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Non-linear Evolution of Double Tearing Modes in Tokamaks

E. Fredrickson, M. Bell, R. V. Budny, E. Synakowski

The ∆’ formalism with neoclassical modifications has proven to be a useful tool in the

study of tearing modes in high β, collisionless plasmas. In this paper the formalism

developed for the inclusion of neoclassical effects on tearing modes in monotonic q-

profile plasmas is extended to plasmas with hollow current profiles and double rational

surfaces.  First, the classical formalism of tearing modes in the Rutherford regime in low

beta plasmas is extended to q profiles with two rational surfaces.  Then it is shown that

this formalism is readily extended to include neoclassical effects.

Introduction

Tearing modes were early recognized as an important instability in tokamak

plasmas[1,2].  The term “tearing mode” refers to an instability in which the resistivity of

the plasma allows the magnetic field topology, which would be “frozen” in an ideal

plasma, to relax to a more energetically favorable state.  The process of relaxation can

directly result in the transport of heat and particles in events such as “sawteeth” or

disruptions[3].  Alternatively, the tearing modes can change the magnetic  topology from

one with simple nested flux surfaces to one with “magnetic islands” which have been

shown to reduce the confinement of thermal energy[4].  Thus, avoidance of tearing

modes is desirable for maximizing plasma performance.

A method of dealing simply with the boundary layer physics inherent in tearing mode

theory has been developed in the so-called ∆′-formalism[5].  It has been shown that a full

solution of the resistive MHD equations is not necessary to determine the stability of a

given current profile to tearing modes.  In this approach the “external” (i.e., outside the

tearing boundary layer region) solutions are found through integration of a second order

partial differential equation (PDE) in the region between the plasma magnetic axis and

the rational surface (the boundary layer) and in the region from the rational surface to the

plasma boundary.  The solution, denoted by ψ, is called the perturbed helical flux

function.  The boundary conditions are that the solution be zero on axis, that it match the

plasma edge boundary condition and that the solution matches across the boundary layer
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at the rational surface.  The discontinuity across the boundary layer in the minor radial

derivative of the solution represents the drive or damping on the tearing mode imposed

by the external solution.  This normalized discontinuity in the derivative, ∆′, is ∆′ = (∂ψ-

/∂r - ∂ψ+/∂r) / ψ |r=rs
.  For finite size islands, the discontinuity is taken between the inner

and outer island edges with the perturbed flux, ψ = constant across the island.  This

results in a ∆′(w) which generally decreases as the island width w grows.  Three

boundary conditions may be used for the edge: a conducting wall at some radius, a

vacuum boundary condition  or an actively imposed boundary condition

The change in magnetic topology occurs in the boundary layer.  The physics

governing that topology  change also sets the growth rate for the magnetic islands.

Rutherford derived a simplified equation[6] governing the growth of islands larger than

the boundary layer width in terms of ∆′(w).  For the parameters of discharges considered

here the boundary layer width is small, much less than 1% of the plasma minor radius.

Rutherford’s equation predicts a growth rate proportional to ∆′(w):

dw/dt = 1.22 η/µ ∆′(w) Eq. 1

where η is the plasma resistivity and µ is the magnetic permeability.

With the discovery in TFTR [7] of ubiquitous m>2 modes (e.g., m/n = 3/2, 4/3, where

m and n are the poloidal and toroidal mode numbers, respectively) in high beta, high

temperature plasmas, it was realized that this simple resistive model was inadequate to

describe tearing mode stability in high beta plasmas.  For normal tokamak current

profiles the m/n=2/1 mode is generally marginally unstable, but higher m modes are

predicted to be strongly stable with ∆′(0) ≈ -2 m / rs. Thus, modifications to the simple

resistive theory were necessary to account for the presence of the higher n islands.

