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Abstract

With the rapid developments in experimental and theoretical fu-
sion energy research towards more geometric details, visualization
plays an increasingly important role. In this paper we will give an
overview of how visualization can be used to compare and contrast
some different configurations for future fusion reactors. Specifically we
will focus on the stellarator and tokamak concepts. In order to gain
understanding of the underlying fundamental differences and similar-
ities these two competing concepts are compared and contrasted by
visualizing some key attributes.
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1 Introduction

Modern civilizations are dependent on energy. In the industrialized part of
the world the demand for electrical power is increasing steeply, with the con-
sumption doubling approximately every ten years. It is hard to imagine this
trend continuing but there is still a strong need to develop an environmental
attractive, commercially viable, and sustainable energy source for the next
century. To develop a system capable of providing such a source of energy is
the mission of the fusion energy research community.

There is presently a great imbalance in the world energy consumption. As an
example, in 1990, the per capita consumption of energy in India and China
were 1/6 and 1/3 of the world average respectively. Over the next decades
it is likely that these figures will increase considerably. A large part of this
increase will no doubt be generated by conventional burning of fossil fuels.
This will degrade the local environments greatly and the impact on the global
environment is simply staggering. Hence, there is a great need to develop
viable renewable energy sources and increase the efforts on developing new
technologies such as those of controlled thermo-nuclear fusion.

Fusion technologies hold a great promise for the future. Widespread in-
troduction of fusion energy power plants could substantially reduce the en-
vironmental impacts of increasing worldwide demands for electricity.

For more than fifty years, researchers from around the world have worked
towards achieving controlled thermo-nuclear fusion [1, 23]. Fusion is the pro-
cess by which lights elements are fused together forming heavier elements and
liberating energy in the process. There are two different paths to achieve this
goal. In inertial fusion a small pellet of solid fuel is bombarded by photons
generated by high energy lasers or ions generated by particle accelerators.
The second and perhaps more promising avenue is by means of magnetic
confinement. In this scheme a fully ionized gas, a so called plasma, is con-
fined in a strong magnetic field. The goal is to confine a plasma of sufficiently
high temperature and density and for a sufficiently long period of time as
to allow the particles to fuse. The obvious aim is to get more energy out
than what is put in. The easiest reaction to achieve thermo-nuclear fusion
brings together the nuclei of two heavy isotopes of hydrogen: deuterium and
tritium. The Coulomb repulsion between the nuclei are overcome by heat
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and the system are generally externally heated with quite elaborate heating
systems ranging from radio waves to injection of energetic neutral particles.
The following discussing will be limited to magnetically confined plasmas.

The magnetic confinement scheme relies on the fact that the presence of
magnetic fields can affect the motion of the individual charged particles in
the plasma. Charged particles can move relatively free along the lines of the
magnetic field and the most successful devices for confining the plasma are
therefore closed into a toroidal shape. Over the decades a large number of
concepts of toroidal confinement have been investigated both theoretically
and experimentally. Current research efforts are mainly focused on two dif-
ferent concepts, the tokamak [26] and the stellarator [25, 2].

The tokamak [26] produces its magnetic field both from external coils and
by strong currents in the plasma generated by letting the plasma play the
role of the secondary winding of a transformer. The tokamak concept is the
one most favored in the world today. This is partly for historical reasons
and partly because of its relatively simple geometry. However, the tokamak
concept suffers from some intrinsic problems. Due to the dependence of an
external transformer the tokamak is intrinsically a pulsed device. This issue
is presently a primary focus of the tokamak research community and sev-
eral different ways to remedy this problem are considered. Furthermore, the
large currents driven by the transformer can also drive violent instabilities,
the so-called disruptions. During a large disruption the whole plasma is lost
and a large amount of energy is released with potential detrimental effect on
experimental hardware.

Stellarators [25, 2] on the other hand are intrinsically steady state devices and
are generally believed to be disruption free. In the stellarator the confining
magnetic field is essentially produced by currents flowing in coils surrounding
the plasma. This is obviously a great advantage when it comes to controlling
the plasma but the drawback of the stellarator concept is its geometry. While
the doughnut-shaped tokamak has continuous symmetry and is essentially a
2-dimensional configuration, the stellarator is fully 3-dimensional. Over the
last decades there has been an resurge of interest in stellarator concept. This
evolution can be attributed to the evolution of large scale supercomputers
and advanced visualization making an optimization of fully 3-dimensional
configurations viable.
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Visualization is about gaining understanding and insight. In the following
we will show some examples of how visualization can be used in this way to
compare and contrast different magnetic configurations. As examples we will
particularly focus on the stellarator and tokamak concepts. The aim is to
compare contrast the two concepts by visualizing key equilibrium quantities
and by identifying the underlying fundamental differences and similarities.
Visualization is about gaining understanding and insight. In the following
we will show some examples of how visualization can be used in this way to
compare and contrast different magnetic configurations. As examples we will
particularly focus on the stellarator and tokamak concepts. The aim is to
compare contrast the two concepts by visualizing key equilibrium quantities.
Hence gaining an understanding for the underlying fundamental differences
and similarities.

