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Abstract. A novel method for containing a pure ion plasma at thermonuclear densities
and temperatures has been modeled. The method combines the confinement properties
of a Penning-Malmberg trap and some aspects of the magnetic field geometry of a
pulsed theta-pinch. A conventional Penning trap can confine a uniform-density plasma
of about 5×1011cm−3 with a 30-Tesla magnetic field. However, if the axial field is
ramped, a much higher local ion density can be obtained. Starting with a 107 cm−3

trapped deuterium plasma in a conventional Penning-Malmberg trap at the Brillouin
limit (B = 0.6 Tesla), the field is ramped to 30 Tesla. Because the plasma is comprised
of particles of only one sign of charge, transport losses are very low, i.e., the conductivity
is high. As a result, the ramped field does not penetrate the plasma and a diamagnetic
surface current is generated, with the ions being accelerated to relativistic velocities.
To counteract the inward j × B forces from this induced current, additional ions are
injected into the plasma along the axis to increase the density (and mutual electrostatic
repulsion) of the target plasma. In the absence of the higher magnetic field in the center,
the injected ions drift outward until a balance is established between the outward
driving forces (centrifugal, electrostatic, pressure gradient) and the inward j×B force.
An equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a
plasma can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a
density exceeding 4× 1014 cm−3.

I INTRODUCTION

This paper presents a novel method for achieving a well-known goal: the confine-
ment of non-neutral ion plasmas that are adequately dense for controlled thermonu-
clear fusion applications. This approach is a subset of a wider class of experiments
known as Inertial Electrostatic Confinement experiments [1], but the question ad-
dressed here is quite specific: can the density of particles in a non-neutral plasma
[2] be increased significantly beyond the density associated with the Brillouin limit?

Conventional magnetic fusion devices contain quasi-neutral plasmas in a toroidal
or linear geometry, but generally the confinement is far worse than that predicted



classically. A common device used to confine a non-neutral plasma is the cylindrical
Malmberg-Penning trap [3]. Though at first glance non-neutral plasmas would not
appear to be good candidates for long confinement time applications (because of
the strong, outward electrostatic forces associated with the space-charge potential),
Malmberg-Penning traps have exhibited superb confinement capability. This is be-
cause the conservation of rotational angular momentum requires the mean square
radius of a one-component plasma to remain constant in time. One-component
plasmas also have two other benefits from a practical standpoint for fusion devices:
(1) the absence of radiative losses because electrons are not present and (2) re-
duced thermal wall loading because of the sharp radial fall-off in the density profile
(typically on the order of several Debye lengths). This superior confinement capa-
bility has not been generally realized in controlled fusion devices, however, because
conventional Malmberg-Penning traps can confine uniform-density plasmas of only
about 5× 1011 cm−3, even with magnetic fields strengths in the tens of Tesla. This
is expressed as the Brillouin limit,
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where ωp is the plasma frequency,
√

4πne2/m, and ωc is the cyclotron frequency,
eB/mc. The plasma column is rotating at ωR, which is equal to ωc/2 at the Brillouin
limit. Equation (1) shows that higher density may be achieved only if the square
of the magnetic field is increased proportionally. Even at such high field strengths,
the Lawson criterion is satisfied only if the confinement time is nearly 1 hour.

Though most often viewed as a density limit, the Brillouin limit is really a state-
ment of the fact that the inward j × B force must balance the outward driving
forces (centrifugal, electrostatic, pressure gradient). For plasmas that do not have
a uniform density, force balance can be achieved even though local values of n far
exceed the limit expressed in Eq. (1). In this paper, the simple geometry of the Pen-
ning trap is retained; the confinement device proposed provides radial confinement
through an axial magnetic field, and longitudinal confinement electrostatically by
end cylindrical electrodes kept at a potential higher than the plasma’s space charge
potential. The difference is that, unlike in a conventional Penning trap, the axial
magnetic field is highly non-uniform, similar to the implosion stage of a theta-pinch.
In addition, the velocity shear in the device is very large and the density profile is
not monotonically decreasing. These two factors could have serious consequences
where the stability of the configuration is concerned, but these are not addressed
here.