It was pointed out by Qu and Callen [8] that the presence of islands could locally

affect the bootstrap current, which was substantial in these plasmas, thereby influencing

the non-linear mode stability.  It had been predicted[8,9] and then confirmed

experimentally[10] that for monotonic q profiles (∂q/∂r >0 everywhere) the evolution of
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the island width in the presence of the bootstrap effect is approximately described by

solving the following equation:

 dw/dt = 1.22 η / µ [ ∆′(w) + ∆′nc ] Eq. 2

In this expression the additional neoclassical term, ∆′nc is calculated assuming that the

presence of the island flattens the temperature and density gradients across the island,

thereby reducing the bootstrap current drive.  This effectively drives a negative current at

the island ‘O’ point, which increases the island growth.  The growth saturates when ∆′(w)

+ ∆′nc = 0.

The form of ∆′nc may be heuristically derived as follows.  With the assumption that

the bootstrap current density is near zero in the island ‘O’ point and unaffected at the ‘X’

point, the amplitude of the effective perturbed current density is approximately Jbs/2.

This current can be related to a discontinuity in ψ as:

     (ψ-′ – ψ+′)/w |r=rs
 = [2 π / 5] Jbs/2 Eq. 3

where Jbs is in A/cm2 and ψ has units of G-cm.  This can be written in the form of a ∆′ by

relating ψ to the island width. For small islands, the width can be found by making a

parabolic approximation to ψ0 in the region of the rational surface[5], where ψ0 is the

equilibrium  helical  flux function defined as:

   ψ0(r) = B0/R0  ∫0
r (1/q(r) – n/m)  r dr Eq. 4

This leads to the following equation relating island width to perturbed ψ:

w2 = 16 (ψ / ψo′′ )  = [16 rs / (s Bθ)]
 ψ Eq. 5

and then  the destabilizing effect of the modulated bootstrap current can be introduced

into the Rutherford island evolution equation  as:
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      ∆′nc  = (ψ-′ – ψ+′)/ψ  = 16 k1 Jbs / (s w <J> )  Eq. 6

where w is the island width, s (≡ r q′/q) is the magnetic shear at r = rs, rs is the radius of

the mode rational surface, and Bθ is written in terms of <J>, the average current density

for the region 0 < r < rs. The derivation is not exact and a coefficient, k1, has been

introduced.  The coefficient will be adjusted to fit the data.

In neoclassical theory the bootstrap current, Jbs, has contributions from radial

gradients in electron and ion temperature and density.  In previous work, for simplicity,

the bootstrap current is assumed to be proportional to the radial gradient of poloidal beta,

β′pol and a simple expression for ∆′nc results:

      ∆′nc  ∝ k ε1/2 βpol rs / s Lp Eq. 7

where ε = rs/R is the inverse aspect ratio, and LP is the pressure gradient scale length.

Previous papers [10-12] have chosen values in the range from 1.7-7 for the coefficient k

to empirically fit experimental data.  However, the evolution of the density gradient, and

electron and ion temperature gradient terms need not be the same as the evolution of the

total βpol.  In this work the bootstrap current, as calculated with the TRANSP code[13,14]

for the measured and inferred gradients in actual plasmas, is used to calculate ∆′nc.

In the limit of small island size, the neoclassical term becomes large, thereby

implying instability for many tearing modes.  However, in experiments, only some high

beta plasmas had tearing modes, and typically only one or two modes were unstable in a

given plasma.  These experimental results could still be consistent with the theory if there

was some threshold for instability of the tearing modes, i.e., that is that the plasmas

without the tearing modes were in a metastable state.

Such a threshold is actually implicit in the model described above.  For very small

islands, the parallel connection lengths become long and parallel heat and particle

transport will not be as effective in reducing the pressure gradient across the island ‘O’

point.  Thus, the effect of the island on the bootstrap current will no longer be linear in
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island size.  To approximate this effect, the simple 1/w in the expression for ∆′nc is

replaced with:

  1/w  => w / (w2 + wd
2) Eq. 8

where wd is a parameter which measures the extent to which cross-field transport can

support a parallel temperature or density gradient[15,16].  This model, which predicts

that ∆′nc => 0 for small islands, only provides a threshold condition when ∆′(0)<0.