2 The physics

The plasma physics problems encountered in controlled thermo-nuclear fu-
sion can be separated into four basic areas:

• Equilibria
The problem of equilibria deals with balancing the forces of the kinetic
pressure with those of the magnetic field. Kinetic pressure attempts to
move plasma away minimizing the potential energy of the system while
the magnetic field tries to keep the plasma in place.

• Stability
A plasma in equilibrium can also be moved away from a given config-
uration by means of various instabilities. These instabilities occur in
many forms and shapes and on many different time and length scales.

• Transport
Transport of energy and particles out from the hot plasma center lowers
the temperature (or average kinetic energy) and particle densities and
therefore deteriorates the conditions for thermo-nuclear fusion.

• Heating
Extra heating applied from the outside of the plasma is important to
get to temperature levels necessary for fusion.
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The division above is somewhat artificial as the issues are directly related.
The measured energy transport in magnetically confined plasmas is generally
much larger than the predictions of simple estimates based on particle orbits
and is often called anomalous for this reason. The discrepancy is attributed
to small scale plasma turbulence. The turbulence is a result of the nonlinear
evolution of small scale instabilities. The stability of the latter are sensitive
to the equilibrium. The equilibrium in turn depends on the transport of
energy. Thus, the issues are strictly inseparable.

To treat such a complicated coupled system self-consistently is however not
tractable even with the largest of today’s supercomputers. The problems
are therefore decoupled with the help of further assumptions. The equilib-
ria are solved for assuming the pressure and current profiles. In turn, the
stability of these equilibria is calculated assuming the equilibria to be fixed
in time. The associated turbulence is then either estimated or calculated
from limited nonlinear models, again assuming the equilibria to be constant
in time. Development of more complete nonlinear calculations are presently
under way but has yet some way to go before a self-consistent model coupling
equilibrium, stability and nonlinear simulations to predict transport in real
configurations.

A large part of the annual budget of the international fusion research pro-
gramme goes into the development of numerical codes to simulate real experi-
ments. A large code is needed to treat each of the many aspects of the plasma
because of the different length and time scales involved. Furthermore, the
relative strength of the interactions between the issues of (dynamic or static)
equilibrium, stability and turbulence-driven transport varies from place to
place in the plasma. The relevant physics to be analyzed numerically or
analytically also depends on the location in the plasma; for example, the
outer part of the plasma (also called the edge plasma) is cold and contains
significant numbers of neutral atoms and molecules: the atomic processes,
such as charge exchange, recombination, radiation and interspecies collisions,
have to be taken into account when modelling the edge plasma (atomic pro-
cesses are much less important in the core (hot and dense) plasma). Here
we briefly review the plasma models that are most widely employed in the
modelling of tokamak and stellarator plasmas. The plasma models can be
divided into, somewhat arbitrarily, three categories: (a) particle model; (b)
kinetic model; and (c) fluid model. The particle model has its starting point
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with the equation of motion of the particle species (electrons, singly-charged
ions and impurities)

mj
d2r

dt2
= qj

(
E +

v×B

c

)
. (1)

Here r is the position vector of particle species j with mass mj and charge
qj. The electric field, E, and the magnetic field, B, must be calculated self-
consistently using Maxwell’s equations. The timescale associated with the
equation of motion (1) is (for electrons) τp ∼ 1/ωce where ωce ≡ (eB)/(mec)
is the so-called electron cyclotron frequency. For typical tokamak plasma
parameters, τp is of the order of 10−11 s. It is evident that the above model
is impractical since the lifetime of a typical discharge is τd ∼ 1 − 10s, so
that τd/τp ∼ 1011−1012. However, in a strong magnetic field, particles move
rapidly along helices of radius ρj ; one can average over the (fast) gyro-motion
and study the resulting guiding centre dynamics with relevant timescale
10−4 s. In the late 70’s, Okuda and co-workers have developed simple particle
codes; the ion motion is governed by the Lorentz force law represented using
the standard leapfrog scheme. The electrons are treated using a drift approx-
imation, necessitating the use of a predictor-corrector scheme to treat their
motion perpendicular to the field lines. Poisson’s equation (which ensures
the plasma quasineutrality) for the electrostatic potential is solved by Fourier
transforming. The main difficulty with the codes described in Refs [28, 29, 30]
is particle noise. In order to reduce particle noise, Lee [31, 32] developed a
gyro-kinetic model. In the gyro-kinetic model, the set of equations (1) are
averaged over the gyromotion while retaining effects due to the finite radius
of the gyro-orbits. The calculation of the ion density and the method of
solution of Poisson’s equation are the main differences with ordinary parti-
cle codes: the ion density is calculated by introducing the concept of a ring
of charge [31, 32]; Poisson’s equation is solved in wavenumber space rather
than real space. To bypass the difficulty associated with the short electron
timescale, the subcycling technique [33] is used for electrons. For toroidal
geometries, the toroidal particle code (TPC) of LeBrun and Tajima [39] uses
a non-uniform mesh for the radial coordinate. The ion are pushed in a local
Cartesian system using a standard leapfrog scheme, then transformaing back
to the toroidal system at every timestep. To treat a large number particles
(typically ∼ 1020), it is convenient to introduce a number density function
Fj (r,v, t) such that Fjd