II METHODOLOGY

A highly non-uniform field is created by initially producing a conventional, low-
density Malmberg-Penning trap plasma, followed by ramping the axial field. For
example, a uniform density, 107 cm−3 deuterium plasma might be generated at the



Brillouin limit (for B = 0.6 Tesla), after which the field is slowly ramped to as high
a value as is practical (30 Tesla). Because the plasma is comprised of particles of
only one sign of charge, transport losses are very low, i.e., the conductivity is high.
As a result, the ramped field does not penetrate the plasma as long as the ramping
time is short compared to the magnetic diffusion time. A diamagnetic surface
current is generated, and, in this example, the ions are accelerated to relativistic
velocities, with the magnetic field outside the plasma 50 times stronger than inside.
To counteract the inward j × B forces, ions are injected along the machine axis
to increase the density (and mutual electrostatic repulsion) of the target plasma.
With only the weak magnetic field present within the bulk of the plasma, the ion
density inside the plasma column greatly exceeds the Brillouin limit and the ions
drift outward. Ultimately, a balance is established between the outward driving
forces (centrifugal, electrostatic, pressure gradient) and the inward j×B force, and
the plasma is trapped in a thin current sheet between its own outward electrostatic
repulsive forces and the confining magnetic field. Note that the field is ramped
only to generate a non-uniform B, which is in contrast to a theta-pinch approach,
in which the coil is pulsed to compress and heat the plasma.

III EQUILIBRIUM MODELING

To determine the characteristics of such an equilibrium, a relativistic 1-D cold-
fluid model was used to model the system. Starting with the radial force balance
equation for a cold macroscopic fluid [3],
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operating on it with 1/r∂/∂r[r . . . ], and substituting in Ampere’s law and Gauss’
law leads to an equation for the derivative of βθ(r) as a function of βθ(r), Bz, and
∂Bz/∂r:

∂βθ

∂r
=

1

γ2
θβθ

1

Bz

∂Bz

∂r
− γ2

θβ
2
θ

r

1 + γθβθ
mc2

eBzr

(
γ2

θβ
2
θ + 2

) , (3)

where

γθ(r) =
1√

1− β2
θ

.



This first order ODE is solved using Mathematica with the boundary condition
βθ(r = 0+) = 0+. Bz is specified as nearly a step function located at r◦ with
penetration depth d◦:
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B◦ z

2

(
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[
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2d2◦

])
. (4)

r◦ and d◦ are chosen such that fusion power is maximized by increasing the ion
density and plasma volume to the greatest extent possible. To that end, 30 Tesla is
chosen for the ramped field to illustrate the potential of this approach. A simplified
relativistic force balance estimate shows that the plasma can be trapped in a hollow,
50-cm diameter, 0.2-cm thick cylinder, whose density exceeds 4× 1014 cm−3. The
drawback, of course, is the very small thickness of the current sheet, resulting in
a low plasma volume. For this simulation, the radius is maximized so that the
resulting plasma volume is large, constrained only by the requirement that the
local velocity not exceed the speed of light. This estimate indicates that 2 MW of
fusion power could be produced in a 100-m long, 1-m diameter reactor. At 72 m3,
the device would be only 4% of the volume of ITER, while a device with the same
volume as ITER would produce 55 MW. In the fluid simulation, the thickness of
the shell is set at 2 Larmor radii, i.e, the ramped B-field is assumed not to penetrate
the highly conducting ion plasma at all. The other parameters are: B◦z = 300 kG,
r◦ = 49.0, and d◦ = 1.85 cm. The magnetic field in the region of the field transition
given in Eq. (4) is shown in Fig. 1.