The contributions to the bootstrap current driven by the density, ion and electron

temperature gradient will each have their own unique dependence on island size[17].  A

more accurate formalism where the contributions to the bootstrap current from electron

and ion density and temperature gradients are handled individually is probably necessary

when studying threshold island physics.  A detailed study of island threshold conditions

is beyond the scope of this paper and will not be discussed in detail.  For simplicity a

single wd will be introduced to model the  ∆′nc at small island size.  A more detailed study

of the issue of threshold island size will be left to future papers.

Two other mechanisms have been identified which provide stabilizing terms at small

island width, the so-called “Glasser-Greene-Johnson” [18] and the “polarization drift”

terms[19-21].  The form of the Glasser-Greene-Johnson (GGJ) term used here is given in

ref. 14, Eq. 51:

∆′GGJ = -5.4 (βp ε2 Lq
2)/(r w LP) (1-q2)/q2. Eq. 9

The ∆′GGJ term results from the average good curvature in a tokamak plasma.  The

simplified form for the polarization drift term commonly used is:

∆′pol = - (ρ2
θi βp g)/w3 (Lq/LP)

2. Eq. 10

The parameters Lq and LP are the q and pressure gradient scale lengths, respectively.  The

ion poloidal gyroradius is ρθi, the ion collision frequency is ν i and ε is the local aspect

ratio.  The parameter g approaches unity for νi/ω*e <<1 and ε3/2 in the other extreme.
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Both of these terms become large and negative for small island size, but rapidly

become small as the island size increases.  Thus, introducing either of these terms into the

island evolution equation will introduce a threshold condition on island width for

instability.  Islands below a critical size will be damped, even for some level of intrinsic

instability ∆′(0)>0.

Generalization of neoclassical ∆′ formalism to double tearing modes

This paper will focus on the non-linear growth of finite sized double tearing modes.

The linear stability of double tearing modes has been previously studied[22,23], as has

non-linear stability without neoclassical effects[24,25].  The formalism developed in the

previous section to describe the non-linear evolution of tearing modes in plasmas with

monotonic q profiles will be generalized for two islands in reversed shear plasmas, i.e.,

with hollow plasma current profiles.  The threshold island size will be discussed briefly.

When two identical rational surfaces are present in the plasma column, there are two

boundary layers across which the external solutions must be matched.  The external

regions consist of Region I: 0<r<r1, Region II: r1<r<r2 and Region III: r2<r<rwall where r1

and r2 are the inner and outer rational surfaces, respectively.  The basis functions from

which the radial eigenfunction is constructed are found by integration of the following

equation in these three regions.

   [∂2/∂r2 + 1/r ∂/∂r –m2/r2 - (∂J0/∂r)/(∂ψ0/∂r)] ψm,n = 0 Eq. 11

ψm,n is the perturbed helical flux function, J0 is the plasma current and ψ0 was defined

previously.

This formulation is a quasi-cylindrical model in that the J0(r) and q(r) are taken from a

toroidal equilibrium code (VMEC in TRANSP) so that J0(r) and q(r) are not related by

the simple cylindrical expression.  This approach gets the rational surfaces in the right

locations and keeps the J0(r) and the J′0(r) reasonable.

 In this paper we will restrict consideration to modes with finite island size, and the

integration will be done to the edges of the islands.  The ψ is assumed constant across the
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island so the normalized discontinuity in the derivative  is ∆′ [≡ (∂ψ-/∂r -∂ψ+/∂r) / ψ]

where the +/- now refer to the outer and inner edges of the islands, respectively.

As the perturbed helical flux function is a solution to a second order PDE., there are

two independent solutions for each region.  For a single rational surface there would be

two regions and the three boundary conditions (ψ(0)=0, ψ+(rs) =  ψ-(rs), ψ(rwall) = edge

boundary condition) constrain the solution to a unique ∆′.  For the case with two rational

surfaces, the four boundary conditions (ψ(0)=0, ψ+(rs1) =  ψ-(rs1), ψ+(rs2) =  ψ-(rs2), ψ(rwall)

= edge boundary condition) are insufficient to uniquely define a ∆′ for each of the

rational surfaces. For a unique solution, it is necessary to introduce a third parameter, the

ratio of ψ(r1) to ψ(r2), or expressed differently, the ratio of the inner to outer island width.