3rd3v represents the number of particles of species j
in the phase space elementary volume d3rd3v. The distribution function Fj
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is governed by Boltzmann’s equation

dFj
dt

≡ ∂Fj
∂t

+ v·∇Fj +
qj
mj

(
E +

v×B

c

)
·∇vFj =

∑
k 6=j

Cjk (Fj, Fk) , (2)

where ∇v is the gradient operator in velocity space and Cjk (Fk, Fj) is the
collision operator between species j and k. In a hot plasma, one may take, in
first approximation, Cjk ≈ 0 and equation (2) reduces to the so-called Vlasov
equation. Writting F = F0 + δF , where F0 is the equilibrium (Maxwellian)
distribution function, one can obtain an evolution equation for δF(

∂

∂t
+ v·∇6

)
δF = S0 (F0) ≡ S0 . (3)

Equation (3) can be regarded as an evolution equation for δF with a source
S0. As discussed by Tajima [38], each particle is assigned a weight wj such
that

δF =
∑
j

wjδ (r− rj(t)) . (4)

Alternatively, one may write δF = WF?, where W is a weighting function,
and F? satisfies

ẆF? +WḞ? = S0 , (5)

where an overdot denotes the derivative along a trajectory. There is some
freedom in specifying the weighting function W ; for some specific cases, the
reader can consult, for example, Ref [38]. Standard fluid models are obtained
by taking moments

Mk ≡
∫

vkL [F ]d3v , (6)

of Boltzmann’s equation. Here k = 0, 1, 2, ... and L denotes the global oper-
ator given in Boltzmann’s equation (2)

L ≡ ∂

∂t
+ v·∇ +

qj
mj

(
E +

v×B

c

)
·∇v − C . (7)

For many applications, velocity space effects can be neglected so that only
the first few moments (6) of the velocity distribution Fj can be retained. It
is easy to show that the equation for Qk ≡

∫
vkFjd

3v involves, in general, all
the moments up to Qk+1 (inclusive). Therefore one obtains an infinite set of
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equations and one must truncate the complete set by introducing an appropri-
ate closure method. If the distribution function Fj does not depart strongly
from a Maxwellian distribution (that is Fj ≈ FMj = A exp [−mv2/ (2kBTj)]
where A is a constant of normalization), one can obtain approximate expres-
sions for the various (classical) transport coefficients; see for instance the
monograph of Braginskii [3]. The set of Braginskii’s fluid equations [3] offers
a relatively simple starting point to the problem of slow (frequency much
smaller than the ion cyclotron frequency), drift-type (k||/k⊥ � 1 where k||
and k⊥ are the parallel and perpendicular components of the wavevector, re-
spectively) modes; these modes, also referred to as drift waves, are believed
to be responsible to the large (anomalous) transport accross the magnetic
field lines observed in tokamak [4] and stellarator [5] plasmas. We do not
discuss the derivation of the various fluid models for drift waves that can
be found in the literature, e.g. Refs [7, 8], but consider a simple model for
illustrative purposes. From the ion momentum and continuity equations, it
is possible to derive a prototypical one-field model for drift waves; neglecting
the ion motion along the field line, one can show the fluctuating electrostatic
potential Φ is governed by the following equation (in appropriate normalized
units) [9] (

∂

∂t
+ vE·∇

) [
N (Φ)−∇2Φ

]
= 0 , (8)

where vE ≡ c (E×B) /B2 is the (lowest-order) cross-field drift velocity of
the ions. Here N is the total plasma density and E ' −∇Φ is the fluctu-
ating electric field. Equation (8) was introduced by Terry and Horton and
it is sometimes called the Terry-Horton equation [9]. Various models for the
plasma density N can be studied; for instance, if N0 represents the equilib-
rium plasma density, than one possible model is

N (Φ) = N0 + (1− iδ)Φ , (9)

where δ ≥ 0; in the special case δ = 0, the perturbed plasma density is
adiabatic, the drift wave is marginally stable and the Terry-Horton equation
reduces to the Hasegawa-Mima equation [6]. Clearly δ represents a phase
shift (in the linear regime) between the perturbed density and electrostatic
potential. For δ > 0 (δ < 0), the drift mode is linearly unstable (stable).
More realistic models treat δ as a spatial operator. The one-field model (8)
is valid in slab geometry (∇B = 0). However, in a toroidal configuration,
the magnetic field is inhomogeneous and additional terms due to curvature
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effects must be retained in the model equation (8).

In what follows we will concentrate on the equilibria and only allude to
consequences on stability and transport as they arise. Specifically we will
contrast tokamaks and stellarators by comparing key physical attributes of
their equilibria. For the tokamak case we use an analytical expansion valid
in the limit when the distance the long way around the torus is much longer
than the distance the short way around the torus. For the stellarator case we
use a full 3-dimensional numerically obtained equilibria for the TJ-II helical
axis stellarator [22].