Given the magnetic field profile, the velocity profile is uniquely determined by
solving Eq. (3). In this case, the velocity is relativistic with βθ about 0.85. The
rotation frequency profile, ω(r) = cβθ(r)/r is determined from the velocity and
is shown in Fig. 2. Given the velocity profile, the density profile can be readily
calculated from Ampere’s law:

n(r) =
1

4πeβθ(r)

∂Bz

∂r
. (5)

The plasma forms a thin cylindrical shell in the region of the magnetic field
transition, which is shown in Fig. 3. The current density is easily calculated from
its definition:

j(r) = n(r)eβθ(r) c (6)

The very high current density (several MA/cm2, shown in Fig. 4.), confines the
plasma through the inward radial j×B force. Given the density profile, the electric
field is calculated from Gauss’ law:

E(r) = 300× 106 · 4πe
1

r

∫
n(r′) r′ dr′ (7)

The self electric field generated at the surface of the plasma as calculated from Eq.
(7). is large (100’s of MV/cm). However, there is little charge or field inside the
plasma shell, as shown in Figs. 3 and 5.
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FIGURE 1. The magnetic field exhibits a strong gradient at the surface of the initial,
low-density plasma.
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FIGURE 2. The rotation frequency profile in the region of the plasma shell.
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FIGURE 3. The density is a thin sheet of current located at the magnetic field gradient.
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FIGURE 4. A very high current density provides the confining forces.
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FIGURE 5. The electric field in the region of the transition.

IV INCLUSION OF FINITE TEMPERATURE

To determine how the inclusion of finite temperature affects the characteristics
of the cold fluid equilibrium, a relativistic pressure gradient term, 1/n∇P , is added
to the 1-D, cold-fluid model. A simplified model of pressure, with varying density
but isotropic temperature is included in Eq. (2) by adding T/n(r) ∂n(r)/∂r to the
right hand side. Similarly, operating on this equation with 1/r ∂/∂r [r . . . ] and
substituting Ampere’s law and Gauss’ law as with Eq. (2) produces a second-order
differential equation giving ∂B2

z/∂r2 as a function of βθ(r), ∂βθ(r)/∂r, Bz, ∂Bz/∂r,
∂B2

z/∂r2, and ∂3Bz/∂r3:
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At the temperatures considered here (T = 80 keV), the energy associated with
the pressure gradient is only about 0.3% of the rotational energy of the ions or the
electrostatic energy associated with the space charge. Consequently, the qualitative
results of the simulation are nearly identical to the cold fluid case. The peak ion
density confined with the same field strength is identical to the cold fluid case, as
shown in Fig. 3 but there is a small extension in the distribution of ion density
towards the center of the configuration, as seen in Fig. 6. The rotation frequency
profile is steeper at 48.7 cm than in the cold fluid case, and tapers off more sharply
at r > 49.0cm. The current density and the electric field remain identical to the
cold fluid case.
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FIGURE 6. The ion density including finite temperature effects.

V A TEST CASE: PROPOSED EXPERIMENT FOR

THE EDG

This concept can be easily tested in existing Malmberg-Penning traps. The cold
fluid equations are solved for electrons as the plasma species and for parameters
suited to the EDG device at Princeton [4,5]. For a very modest field that is ramped
up to .01 Tesla and a plasma diameter of 1.8 cm, the peak density is < 8.6 ×
1011/cm3. The rotation frequency is much higher than in the pure ion case because
of the much lower mass of the electrons. Peak rotation frequencies of 8 GHz are
found as shown in Fig. 7. This rotation corresponds to a βθ of about 0.45. The peak
current density is about 1.6 kA/cm2. The main technical difficulty in performing
an experiment in EDG is ensuring that the walls of the cylinder do not break down



because of field emission. The electric fields, even for this low density, peak at
about 90 kV/cm, as shown in Fig. 8.
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FIGURE 7. The rotation frequencies in EDG.
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FIGURE 8. The electric field in EDG.
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