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An analytical dispersion relation is derived which shows that, in toroidal plasmas, zonal flows can

be spontaneously excited via modulations in the radial envelope of a single-n coherent drift wave,

with n the toroidal mode number. Predicted instability features are verified by 3D global gyroki-

netic simulations of the ion-temperature-gradient mode. Nonlinear equations for mode amplitudes

demonstrate saturation of the linearly unstable pump wave and bursting behaviour in the drift-wave

intensity and zonal flows.

PACS numbers: 52.35.Kt, 52.35.Ra

Recent 3D gyrokinetic [1,2] and gyrofluid [3] simulations in toroidal plasmas have demonstrated

that zonal flows [4] play a crucial role in regulating the nonlinear evolution of electrostatic drift-wave

instabilities such as the ion temperature gradient (ITG) modes and, as a consequence, the level of the

anomalous ion thermal transport. Zonal flows correspond to potentials which spatially depend only

on the radius r and contain temporal variations with time scales longer than that of the drift waves.

Recent gyrokinetic simulations [5] have shown that zonal flows could be spontaneously excited by

ITG turbulence held at constant level, suggesting parametric instability processes as the generation

mechanism. Diamond et. al. [6] have proposed the modulational instability of drift-wave turbulence

(“plasmons”) in a slab-geometry treatment. Those authors also noted that unstable zonal flows can

couple back to the drift waves and proposed a predator-prey model for the nonlinear self regulation

of the drift wave turbulence.

In the present letter, we show, both analytically and by direct 3D gyrokinetic simulations, that

zonal flows can be readily excited via the modulational instability of a single-n coherent drift wave

in toroidal plasmas, with n the toroidal mode number. We note that our theory is strictly applicable
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to toroidal geometry. Specifically, the drift wave, while having only a single n value, contains many

poloidal harmonics (m’s) which are toroidally coupled. Thus the modulation corresponds to that of

the radial envelope describing the magnitude of each poloidal harmonic. In this respect the zonal

flow can be regarded as the radial envelope mode.

Consider a large aspect ratio (ε = a/R � 1) tokamak plasma with the usual radial (r), poloidal (θ)

and toroidal (φ) coordinates. Here R and a are respectively the major and minor radii. Electrostatic

fluctuations are taken to be coherent and composed of a single n (n 6= 0) drift wave, δφd and a zonal

flow mode δφz; that is, δφd = φ0 + δφ+ + δφ− + c.c.,

φ0(~r, t) = e−i(nφ+ω0t)
∑
m

Φ0(m − nq)eimθ, (1)

δφ± = ei(∓nφ−(ωz±ω0)t+Kzr)
∑
m

Φ±(m− nq)eimθ, (2)

and δφz = Φze
i(Kzr−ωzt) + c.c.. Thus φ0 is the pump drift wave and ω0 its eigenmode frequency;

δφ+ and δφ− are respectively the upper and lower sidebands produced by the modulation in the

radial envelope due to δφz at frequency ωz and radial wavenumber Kz . We have assumed n � 1

and adopted the ballooning mode representation [7] in which Kz = nq′θ0, q = rBφ/RBθ is the safety

factor, and 0 ≤ θ0 ≤ π is the Bloch phase shift. The pump mode φ0 has θ0 = 0, (ie. a flat radial

envelope) which is, for a given n, usually the linearly most unstable mode. On the other hand δφ+

and δφ− have θ0 6= 0 giving radial envelope modulations. Typically they are linearly stable for

moderate values of θ0 [3]. We are thus dealing with a four-wave coupling process among φ0, δφ+,

δφ−, and δφz. Three wave parametric excitation of zonal flows can be shown to be rather ineffective

due to the frequency and wavenumber matching constraints.

Since electrons are adiabatic for the n 6= 0 drift waves, only ions contribute to the nonlinear

physics. δΦz is then coupled to Φ0 and δφ±, and the nonlinear coupling coefficient is formally of the

Hasegawa-Mima type [8–10], i.e.
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(−iωz + νz)χizΦz = g

〈∑
m

[a+Φ∗
0Φ+ − a−Φ0Φ−]

〉
(3)

where g = c
2B

αiρ
2
i kθKz, a+ = k2

0⊥ − k2
+⊥, a− = k2

0⊥ − k2
−⊥, χiz ' 1.6ε3/2K2

z ρ2
i B

2
φ/B2

θ [11], νz =

(1.5ετii)
−1 [12], ~k0⊥ = θ̂kθ + inq′r̂∂ζ , kθ = nq/r0, r0 refers to one reference mode surface, ζ = m− nq

corresponds to the fast radial variable, ~k±⊥ = r̂Kz ± ~k0⊥, and 〈A〉 =
∫ 1/2
−1/2 Adζ is an averaging with

respect to r0, αi ' δP0⊥/(NeΦ0) + 1 and δP0⊥ is the perturbed perpendicular pressure due to Φ0.