The ratio of the island widths can be treated as an adjustable parameter and a pair of

basis functions can be defined from which the solution, ψ, can be constructed.  A unique

definition of this pair of basis functions can be constructed for which the width of the

inner island depends only on the amplitude of the inner basis function, ψ1(r1) and the

width of the outer island depends only on the amplitude of the outer basis function,

ψ2(r2).  An example of this unique choice of basis functions for TFTR shot 92661 at 2.29

s is shown in Fig. 1.  Any linear combination of these basis functions will satisfy the

original P.D.E. and other linear combinations of these basis functions can be used to

create a new pair of basis functions.  However, as stated above, this particular choice of

basis functions simplifies the calculation of the island width evolution as the width of the

inner (outer) island depends only on the amplitude of ψ1 (ψ2).  As the islands grow, the

basis functions must be modified (slightly) to match the amplitude from the inner edge to

the outer edge of the island and to keep ψ2 = 0 at the outer edge of the inner island and ψ1

= 0 at the inner edge of the outer island.

The numerical solution to these equations described below uses the approximate

relation (Eq. 5) between ψ and w for small islands.  As the island size becomes large,

asymmetry about the rational surface makes this expression less accurate.  The code

relates w and ψ(rs) numerically by finding dr- and dr+ such that:

 ψ0(rs - dr-) + dψ1 =  ψ0(rs + dr+) + dψ1 = ψ0(rs) - dψ1.  Eq. 12
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However, the approximation is quite good for island sizes up to 10-20% of the minor

radius. This can be seen in Fig. 2 where the actual and approximate island widths are

compared.

The basis functions can be treated as independent, but strongly coupled

eigenmodes.  The growth of each of the modes (islands) is controlled by the ∆′1 and ∆′2
which depend on the widths of the magnetic islands.  The explicit formulas are:

∆′1 =  (∂ψ1
-/∂r -∂ψ1

+/∂r)/ψ1 +  (∂ψ2
+/∂r)/ψ1 |r=r1

Eq. 13a

∆′2 =  (∂ψ2
-/∂r -∂ψ2

+/∂r)/ψ2 −  (∂ψ1
-/∂r)/ψ2 |r=r2 Eq. 13b

The superscripts (+/-) refer to the inner and outer edges of the islands.  These equations

have the interesting property that for ψ1<<ψ2 (and thus w1<<w2) ∆′1 becomes large and

positive.  Similarly  for ψ2<<ψ1, ∆′2 becomes large and positive.  This is illustrated in Fig.

3 where ∆ ′1 and ∆ ′2 are graphed vs. a parameter, α, which describes the relative

amplitudes of the basis functions, ψ1 and ψ2, i.e., ψ = (1-α) ψ1 + α ψ2.  In the Rutherford

regime of island growth, the growth rate is proportional to the ∆′, thus there is a natural

tendency for both islands to have finite size.

This particular relation between ∆′1 and ∆ ′2 means that as the islands reach the

Rutherford regime (island width is greater than the boundary layer width), the structure of

the eigenfunction will naturally change as the “growth rates” for the inner and outer

island need no longer be the same for the same overall eigenmode structure.  For this

reason, it is more reasonable to treat the inner and outer islands as separate, coupled

modes.

Experimental Observations

Plasmas with hollow current profiles and thus a region of shear reversal in the core

have been considered as attractive candidates for magnetically confined fusion

plasmas[26].  The hollow current profile allows good bootstrap current alignment,

minimizing the current drive necessary for steady-state operation.  Good ion
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confinement, approaching neoclassical, has been observed in such reversed shear

plasmas[27] and plasmas with negative shear are theoretically predicted to be stable to

many forms of MHD.