2.1 Balancing the forces

The conditions in today’s fusion plasma are quite extreme with million-
ampere currents flowing in plasmas with magnetic fields of tens of thousands
of gauss. The potential forces are enormous and uttermost care must be
taken to balance these forces. In particular the magnetic forces and those
due to the kinetic pressure need to balance in order to isolate the plasma, at
a temperature of hundreds of million degrees, from the material walls.

Force balance between the internal forces of the kinetic pressure of the plasma
and the forces of the external and internal magnetic fields and associated
currents is normally studied using the magnetohydrodynamic model. In this
model the plasma is approximated as a perfectly conducting fluid. Balancing
forces of the kinetic pressure with the forces of the magnetic field, we get

c ∇p = J×B . (10)

Here J is the plasma current density, B is the total magnetic field and p is
the plasma pressure. c is the speed of light. All the physical quantities given
in this paper are in Centimetre-Gramme-Seconde (CGS) units. In general,
equation(10), has to be solved numerically but in certain limits it is possible
to obtain analytical results. One such case is shown in Fig.1. Fig.1 shows
the magnitude of the magnetic field for a standard tokamak case. A portion
of the torus has been artificially removed in order to observe the magnetic
field strength variation as one moves across the plasma. Blue indicates the
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low field strength and red indicates the high field strength. For case shown
in Fig.1, the magnetic forces balancing the kinetic pressure is mainly due to
the large externally generated currents. The tokamak has rotational symme-
try and each vertical cross section through this symmetry axis are identical.
As a consequence the equilibria are essentially 2-dimensional. This leads to
great simplification both of theoretical work and experimental work. Note
that the magnetic field is stronger on the inside of the torus. The magnetic
field strength varies roughly as 1/R, where R is the distance from a point in
the plasma to the revolution axis of the torus. For more details on tokamak
equilibria, the reader is referred to Ref [26].

In a closed system a magnetic field line can behave in three distinct ways.
It can close upon itself after a number of transits around the torus. It may
trace out a surface, never closing upon itself. The surface thus traced out
is consequently called a magnetic surface. The third possibility is when a
magnetic field line fills a volume as it winds its way through the torus. Since
particles and heat can travel quite freely along the magnetic field lines, such
plasma configuration must be avoided as outward transport occurs by simply
following the magnetic field lines. Thus, the existence magnetic surfaces, is
an essential requirement for long-term confinement [27] The magnetic sur-
faces are also used to define the various types of curvilinear coordinates [40]
invariably used in studies of equilibria. For general 3-dimensional equilibria,
one can use the divergence-free condition for B to write the magnetic field
in so-called straight-field line coordinates [10, 12, 11]

B = ∇α×∇ψ , (11)

where α is the field line label and 2πψ is the enclosed poloidal magnetic flux.
It is clear from equation (11) that the condition ∇·B = 0 is automatically
satisfied. Here ψ is the radial coordinate which labels the magnetic surfaces.
The field line label can be written as α = ζ − q(ψ)θ, where ζ and θ are the
so-called magnetic toroidal and poloidal angles, with period 2π, respectively.
Finally, q is the safety factor and this quantity is related to the pitch of the
magnetic field line. Note that the representation (11) is not unique. For
instance we note that the transformations α 7→ α+ f(ψ) and ψ 7→ ψ + g(α)
leave the right-hand side of equation (11) (the actual physical quantity) un-
changed. The representation (11) is convenient for analytical calculations. In
practise, however, the curvilinear coordinates {ψ, θ, ζ} have to be computed
numerically, once the left-hand side of equation (11) has been specified. By
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construction, a magnetic field line α = const appears as a straight line in
the θ − ζ plane, with slope q. In straight-field line coordinates, a magnetic
surface ψ = const can be seen (in topological space) as a square with side
2π in the poloidal and toroidal ‘angles’. In real space, however, the magnetic
surface is a fully 3-dimensional object.