The detailed expression for αi depends on the specific drift wave mode and plasma parameters; e.g.

αi ' 1+τ+ηiτ , ηi = dlnTi/dlnN for the electron drift wave, and αi ' τ (1+ηi)/[(3τ−1)Ln/R+1/2]+1

for ITG in the fluid ion local approximation [3]. Here L−1
n = dlnN/dr and τ = Ti/Te. In deriving

Eq. 3 we have assumed |k⊥ρi| < 1 with ρi the ion gyro radius, |ωz| < ωGAM , and averaged over the

Geodesic Acoustic Mode [13].

The nonlinear coupling of δφ± to Φ0 and δΦz can be straightforwardly calculated using the nonlin-

ear gyrokinetic equation [9,10] and the quasi neutrality condition. We have, denoting ω+ = ωz +ω0,

L+Φ+ = ω+

[
(1 + τ )Φ+ − (Ti/e)

〈∫
d3~vJ0δG

l
i+

〉]

= −i(c/B)kθKzτΦ0(ζ)Φz (4)

where δGl
i+ satisfies the linear gyrokinetic equation [14,15]

(v‖~b · ~∇− iω+ + i~k+⊥ · ~vd)δG
l
i+ = −hΦ+ (5)

with h = (ω+ − ω∗i)FMiJ0e/Ti and ~b = ~B0/B0, ~vd is the magnetic ~∇B0 and curvature drift, J0 =

J0(k+⊥ρi), ω∗ = ω∗in[1 + ηi(v
2/(2v2

it) − 3/2)], ω∗in = kθρitvit/Ln, and FMi is the Maxwellian ion

distribution with vit the ion thermal velocity. L+ = L(ω+, ~k+⊥, ζ) and L is just the linear operator

for the drift wave eigenmode. In particular, L0Φ0 = L(ω0, ~k0⊥, ζ)Φ0 = 0 with ω0 the eigenmode

frequency. In deriving the nonlinear response in Eq. 4 we have assumed fluid ions. Since Eq. 4

depends only on ζ we can solve it by first Fourier transforming to the along-field-line ballooning

coordinate η. Letting Φ+ = A+Φ0(ζ) and Φ̂0(η) equal the Fourier transform of Φ0(ζ) we readily find
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A+ = −ickθKzτΦz/BD+ (6)

where D+(ω+, kθ, Kz) ≡
〈〈

Φ̂∗
0L̂+Φ̂0

〉〉
/
〈〈

|Φ̂0|2
〉〉

, with 〈〈A〉〉 =
∫∞
−∞ dηA, and L̂+ = L(ω+, θ̂kθ +

r̂(kθ ŝη + Kz),−i∂η) is the corresponding linear drift wave operator in the η coordinate, ŝ = q′r/q

the local shear.

Letting Ω+ = ω(kθ, Kz) be the eigenfrequency for the upper side band and noting that |ωz|, |Ω+ −

ω0| � ω0, D+ can then be approximated as D+ ' (∂D0r/∂ω0)(ωz + ∆ + iγd), where D0r is the

Hermitian part of D0, ∂D0r/∂ω0 ' τ , ∆ = ω0 − Ω+r is the frequency mismatch and and γd = −Ω+i

is the sideband damping rate.

Similar analysis can also be carrried out for the lower sideband. Thus we find Φ− = A−Φ0(ζ),

A− = ickθKzτΦz/BD− (7)

and D− = (∂D0r/∂ω0)(ωz − ∆ + iγd). Here Ω+ = Ω− = ω(kθ,−Kz) due to the up-down symmetry.