Such plasmas were extensively studied on TFTR.  It was found that the low beta, βpol

< 0.5, start-up phase of these plasmas in which very hollow current profiles had qmin (the

value of q at the shear reversal surface) dropping through rational surfaces, often showed

bursts of MHD activity.  The bursts were often benign, but also could result in minor

disruptions and impurity accumulation or, in extreme cases, major disruptions.  It was

found that such bursts of MHD activity could be avoided by programming, at the proper

time, pauses in the current ramp, gas puffs or notches in the NBI power.  It was presumed

that cooling the edge or temporarily reducing the current ramp rate allowed the edge

current density to relax.  An example of the start up of a typical reversed shear target

plasma with MHD bursts on TFTR is shown in Figure 4.  In Fig. 4a are shown the

evolution of the qmin and q(a) from a similar plasma for which MSE data[28] on the

current profile is available.  In Fig. 4b and 4c are shown qualitatively the presence of

MHD activity as bursts of coherent oscillations on Mirnov coils (Fig. 4b) and in the local

electron temperature near the qmin radius (Fig. 4c).  In this example the magnetic

fluctuations betray the presence of both single and double tearing modes[29].  Note that

the bursts of MHD activity are loosely correlated with qmin passing through rational

surfaces.

The evidence for the presence of double tearing modes is found in the data from the

ECE Grating Polychromator diagnostics.  An example of this data is shown in Figs. 5 and

6.  The contour plot in Fig. 5 shows the bursts of internal MHD activity corresponding to

the bursts of magnetic fluctuation activity as detected with the Mirnov coil array.  In Fig.

6a (reproduced from Fig. 11 i n Ref. 29) the profiles of the electron temperature through

the ‘O’ point of the inner and outer islands are shown.  For better perspective, the data is

translated via a simple time-to-space reconstruction[30] to a two dimensional image in

Figure 6b.  Two flatspots at the inner and outer q=3 rational surface locations are seen, as

well as a third flatspot corresponding to the location of the q=4 rational surface.  From

the width of the flat spots, or from the flux surface displacement in the region between

the islands, the island width can be estimated.  From these figures, particularly Fig. 6b, it
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can be seen that the islands are relatively small.  This width will be compared to the

numerical simulations discussed below.

The last burst of activity in Figure 4 lasts from about 2.1 to 2.35 s and appears to be

associated with the disruption which terminated the discharge.  Analysis of the Mirnov

fluctuations shows that they are dominated by an m=6, n=1 mode during the initial

growth period, from about 2.09 sec to 2.13 sec,  After 2.13 seconds the dominant mode

changes to an m=4, n=1 mode, suggesting that this mode was triggered shortly before this

time.  The phase data from which this determination is made is shown in Figure 7.

A detailed analysis of the phenomenology of the disruption in this discharge is

beyond the scope of this paper.  However, it is worthwhile to note that the magnetic

fluctuations have remained constant in amplitude for a period of about 80 ms prior to the

disruption.  As will be seen below, the widths of the islands show a similar behavior.

Thus, while it is tempting to consider the tearing modes to be the proximate cause of the

disruption, the experimental evidence provides only very weak support for that model.

Rather, it seems likely that these disruptions resemble disruptions in normal shear

plasmas in that the “precursor” MHD activity sets up conditions which trigger a more

virulent mode.

With this startup sequence, approximately 40% of the target plasmas had the burst of

MHD at 1.4 – 1.5 s and a much smaller fraction had the burst around 2 sec.  The

techniques mentioned earlier could be quite successful in avoiding the burst at 1.4-1.5 s,

dropping the occurrence rate to around 10%. There were no obvious differences in the

measured current profile with or without the MHD.  MSE data is not available for the

shot with the (2,1) double tearing discussed in this paper.  A similar shot for which MSE

data is available was used for the current profile in the following calculations.  The

similarity of the q profile between these two shots is suggested by the less than 3%

variation in the βpol and in the Λ (≡ βpol + li/2) from magnetics measurements. Further,

signatures of Type II confinement transitions [31] which are associated with qmin =

rational number crossings, in this case qmin = 3, are seen at about 1.85 s in both shots (c.f.