In Fig.2 the coordinate grid for the tokamak case has been displayed. The
shifted, concentric circles in this grid define the magnetic surfaces. The center
of the toroidal coordinates in Fig.2 is called the magnetic axis, an infinitely-
degenerated magnetic surface which reduces to a circular line in the plasma
center.
For comparison a top-view of the four-field period stellarator TJ-II [22]
is shown in Fig.3. The physical quantity displayed is the magnetic field
strength. The typical radius of the magnetic axis is 1 m and the average
radius of the plasma is 0.2 m. In Fig.4, the same magnetic surface as in
Fig.3, but for a different viewing angle, is shown. The ‘bumpy’ structure of
B is due to the effects of the toroidal field coils. In contrast to tokamaks
(Figs.1,2), stellarators (Figs.3,4) lack the continuous symmetry and require
a full 3-dimensional consideration of equation (10). A low-resolution grid,
defining a magnetic surface of TJ-II, is shown in Fig.5. In Fig.6, a cross
section of TJ-II plasma is shown. Note the characteristic bean shape of the
plasma. The hole in the is an artefact of the equilibrium code (The position
of the magnetic axis is approximated using a polynomial expansion, which
coefficients are determined from the neighboring magnetic surfaces). As sta-
bility is concerned, the plasma center is quite unimportant and crucial physics
usually occur in outer regions of the confined plasma. While expansions are
sometimes used for stellarators none is really very useful and the plasma ge-
ometry and the equilibrium magnetic field has to be determined numerically.
The VMEC code [41, 42] developed at the Oak Ridge National Laboratory is
a standard tool for finding stellarator equilibria. The VMEC code assumes
the existence of nested magnetic surfaces (B·∇ψ ≡ 0) and uses an precondi-
tioned steepest-decent method [42] to find the equilibrium solution. In this
code, the magnetic field components for each magnetic surface are specified
by Fourier series in curvilinear coordinates. There is some freedom in choos-
ing the coordinates and in the VMEC code this is used to optimize the choice
of one curvilinear coordinate (the poloidal ‘angle’) to accelerate the conver-
gence. After the calculations we map the results back to a cylindrical grid
which is optimum for display purposes. The final ‘curvilinear’ grid is shown
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in Fig.5.

2.2 Magnetic Curvature

The measured energy transport in magnetically confined plasmas is gener-
ally much larger than the predictions using particle trajectories and is often
called anomalous for this reason [4, 13]. The discrepancy is attributed to
small scale plasma turbulence [14]. It is well known that small scale instabil-
ities can cause enhanced transport in plasmas and they are major contenders
to explain this difference. However, despite a considerable, world wide, effort
over the last few decades the understanding of confinement is still relatively
poor. As an unsatisfactory consequence, the next generation of large scale ex-
periments are presently designed with the use of empirical or semi-empirical
scaling laws [13, 15]. Consequently, an increased understanding of transport
of energy and particles across magnetic fields is of extreme importance.

The local structure of the magnetic field configuration plays an important
role for the linear mode structure and stability of small-scale instabilities, and
hence for energy transport, in magnetically confined plasmas. The magnetic
field curvature is an example of distinct local attribute of a configuration.
Curvature can either be locally favorable or unfavorable. Plasma instabili-
ties are driven unstable by the magnetic curvature in much the same way as
as heavy fluid is unstable on top of a light fluid. The plasma pressure gradi-
ents take on the role of gravity in the fluid example. A plasma configuration
generally has regions of favorable curvature and regions of unfavorable cur-
vature. Small scale instabilities tend to be localized in regions of unfavorable
curvature while large scale instabilities tend to respond more to the average
curvature.

The magnetic curvature is defined as

κ ≡ (
e|| ·∇

)
e|| , (12)

where e|| ≡ B/B is a unit vector parallel to the equilibrium magnetic field.
Curvature is an intrinsic quantity of closed magnetic systems such as stel-
larators and tokamaks. Favorable and unfavorable regions of curvature are
closely related to the local plasma pressure gradient. If κ · ∇p > 0, the
magnetic curvature is unfavorable. For tokamaks, this occurs on the outside
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of the torus. On the inside of the torus κ · ∇p < 0, and the curvature is
favorable. It is convenient to write the curvature vector in component form

κ = κN n + κG b , (13)

where n is the unit normal vector, pointing outward of the magnetic sur-
face. b is the unit binormal vector, which lies in the magnetic surface and is
perpendicular to B. κN and κG are called normal and geodesic curvatures,
respectively. In stellarator geometry, all the physical quantities (scalars and
vectors) depend on all 3 coordinates of space. From the definition (12) we
note that the curvature vector has no component parallel to B. Geodesic and
normal curvatures usually appear in form of a linear combination in plasma
stability theory. Other structural parameters of the confining magnetic field
(see next section) are also present in the study of instabilities, and their spe-
cific forms depend on the theory used.

The components of the magnetic curvature, κN and κG, can be determined
analytically using techniques of curvilinear coordinates. For convenience, one
can introduce a set of covariant basis vectors {eψ, eθ, eζ}, where eµ ≡ ∂r/∂µ,
r is the local position vector in the plasma, and µ = {ψ, θ, ζ}. Introducing
the local Jacobian of the transformation, J ≡ [∇ψ· (∇θ×∇ζ)]−1, one easily
calculate the contravariant basis vectors, eµ ≡ ∇µ = εµλϕJ −1eµ×eλ, where
εµλϕ is the usual Levi-Civita symbol for permutations. Then, one can de-
compose any vector A on the contravariant or covariant basis vectors. After
some algebra one gets the geodesic curvature

