result of 2.3% [22]. We have also benchmarked the code for the n = 0 vertical mode in

a large aspect ratio tokamak plasma. Figure 1 plots the critical wall radius as function of

ellipticity for the stability of the n = 0 vertical mode in an elliptical plasma with constant

current density profile and zero beta. The Terpsichore results (shown in dots) agree well

with the analytic stability criterion [23] (solid line) give by

rw =

√
κ + 1

κ− 1
(4)

where the normalized wall radius is defined by rw = (a′ + b′)/(a + b) with a and b (a′ and b′)

being the radius of the elliptical plasma ( a confoncal wall) along the horizontal and vertical

direction respectively. Here, κ = b/a.

III. STABILITY OF EXTERNAL KINK MODE

We consider the stability of low-n external kink modes driven by current and pressure

using the Terpsichore code. A systematic convergence study has been done in terms of

the number of equilibrium harmonics, number of radial grid points, and number of Fourier

harmonics for perturbations. Results show that kink eigenvalues converge quadratically in

radial grid size and exponentially in number of equilibrium and stability harmonics. In

particular, Fig. 2 shows the exponential convergence of the eigenvalue of a n=1 external

kink mode in number of stability harmonics. The results are obtained for a Np = 3 QAS

with R/a = 3.5 and β ∼ 4%. These results indicate that a resolution of about 50 grid
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points, 100 equilibrium harmonics and 100 stability harmonics is required for typical QAS

under considerations.

We now consider the effects of magnetic shear on external kink stability. Figure 3 shows

the calculated n=1 external kink mode eigenvalue λ = −ω2 as a function of global magnetic

shear near the edge defined by ι(1)− ι(0.75) at ι(1) = 0.46. It is seen that the external kink

mode is stabilized by edge magnetic shear. These results are obtained for a Np = 4 QAS

with R/a = 2.1 and β ∼ 6.3%. The variation of shear is controlled entirely by 3D plasma

boundary shape. The current and pressure profiles are fixed.

However, a complete stabilization by global shear alone tends to reduce central rotational

transform to low values (∼ 0.1) and result in poor particle confinement. This problem can

be solved by further 3D shaping that does not affect the global shear. We find that external

kinks can be stabilized by appropriate 3D shaping at moderate global shear. In order

to find the optimal shaping for kink stability, we have incorporated the Terpsichore code

into a configuration optimizer which includes kink stability as well as quasisymmetry in

its objective function. The optimizer is used to determine the necessary 3D shaping for

kink stabilization. Figure 4 shows plasma cross-sections of a three field period R/a = 3.5

QAS before (left) and after (right) the stability optimization. The corresponding rotational

transform profiles are shown in Fig. 5. The initial configuration (called c3m) is unstable

to an n=1 kink with eigenvalue of λ = 1.8 × 10−3. Figure 6 plots the perturbed pressure

contour of the corresponding eigenmode at the two symmetric cross-section (at φ = 0 and

φ = π/3). The unstable mode peaks on the outboard side of the plasma (i.e., ballooning)

due to destabilizing bad curvature. The final configuration after optimization (called c82) is

marginally unstable with eigenvalue of λ = 2.6×10−5 at β = 3.9%. We note that the change

in the iota profile from c3m’s to c82’s is minimal and the two order of magnitude reduction

in kink eigenvalue can only be attributed to the change in 3D shaping. The major change in

shaping from c3m to c82 is an indentation of plasma boundary on the outboard side at the

half-period cross section which is found to be most effective for stabilization. The optimized

configuration c82 is also stable to high-n ballooning modes. It has good quasi-axisymmetry.
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The plasma current comes mainly from the bootstrap and contributes about half of the total

rotational transform, as shown in Fig. 7. This configuration will be shown to be robustly

stable to the vertical mode. Currently, it is one of candidate configurations for NCSX.