Fig. 5).  This, together with the simulations discussed below, suggests that the double

tearing modes are not linearly unstable at the rational qmin crossings, but that some trigger

mechanism is necessary which then destabilizes the tearing mode.
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Numerical Simulations

A numerical code previously used extensively for tearing mode studies in normal

shear plasmas has been adapted for hollow current profiles with two rational surfaces.  As

discussed above, the basis functions are calculated from TRANSP output files.  As

described above, the code finds the two basis functions, ψ1 and ψ2, by numerical

integration of Eq. 11.  From these, the ∆′1(w1,w2,α) and ∆′2(w1,w2,α) can be found.  The

parameter “α” describing the linear weighting of the two basis functions is found from

the island widths using Eq. 1, or a numerical calculation for larger island width, to relate

the island widths to the basis function amplitudes.

The growth of the islands can then be simulated by treating the basis functions as

separate, but strongly coupled modes and numerically integrating the Rutherford equation

in time to track the island width evolution.

dw1/dt = η(r1)/µ ∆1′(w1,w2) Eq. 14a

dw2/dt = η(r2)/µ ∆2′(w1,w2) Eq. 14b

In the time integration, the basis functions are recalculated for each TRANSP time step,

i.e., roughly every 10 msec.  Between each time step, the ∆′s are recalculated as the

island widths change, using the basis functions from the last TRANSP time point.

An example of a numerical solution to the problem described above is shown in

Figure 8.  This calculation was done using current profiles, pressure profiles and

bootstrap current profiles as calculated by the TRANSP analysis code for a target plasma

similar to the one shown in Fig. 6 (MSE measurements of the current profile evolution

were not available on the plasma shot in which the m=3, n=1 mode was seen).  The

calculation was done for the m=3, n=1 mode, beginning before the qmin dropped below

three.  This calculation was done without the neoclassical, Glasser-Greene-Johnson or

polarization terms.  As is commonly found, the mode in this case robustly becomes

unstable when qmin drops slightly below three.
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The inner and outer island widths from this purely resistive calculation are about half

the measured island widths.  The predicted onset time for the mode is also well before the

experimentally observed mode onset time.  While there is probably some variation in the

q-profile time evolution between plasma shots, it is outside the experimental uncertainty

that the variation would be this large, based on comparisons of such similar shots where

MSE data was available, and, as mentioned above, the comparison of Λ, βpol and the

timing of the Type II transition signatures. These two observations suggest that including

the neoclassical and/or GGJ terms is necessary to provide a threshold condition for island

onset (to explain the delay in island growth) and to drive the saturated island to larger

amplitude.

A simulation done including just the neoclassical term reasonably matches the size of

the outer island.  In these simulations (Fig. 9) the mode onset is triggered at 2.09 sec,

consistent with the experimental mode onset time.  As can be seen in Fig. 9 the mode

growth rate is in reasonably good agreement with the experimental data.  In both the

experiment and the simulation, the mode saturates at a relatively small size; the outer

island width is about 10% of the minor radius.  As previously discussed, the derivation of

the neoclassical term does not yield an exact value for the coefficient k which is adjusted

to match the saturated width of the outer island; in Eq. 6  k1 = 2.0 was necessary to match

the island width.  This is to be compared with k1’s in the range of 0.5 – 0.8 to match

island widths in normal shear, high β plasmas.

The addition of the neoclassical bootstrap current term is, again in this case, not

sufficient to provide a threshold island size condition as the resistive ∆′ is positive.

However, the saturated island size in this case can be strongly affected by the assumption

of the form for the parallel electron heat transport.  With the assumption of collisionless

parallel heat transport (Eq. 14 in ref. 11), wd is approximately  7-8 cm (vs. ≈ 2 cm in the

collisional estimate).  This means that wd plays an important role in the saturated island

width.  The multiplicative factor on the neoclassical term to match the saturated island

size is k ≈ 3 if  the collisionless estimate of wd of ≈ 7-8 cm is used.