Substituting Φ± = A±Φ0 into Eq. 3 and noting that 〈∑m |Φ0|2〉 =
∫∞
−∞ |Φ0|2dζ =

〈〈
|Φ̂0|2

〉〉
we

finally obtain the desired linear dispersion relation for the modulational instability

Γz + νz = γ2
M (Γz + γd)/[∆

2 + (Γz + γd)
2] (8)

where we have let −iωz = Γz and γ2
M = (αi/1.6ε

3/2)(BθkθcsKzρs/Bφ)2
〈〈

|eΦ̂0/Te|2
〉〉

. With appro-

priate αi Eq. 8 is valid for various branches of drift waves such as the electron drift wave or ITG. It

can be solved for Γz in two limits. In the |∆| < γd, γM limit, we have

Γz = −(γd + νz)/2 + [γ2
M + (γd − νz)

2/4]1/2. (9)

Thus while the instability has a threshold at γ2
M ' νzγd, strong growth with Γz ' γM only sets in

when γM
>∼ γd/2. On the other hand for γM , |∆| > γd, νz we have

Γz ' γM (1 − ∆2/γ2
M )1/2. (10)
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Again, strong growth with Γz ' γM sets in when γM
>∼ |∆|. Note that for Γz ' γM ∝ |Kzρs||eΦ̂0/Te|,

the coherent modulational instability is generally much stronger than that of the drift wave

“plasmons” with growth rate ∝ |eΦ̂0/Te|2. Furthermore, |∆| ' K2
z (∂D0r/∂k2

0⊥)/2(∂D0r/∂ω0) '

ω0K
2
z ρ2

s(1 + τ )/2, and γd generally increases with Kzρs. Γz , for a given |Φ̂0|, can then be expected

to first increase with Kzρs but eventually decrease at large Kzρs. While the exact (Kzρs)m at which

Γz maximizes can not be predicted, it in general will increase with the pump wave amplitude |Φ̂0|.

Thus far away from linear marginal stability one expects strong linear instability, larger |Φ̂0| and

modulational instabilities peaked around Bloch phase shifts θ0m ∼ O(1), ie (Kzρs)m ∼ kθρsŝ. That

is, with strong linear drive the radial scale lengths of zonal flows and drift wave envelopes should be

on the order of a typical distance between adjacant mode rational surfaces.

The predicted modulational instability features have been observed in 3D global gyrokinetic simu-

lations of ITG modes using the gyrokinetic toroidal code [2]. These nonlinear simulations keep only

a single toroidal mode n 6= 0 initially. The starting fluctuation level is very low to allow linear ITG

eigenmode structure to be formed before nonlinear saturation. When the ITG mode grows to a de-

sired amplitude, an external damping is applied so that the mode amplitude stays constant. Zonal

flow with a single radial mode number is now self-consistently included. We observe exponential

growth of zonal flow until it reaches a high level where the ITG mode is suppressed. The radial

envelope modulation of the ITG mode correlates with the zonal flow radial structure. As shown

in Fig. 1 (A), the growth rate of zonal flow with a fixed radial mode number linearly depends on

the ITG mode amplitude except at large amplitude where ITG nonlinear effects appear. Analytical

prediction of zonal flow growth rate from the solution of Eq. 9, is shown by the solid line in Fig. 1

(A). In the analytical calculation, the sideband damping rate is estimated from simulations to be

γd ∼ 1.5γ0 including both intrinsic damping and externally-applied damping, and γ0 is the pump

ITG intrinsic linear growth rate. For a fixed ITG mode amplitude, measured zonal flow growth rate
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increases linearly with radial mode number (or θ0) for small θ0 and decreases for large θ0, as shown

in Fig. 1 (B), consistent with theory.

γ 
 /γ m

0
γ 

 /γ m
0

θ0

1.450.29 0.58 0.87 1.160.00

(A)

(B)

eΦ /T0

FIG. 1. Gyrokinetic simulation results of zonal flow growth rate (A) vs. ITG mode amplitude for fixed θ0, and (B) vs. θ0

for fixed ITG amplitude, normalized to ITG growth,γ0. The line in (A) is the solution of Eq. 9.

We now consider the nonlinear evolution of this modulation instability. As δφz and δφ± exponen-

tiate in amplitude, they will nonlinearly couple and induce damping in the pump wave amplitude.