The physical mechanisms for the stability of the external kink mode are investigated

by examining individual contributions to the plasma potential energy and the effects of 3D

shaping on local magnetic shear and normal curvature. To separate out various stabilizing

and destabilizing terms in the plasma potential energy, we use the following form of the

potential energy:

δWp =
1

2

∫
d3x[δB⊥2 + (δB‖ −B

ξ · ∇p

B2
)2

+j‖ · ξ × δB− 2ξ · ∇p ξ · κ] (5)

where δB is the perturbed magnetic field, j‖ is the parallel equilibrium current along the field

line, ξ is the plasma displacement vector, and κ is the magnetic curvature. The integration is

carried out for the whole plasma region. The first term in the integrand is the stabilizing field

line bending energy, the second is the field compression energy, the third term is destabilizing

due to parallel current and is responsible for kink instabilities. Lastly, the fourth term is

destabilizing due to unfavorable curvature and pressure gradient. Table I list the relative

contributions of these terms normalized by the vacuum magnetic energy for both c3m and

c82. We note that the parallel current term contributes about 70% of the total destabilizing

sum for both cases and is thus the main destabilizing mechanism for the n = 1 external kink

modes, in accordance with usual expectation. However, the ballooning term also contributes

significantly to the instability. This is the reason the mode exhibits the strong ballooning

feature as shown in Fig. 6. For c3m, the configuration would be stable if the ballooning term

is neglected since the sum of the destabilizing term is only about 13% higher than the sum

of stabilizing terms. Thus, the unstable mode should be called kink-ballooning mode. The

pressure also contributes indirectly to the kink term through the parallel Pfirsch-Schluter

current. For both cases, the Pfirsch-Schluter current contributes about 57% of the kink

term. Thus, the pressure-induced Pfirsch-Schlute current is actually more important than
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the volume-averaged parallel current for these two configurations.

We now discuss why the 3D shaping change from c3m to c82 stabilizes the external kink

mode. We observe from Table I that the main difference between c3m and c82 is the field

line bending term. This suggests that the effects of shaping on local magnetic shear plays a

significant role. Figure 8 shows the contours of local magnetic shear of c82 on the s = 0.63

flux surface (the δWp peaks approximately at this surface). Here, the local magnetic shear

Ŝ is defined by Ŝ = −(
√

g/Ψ′2)h ·∇×h with
√

g being the Jacobian and h = B×∇s/|∇s|2.
Note that the global magnetic shear dq/ds is a surface average of Ŝ where q = 1/ι. The value

of local shear in Fig. 8 range from -74.3 to 28.6. while the global shear is dq/ds = −2.4.

This shows that the local magnetic shear is dominated by helical contribution and is much

larger than the global shear. Figure 9 compares the local magnetic shear of c3m with that

of c82 on the outboard side at s = 0.63. Indeed we find that the local shear of c82 is

substantially larger than that of c3m on the outboard side. This indicates that the local

shear is responsible for the change in the field line bending energy and the stability between

these two configurations.

Recently we have investigated the kink stability in QOS. Initial results show that the

external kink modes are stable for a R/a = 3.6, β = 3.7% QOS with self-consistent bootstrap

current. The bootstrap current is negative and decreases the rotational transform at edge

by about 15%. When beta is increased to 5%, the plasma is marginally unstable to an

interchange-like mode with weak ballooning feature as shown in the upper plot of Fig. 10.

The bootstrap current contribution to this mode is very small (about 10% of the pressure

contribution) and the mode is mainly internal. We have examined the effects of bootstrap

current direction on kink stability by artificially changing the sign of the current in the

δWp while keeping all other equilibrium quantaities fixed. When the sign of the current is

changed to positive, the QOS configuration becomes unstable to a mode with clear external

kink features as shown in the lower plot of Fig. 10 (i.e., the mode is external with significant

drive from the kink term). This result shows the importance of the sign of bootstrap current,

even for relatively small current magnitude. This indicates that the kink stability can be
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controlled in a QOS plasma by varying the bootstrap current. In addition to external

kink modes, we have also studied the high-n ballooning modes. Our results show that the

ballooning modes can be stabilized by 3D shaping and thus the beta limit can be increased

from 2% to 4% in one specific case.