κG =
1

J
√
gψψ

[bζ κθ − bθ κζ ] , (14)

where

κθ ≡
(
bθ
∂bθ

∂θ
+ bζ

∂bθ

∂ζ

)
gθθ +

(
bθ
∂bζ

∂θ
+ bζ

∂bζ

∂ζ

)
gθζ

+ 2 bθ bζ eθ·∂eθ
∂ζ

+
(
bθ

)2
eθ·∂eθ

∂θ
+

(
bζ

)2
eθ·∂eζ

∂ζ
, (15)

and

κζ ≡
(
bθ
∂bθ

∂θ
+ bζ

∂bθ

∂ζ

)
gθζ +

(
bθ
∂bζ

∂θ
+ bζ

∂bζ

∂ζ

)
gζζ

+ 2 bθ bζ eζ·∂eθ
∂ζ

+
(
bθ

)2
eζ·∂eθ

∂θ
+

(
bζ

)2
eζ·∂eζ

∂ζ
. (16)
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Similarly, it is easy to show that the normal component of the magnetic
curvature is given by

κN =
1√
gψψ

[
2 bθ bζ ∇s·∂eθ

∂ζ
+

(
bθ

)2 ∇s·∂eθ
∂θ

+
(
bζ

)2 ∇s·∂eζ
∂ζ

]
. (17)

In equations (14,17), we have introduced bθ ≡ B·∇θ/B, bζ ≡ B·∇ζ/B,

B =
(
BθB

θ +BζB
ζ
)1/2

is the magnetic field strength, gij ≡ ei·ej and
gij ≡ ∇i·∇j are metric elements.

The effect of normal curvature and geodesic curvature in a plasma can be
quite different. This is much the same way as a car turning at high speed on
a free way responds differently to different form of curvatures. Consider the
following situation. You are taking a turn on a freeway at high speed. If the
surface of the road is not cambered the curvature is more or less geodesic, the
centrifugal forces essentially acting in the surface and the friction between
the road an your tyres is what saves you from disaster. If, on the other hand,
the road is cambered we are changing the angle between normal vector of the
road and the curvature. The curvature now has a large normal component.
The car has a quite different and more secure response to this type of cur-
vature provided, of course, that the road was cambered in the right direction.

The normal curvature for the tokamak and stellarator cases are shown in
Fig.7 and Fig.8, respectively. For the tokamak case, the normal curvature
vanishes on the top and the bottom of the torus. A negative normal curva-
ture, which has been indicated in blue, occurs on the outside of the torus; a
negative κN is destabilizing. Coming back to the analogy with the cambered
freeway this region corresponds to the case when the road has been cambered
the wrong way. For the stellarator case the corresponding negative normal
curvature occurs on the outside of the bean shaped cross section. However,
the direction changes as the bean shaped cross section twists around (Fig.8).
Note the similarities between the tokamak and stellarator cases with the es-
sential qualitative difference being that the negative region of curvature in
the stellarator case twists itself around following the shape of the flux-surface.
A more careful analysis reveals that the proportion of the region of favorable
(positive) curvature is larger for the stellarator case.

The geodesic curvature for the tokamak and stellarator case are shown in
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Fig.9 and Fig.10, respectively. Regions colored in green correspond to a van-
ishing of the geodesic curvature. Negative geodesic curvature is indicated in
blue while positive geodesic curvature is indicated in red. For low-frequency
instabilities with elongated structure along the magnetic field line, the effect
of the geodesic curvature is coupled to the normal component of κ and the
local magnetic shear [16, 17].

2.3 Local Magnetic Shear

Bending the magnetic field lines costs energy and therefore the most danger-
ous instabilities in plasmas are often those that involve little or no bending
of the magnetic field lines [18]. Magnetic shear is a measure of how the
field lines changes directions as one moves from one magnetic surface to the
next. Finite shear means that no instability of finite extent can exist without
bending the magnetic field lines. Magnetic shear is therefore often stabilizing.

The local magnetic shear (LMS) is defined as [19]

S ≡ −s ·∇×s , (18)

where s ≡ (∇ψ×B)/(∇ψ · ∇ψ) is a vector lying in the magnetic surface
but perpendicular to magnetic field direction. As before, ψ is the magnetic
poloidal flux and it is used to label the magnetic surfaces. For a tokamak
plasma with low kinetic pressure, the LMS can be calculated using an ex-
pansion technique [21, 20]. For the stellarator case, the explicit form of the
LMS (18) can be written in straight-field line coordinates. After lengthy
calculations, we get

S = C

{
(Bζ gsθ − Bθ gsζ)

[
gθθ

∂Bζ

∂ζ
− gθζ

(
∂Bθ

∂ζ
+
∂Bζ

∂θ

)
+ gζζ

∂Bθ

∂θ

+ Bζ

(
∂gθθ
∂ζ

− ∂gθζ
∂θ

)
+Bθ

(
∂gζζ
∂θ

− ∂gθζ
∂ζ

)

+ (Bθ gθζ − Bζ gθθ)

(
1

J
∂J
∂ζ

+
1√
gss

∂
√
gss

∂ζ
+

1

B

∂B

∂ζ

)

+ (Bζ gθζ − Bθ gζζ)

(
1

J
∂J
∂θ

+
1√
gss

∂
√
gss

∂θ
+

1

B

∂B

∂θ

)]