Replacing ω0 by ω0 + i∂t, letting
〈〈

|eΦ̂0/Te|2
〉〉

= A2
0 and including the linear growth rate γ0 the

equation for A0(t) becomes

(
d

dt
− γ0

)
A0 = −cTe

eB

τkθKz

∂D0r/∂ω0
(A−Φz + A+Φ∗

z) (11)

Equations governing A+, A− = A∗
+ and Φz are given by Eqs. 3,4,6 and noting that D± '

i∂D0r/∂ω0(d/dt ∓ i∆ + γd). Using dimensionless time τ = γ0t and performing straightforward

normalizations such that A0 ∝ P , A+ ∝ SeiΨ(t), and Φz ∝ Z, we find

dP

dτ
= P − 2ZScos(Ψ) (12)
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dS

dτ
= −ΓdS + ZPcos(Ψ) (13)

dZ

dτ
= −γzZ + 2PScos(Ψ) (14)

dΨ

dτ
= δ − PZ

S
sin(Ψ) (15)

with Γd = γd/γ0, γz = νz/γ0, and δ = ∆/γ0. These equations are similar to those for three-wave

coupling [16], hence we anticipate similar behaviour, such as the existence of a stable attractor and

a period doubling route to chaos.

FIG. 2. Values of Zk, δ = 2, Γd = 2

Introduce an associated one dimensional map by defining times τk at successive zeros of dZ/dτ .

Numerical plot of the values of Zk in steady state (after transients have died away) is shown in Fig.

2 for δ = 2, Γd = 2. Eqs. 12-15 have a fixed point attractor for γz
<∼ 0.3. For 0.3 <∼ γz

<∼ 0.58

the attractor is a stable limit cycle with the bounding values of Z given by the two branches in

Fig. 2. The initial bifurcation of the stable fixed point into the limit cycle corresponds also to

period doubling, as can be seen in the plot of associated frequencies, Fig. 3. The two frequencies

correspond to a rapid increase in Z to the upper value followed by a slow decay to the lower. The
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two frequencies correspond to a rapid increase in Z to the upper value followed by a slow decay to

the lower. Frequency, damping and growth about the fixed point ωl, γl, obtained below, are also

shown. Apparent chaos sets in for γz
>∼ 0.75.

The fixed point of Eqs 12-15 is readily found to be Z0 =
√

(δ2 + Γ2
d)/(2Γd), P0 =

√
γzZ0, S0 =

P0/
√

2Γd, sinΨ0 = δ/
√

δ2 + Γ2
d. Linearizing Eqs. 12-15 about the fixed point we find for the complex

frequency

ω4 − ic3ω
3 + c2ω

2 − ic1ω + c0 = 0 (16)

with c0 = 4γz(Γ
2
d + δ2), c1 = c0/Γd, c2 = γzδ

2/Γd − γzΓd − δ2/Γd + Γd − Γ2
d − δ2, c3 = 1 − 2Γd − γz.

FIG. 3. Numerical frequencies, linear values ωl, γl, and damping ν near the fixed point, δ = 2, Γd = 2.

Destabilization of the fixed point is obtained by requiring that the frequency be real, giving c1c2c3 =

c2
1 + c0c

2
3 with the frequency given by ω2 = −c1/c3. In Fig. 4 is shown the domain in which the

stable fixed point exists. The boundaries of the stable domain at γz = 0 are given by Γd = 1/2 and

Γ3
d = δ2(Γd + 1). For small γz and ω the real frequency and the damping behave as ω ' A

√
γz ,

ν ' Bγz, with A = 2
√

(Γ2
d + δ2)/(Γ2

d + δ2 − Γd + δ2/Γd) and B = 2(δ2 − Γ3
d + δ4/Γd + δ4/Γ2

d)/(Γ
2
d +

δ2 − Γd + δ2/Γd)
2. The ratio of damping to frequency is shown in Fig. 3.
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FIG. 4. Destabilization of the fixed point.

Present turbulence simulations have Γd ∼ 1, with values of γz and δ placing them in the stable

fixed point domain. The oscillations observed are thus probably nonlinear transient decay to the

fixed point, with the decay time much longer than the simulation time. The drift wave intensity is

Id = P 2
0 +2S2

0 . Assuming weak turbulence scaling of χi ∝ Id, where χi is the anomalous ion thermal

transport coefficient, we find that in the stable domain χi ∝ γz ∝ νii consistent with the trend

observed in simulations [5]. In the future we will explore the route to chaos with nonlinear simulations

and examine its implications for χi. Finally, we note that, assuming nonlinear interactions among

n 6= 0 toroidal drift modes are ignorable, the present results, obtained for a single-n mode, can be

readily generalized to a spectrum of multiple-n toroidal modes.
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