Finally, it worth noting the recent work by Johnson et al. [11] where the external kink

modes were shown to be unstable in LHD at moderate value of beta of β > 2% at zero net

current. Addition of the self-consistent bootstrap current was found to strongly enhence the

kink growth rate and reduce the beta limit further. As pointed out by the authors, this low

beta limit is probably due to the large rotational transform in LHD where ι > 1 for most of

the plasma. In contrast, the QAS configurations considered here have much lower transform

at ι < 0.5. Simple theory shows that external kink modes are more unstable for smaller

resonant poloidal mode numbers associated with higher ι. This explains why external kink

modes can be unstable in LHD even at large global magnetic shear.

IV. STABILITY OF VERTICAL MODES

It is known that tokamaks with high elongation suffer from lack of vertical stability which

could result in disruptions unless feedback stabilization were employed.

We find that the vertical mode (of n = 0 family) can be much more stable in QAS

devices than in tokamaks. The configuration c82 is calculated to be robustly stable to the

vertical mode. The stability has been confirmed by CAS3D calculations with a conducting

wall at infinite [22]. In order to understand the physics, we have evaluated stability for a

series of equilibria by varying the degree of nonaxisymmetric shape of c82. Figure 11 shows

the eigenvalue of the vertical mode as function of the fraction of nonaxisymmetric shape,

f , at fixed current profile and zero beta. Here f = 1 corresponds to the full c82 shape and

f = 0 corresponds a tokamak with the axisymmetric shape of c82. Equilibria are obtained

by linear interpolation of the tokamak shape and the c82 shape (i.e., Rm,n(f) = fRm,n,

Zm,n(f) = fZm,n for n 6= 0, where Rm,n and Zm,n are Fourier coefficients of the c82 shape).
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We observe that there is a large stability margin for the vertical mode in c82 with the

marginal point at f = 0.6. The results of Fig. 11 are obtained with zero beta because of

equilibrium convergence problem due to low ι at small f . At finite f , the effects of beta are

found to be stabilizing. Thus, an even larger margin is expected at finite beta.

We have derived an analytic stability criterion for vertical mode in a large aspect ratio

QAS with constant current density and constant external rotational transform [24]. The

external rotational transform needed for stability is given by:

Fi =
κ2 − κ

κ2 + 1
(6)

where Fi = ιext/ιtotal is the fraction of external rotational transform and κ is the axisym-

metric elongation. This criterion has been confirmed by the Terpsichore code, as shown in

Fig. 12. The calculated critical external transform (solid dots) agrees reasonably well with

the analytic result (solid line). Physically, the external transform is stabilizing because the

external poloidal flux enhances the field line bending energy relative to the current-driven

term for the vertical instability.

V. CONCLUSIONS

The MHD stability properties of current-carrying quasi-axisymmetric stellarators are

investigated using full 3D calculations. The vertical mode in quasi-axisymmetric stellarators

has been studied for the first time. It is found that the vertical mode is much more stable

in QAS than in tokamaks due to stabilizing effects of externally generated poloidal flux.

The external kink modes in QAS can be stabilized by global and local magnetic shear via

3D shaping at high beta without a conducting wall. The results found here demonstrate

that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current,

compact size that have a high MHD beta limit without a conducting wall.
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TABLES

TABLE I. The breakdown of stabilizing and destabilizing terms in the plasma potential energy

normalized by the vacuum energy for the most unstable n = 1 external kink mode in c3m and c82.

vacuum line bending kink ballooning

c3m 1.00 4.05 −3.98 −1.72

c82 1.00 4.51 −3.87 −1.64
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FIG. 4. Plasma cross-sections of a three field period QAS before optimization (left) and after

optimization (right).
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