In the simulation with neoclassical effects, the inner island is predicted to be much

smaller than the outer island.  This is expected since the neoclassical effects are

stabilizing in regions of reversed shear.  However, this predicition is not in agreement
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with the experimental observations where the inner island is roughly 60% as large as the

outer island.  It is interesting to note that the predicted inner island size is in good

agreement with the measurement if the neoclassical term in the reversed shear region is

turned off, although there is no justification for doing so.

Some or all of this discrepancy might be alleviated if the coupling of the (3,1) and

(4,1) modes were considered.  The approach described above for modeling the coupling

of double tearing modes could be extended to coupling of tearing modes with disparate

poloidal mode numbers with an appropriate model describing the poloidal coupling.  If

the coupling to the (4,1) mode were destabilizing, which it should be, then the scale

factor on the neoclassical term could be reduced on both the inner and outer (3,1) islands.

This would have the effect of increasing the size of the inner island.  A simulation was

done where the outer island was forced to the proper amplitude and the neoclassical term

for the inner island was reduced to a ‘typical’ size by setting k1 = 0.5. In this case the

peak size of the inner island was still too small with a width of about 3.5% of the minor

radius.

The delay in mode onset, as well as some of the experimental data, is consistent with

a model in which a “seed” island is necessary to overcome some threshold condition as in

normal-shear neoclassical tearing mode studies.  A low amplitude oscillation was visible

on the ECE temperature measurements well before the fast mode growth started at 2.09s.

This is visible in the experimental data presented in Figures 8 and 9 as the “measured

island size”.  At these small amplitudes, it is not possible to tell from the ECE data

whether an island is actually present, or whether the perturbation around the q=3 rational

surfaces is more ideal in character.  It is proposed that the oscillations seen near q=3 are

driven by poloidal coupling from higher-m tearing modes nearer the plasma edge.  These

ideal perturbations will, on a resistive timescale, drive reconnection at the q=3 surfaces,

generating the seed islands needed to overcome the polarization and Glasser-Greene-

Johnson stabilizing terms.

The island widths in the final simulations are in reasonable agreement, as well as the

growth rate.  However, the simulation predicts a poloidal field fluctuation amplitude of

about 2 Gauss at the wall.  Experimentally, the mode amplitude is about 18 Gauss, and

the dominant poloidal mode number at the Mirnov coils is m=4, rather than the m=3
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which is being simulated.  The magnetic fluctuation measured at the vacuum vessel wall

is more than likely dominated by the m=4, n=1 mode, visible as a flat spot in the electron

temperature profile in Fig. 6.  In this case, the 4/1 mode might, through toroidal coupling,

provide the seed island for the 3/1 double tearing mode.  An m=4, n=1 island with a

width of about 7-8%, consistent with the ECE data, would result in a magnetic fluctuation

level of about 9 Gauss at the location of the Mirnov coils.  The remaining 7 Gauss is

likely attributable to the m=5, n=1 and m=6, n=1 islands.

Summary

In this paper a new formalism for the simulation of double tearing modes, including

neoclassical effects, has been presented.  Simulations based on this model have been

compared to experimental data and reasonable agreement has been found.  The model

naturally suggests that, like neoclassical tearing modes, double tearing modes can also be

metastable.  That is, for very small island sizes the growth rates are negative, however,

above some threshold island size, they become positive, i.e., the modes are unstable.

This threshold island size may be the result of Glasser-Greene-Johnson or polarization

current physics.  It has also been shown that in finite beta, hollow current profiles, the

neoclassical terms naturally stabilize the island in the negative shear region.
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Figures

Figure 1 Basis functions for illustration.

Figure 2 Island width as estimated with the approximate formula compared to actual

island width.

Figure 3 ∆′1,2(w,α) for the example in Figures 1 and 2.