+ (Bζ gθθ − Bθ gθζ)

[
gθζ

∂Bζ

∂s
− gζζ

∂Bθ

∂s
− gsθ

∂Bζ

∂ζ
+ gsζ

∂Bθ

∂ζ
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+ Bζ

(
∂gθζ
∂s

− ∂gsθ
∂ζ

)
+Bθ

(
∂gsζ
∂ζ

− ∂gζζ
∂s

)

+ (Bθ gζζ − Bζ gθζ)

(
1

J
∂J
∂s
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1√
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∂
√
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∂s
+

1
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∂B
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+

1
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+ (Bζ gθζ − Bθ gζζ)
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∂Bζ
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+

1
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∂B
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)
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1

J
∂J
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+
1√
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∂
√
gss

∂s
+

1

B

∂B

∂s

)]}
, (19)

where

C ≡
(

1

ψ̇gssJ 3/2

)2

. (20)

Of course, the calculations for the LMS are performed numerically.

The local magnetic for the tokamak and stellarator cases are shown in Fig.9
and Fig.10 respectively. Now we can clearly see distinct differences between
the tokamak and stellarators. For the tokamak case [21], dark blue indicates
zero shear and red indicates large positive shear and the shear is seen to be
smoothly varying and in fact, to first approximation, constant on a magnetic
surface. This is contrasted with the stellarator case where blue indicates
large negative values and red indicates large positive values. Here the shear
is rapidly varying with a surface average close to zero.

3 Visualization

Advanced Visual Systems Inc (AVS) [44] has developed a powerful, user
friendly method for displaying scientific results. It has a wide range of ap-
plications in physics, chemistry, biology and other areas of science and en-
gineering. AVS graphic techniques allow the user to read, manipulate and
display numerical data. The AVS input data file usually contains one, two or
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three space coordinates (physical location of a grid point) and one or more
physical quantities (such as density, temperature, fluid velocity) associated
with a given set of grid points. AVS system could handle scalar as well as
vectorial quantities.

The graphics presented in the previous sections were created using the AVS
[44] visualization techniques. Here we will briefly indicate what is typically
involved in this process. We will use the TJ-II helical axis stellarator as an
example for the discussion in this section. Manipulation of the AVS input
data file is done through an organized order called a network. A network
is made of a group of modules, each of them manipulating the data in a
specified way. The user connects a set of existing modules or develop new
ones as the needs develops.

As we already pointed out in the previous sections, the confined plasmas
in toroidal fusion machines can be seen as a set of nested doughnut-like sur-
faces (with various amount of twisting, depending on the configuration), the
so-called magnetic surfaces. The actual details of each magnetic surface de-
pends on the machine topology (tokamak or stellarator) and on the plasma
parameters (such as the current flowing in the plasma, the plasma density
and temperature, etc.).

A magnetic surface can be topologically represented as a square of side 2π in
[θ, ζ] domain where θ and ζ are some (often curvilinear) angle-like variables.
θ indicates the position as one moves the short way around the torus, while ζ
indicates the position as one moves the long way around the torus. Usually ,
for sake of simplicity, stability calculations are carried out in this ‘curvilinear
(or topological) space’. However, when one has to compare theoretical stud-
ies and experimental results or simply to gain some physical insight about the
geometrical aspects of the problem, one has to display the magnetic surface
as it appears in our standard 3-dimensional space. The transformation from
topological space to ‘real’ 3-dimensional space (Fig.13) is called mapping and
it is discussed below.

As it happens, in the output from the equilibrium code VMEC [42], ζ = φ,
where φ is the usual azimuthal angle in cylindrical coordinates. The VMEC
code also outputs the cylindrical coordinates R and Z in terms of Fourier
series. These components together with the dependence on the cylindrical
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angle φ completely specify a given magnetic surface

R(θ, φ) =

m=M,n=+N∑
m=0,n=−N

Rmn cos(mθ +Npernφ) , (21)

Z(θ, φ) =

m=M,n=+N∑
m=0,n=−N

Zmn sin(mθ+Npernφ) . (22)

Here Nper is the number of field periods or the degree of discrete symmetry.
The stellarator presented in this paper has four-fold symmetry (Fig.3) and
Nper = 4. The magnetic field components are also given in terms of Fourier
series, similar to equations (21,22). The required resolution generally depends
on the object and the quantities being displayed. The stellarator considered
here has a fairly detailed structure requiring a relatively large number of
Fourier components. For the figures displayed we used M = 7 and N = 14.
A uniform grid was used in θ and φ with large enough number of grid points
Nθ and Nφ to satisfy Nθ �M and Nφ � N . Computational experience told
us that a topological grid with Nθ = 100 and Nφ = 600 provides the required
resolution when displayed in 3-dimensional space. Unphysical oscillations
were observed for smaller values of Nθ and Nφ. We have checked that for
greater values of these parameters the resolution of the end product was left
unchanged.
The basic procedure of the mapping technique is as follows. In the first stage,
a uniform grid is created in topological [θ, φ] space and meaningful physical
quantities to be displayed are calculated on this grid (Fig.13). Then, using
the VMEC representation for cylindrical coordinates given above, Cartesian
coordinates of each grid point are computed. Writing θi = i ∆θ and φj =
j ∆φ where i and j are integers, a point on a given magnetic surface is given
by