Figure 4 Time evolution of qmin and q(a) compared to, b) Mirnov coil trace and, c) local

electron temperature near qmin surface.

Figure 5 Contour plot of electron temperature showing presence of tearing modes.

Figure 6a Radial profiles of electron temperature in a restricted radial range about the at

two extreme phases of the magnetic islands.  The flat spots consistent with the

presence of double tearing modes are indicated as well as a flat spot consistent

with an m=4, n=1 island.

Figure 6b Reconstruction from the data presented in Figure 6a of a 2-dimensional image

showing contours of electron temperature every 500 eV.  The two 3/1 islands

are indicated in the Figure.

Figure 7a Phase relationship analysis of last MHD burst at 2.125 s at a frequency of 1.47

kHz.  Best fit was for m=6, n=1 with Λ = 0.83, r = 0.84m.

Figure 7b Phase analysis of last MHD burst at 2.135 sec.  Best fit was for m=4, n=1 with

Λ = 0.83, r = 0.84m.
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Figure 8 Resistive simulation of double tearing mode evolution.  The solid line is the

calculated outer island width, dashed line is the calculated inner island width.

The open squares are the measured outer island width and the solid circles are

the measured inner island width.

Figure 9 Simulation of double tearing mode with neoclassical term but without the

polarization  and GGJ terms.  The solid line is the calculated outer island

width, dashed line is the calculated inner island width.  The open squares are

the measured outer island width and the solid circles are the measured inner

island width.

Figure 10 Simulation of double tearing mode evolution with the outer island driven to the

measured width and no neoclassical term for the inner island.  The solid line is

the calculated outer island width, dashed line is the calculated inner island

width.  The open squares are the measured outer island width and the solid

circles are the measured inner island width.
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Appendix A

To verify that this approximate  solution was sufficiently accurate, a more detailed

calculation relating the island widths to the amplitudes of ψ1 and ψ2 was also done.  For

this calculation, the equations for ∆’ are:

∆’ 1 =  (∂ψ1
-/∂r)/ψ1(rs1-dr1) - (∂ψ1

+/∂r)/ψ1(rs1+dr1) +  ψ2
+/[ψ2(rs2-dr2)-ψ2(rs1+dr1)]

∆’ 2 =  (∂ψ2
-/∂r)/ψ2(rs2-dr2) - (∂ψ2

+/∂r)/ψ2(rs2+dr2) −  ψ1
-/[ψ1(rs1-dr1)-ψ1(rs2-dr2)]

For each set of island widths, w1 and w2, it is necessary to redefine the basis functions

as follows:

In the first and third regions:

ψ1
- = s1 * ψ1(r) / ψ1(r1-δr1)

χ1
- = s1 * χ1(r) / ψ1(r1-δr1)

ψ2
+ = s2 * ψ2(r) / ψ2(r2+δr2)

χ2
+ = s2 * χ2(r) / ψ2(r2+δr2)

in the second region, define two parameters:

α = ψ1
+(r2-δr2) / ψ2

-(r2-δr2)

β = ψ2
-(r1+δr1) / ψ1

+(r1+δr1)

then the basis functions in the second region can be redefined as:

ψ1
+ = s1 * (ψ1(r) – α ψ2(r)) / (ψ1(r1+δr1) - α ψ2

-(r1+δr1))
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χ1
+ = s1 * (χ1(r) – α χ2(r)) / (ψ1(r1+δr1) - α ψ2

-(r1+δr1))

and:

ψ2
- = s2 * (ψ2(r) – β ψ1(r)) / (ψ2(r2+δr2) - β ψ1

+(r2-δr2))

χ2
- = s2 * (χ2(r) – β χ1(r)) / (ψ2(r2+δr2) - β ψ1

+(r2-δr2))

The ∆’s are then:

∆1’ = (χ1
+(r1+δr1) – χ1

-(r1-δr1) + χ2
+(r1+δr1))/ψ1(r1)
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Figure 7a

Figure 7b
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