xij = Rij cos θij (23)

yij = Rij sin θij (24)

zij = Zij (25)

where Rij ≡ R(θi, φj) and Zij ≡ Z(θi, φj) are calculated using equations
(21,22). Using equations (23,24,25), the position vector r = xx̂ + yŷ + zẑ
is known everywhere on the magnetic surface. Then one can evaluate all
the quantities required in equations (17,14,19) by calculating the following
quantities (in that order)
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• Covariant basis vectors, eµ = ∂r/∂µ for µ = {ψ, θ, ζ} ;

• Covariant metric elements, gµλ = eµ·eλ for (µ, λ) = {ψ, θ, ζ} ;

• Jacobian of the transformation, J = eψ· (eθ×eζ) ;

• Contravariant basis vectors, eµ = εµλϕJ −1 (eλ×eϕ) for (µ, λ, ϕ) =
{ψ, θ, ζ} ;

• Contravariant metric elements, gµλ = eµ·eλ for (µ, λ) = {ψ, θ, ζ} .
The AVS input data file, the first module in the network hierarchy, is con-
structed using quadrahedron cells made of four nodes (xij, yij, zij) given
above. Note that a surface element ∆θ∆φ in topological space on a given
magnetic surface corresponds to a twisted surface element in 3-Dimensional
space. This is illustrated in Fig.13.

The AVS input file requires information on how grid points are connected
together. When grid points fill a volume in a smooth, well-behaved way, an
AVS module can create appropriate connections automatically. However, in
our case, even though the grid is uniform in [θ, φ] space, grid points are dis-
tributed in a non-trivial way in real space (Fig.5). This form of data is called
Unstructured Cell Data (UCD) [44]. An example of the grid was shown in
Fig.2 (tokamak case) and Fig.5 (stellarator case). Care must be taken to
ensure appropriate torus periodicity, For instance, any physical quantity F
must satisfy the requirement of poloidal periodicity, F (θ, ζ) = F (θ + 2π, ζ),
and toroidal periodicity, F (θ, ζ) = F (θ, ζ + 2π).

4 Summary

Advanced visualization techniques have been shown to be extremely useful in
modern plasma physics. Physical insight can be gained in the understanding
of complicated 3-dimensional magnetic topologies.
Because of long-range, collective-type phenomena, the physic of magnetically
confined plasmas is rather involved. In section 2, we have presented the
four basic areas in the study of controlled thermo-nuclear fusion; these are:
equilibria, stability, transport and heating. Complete understanding of each
of these research areas is a formidable task in itself. Ultimately, a global
understanding of magnetically confined plasmas would be required.
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Figure 1: The magnetic field strength for the standard, axi-symmetric toka-
mak. Red region corresponds to high magnetic field while blue region indi-
cates low magnetic field.
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Figure 2: Curvilinear coordinate grid for the standard tokamak. The shifted
circles are the magnetic surfaces. The amount of shift is proportional to the
ratio of the plasma potential energy to the magnetic energy.
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Figure 3: Top-view of the 4-field period stellarator TJ-II [22]. The magnetic
field strength is shown. We note the detailed structure of B due to the effects
of the toroidal field coils.
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Figure 4: Magnetic field strength on a magnetic surface of stellarator TJ-
II [22]. The helical structure of the magnetic axis is visible.
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Figure 5: Low-resolution grid of a magnetic surface of stellarator TJ-II [22].
Each intersection between two lines defines a node, whereas each twisted
parallelogram (made of 4 nodes) defines a cell.
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Figure 6: Magnetic field strength in the cross section of TJ-II [22] stellarator
plasma. The bean-shaped cross section twists around as we move the long
way around the torus. The ‘hole’ is an artefact of the VMEC code (see main
text).
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Figure 7: Normal magnetic curvature for the standard tokamak. The region
of unfavorable (negative) curvature is indicated in blue. Favorable (positive)
curvature is shown in red.
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Figure 8: Normal magnetic curvature on a magnetic surface of stellarator
TJ-II [22]. The region of unfavorable curvature is indicated in blue and it
twists around the long way along the torus.
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Figure 9: Geodesic magnetic curvature for the standard tokamak. The van-
ishing of the geodesic curvature, indicated in green, occurs at the plasma
inside and outside.
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Figure 10: Geodesic magnetic curvature on a magnetic surface of stellarator
TJ-II [22].
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Figure 11: Local magnetic shear (LMS) for the standard tokamak. Blue
indicates region with negative LMS. Positive values of the LMS are shown in
red.
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Figure 12: Local magnetic shear (LMS) on a magnetic surface of stellarator
TJ-II [22].
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Figure 13: A magnetic surface is a square in topological space, but a fully
3-dimensional object in real space.
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