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Highly simplified models of random flows interacting with background microturbulence are an-
alyzed. In the limit of very rapid velocity fluctuations, it is shown rigorously that the fluctuation
level of a passively advected scalar is not controlled by the rms shear. In a model with random ve-
locities dependent only on time, the level of cross-correlations between the flows and the background
turbulence regulates the saturation level. This effect is illustrated by considering a simple stochastic-
oscillator model, both exactly and with analysis and numerical solutions of the direct-interaction
approximation. Implications for the understanding of self-consistent turbulence are discussed briefly.

PACS: 52.35.Ra

I. INTRODUCTION

It is widely believed that random zonal flows play an
important role in the regulation of the saturation and
transport levels of plasma microturbulence. In a Carte-
sian geometry with wave number k ≡ (kx, ky, kz), zonal
flows are defined to be fluctuations with ky = kz = 0.
An electrostatic potential fluctuation δϕ(x, t) creates an
E × B flow in the y direction: δVE,y(x, t) = ∂xϕ. Such
flows are sheared, ∂xδVE,y 6= 0. For time-independent
shear, it is well known that the shearing effect can in-
fluence correlation times and/or lengths and the levels
of fluctuations and/or transport.1 Recently Hahm et al.2
studied the effect on correlation lengths of zonal flows os-
cillating in time; they found that shearing effects would
be reduced by rapidly oscillating zonal flows. They ar-
gued that the total rms shearing rate

ωs
.=

( ∑
k

k2〈|δVk|2〉
)1/2

, (1)

where δVk is the Fourier amplitude of the velocity field
and .= means definition, should not be used in estimates
of fluctuation level and proposed a formula for an effec-
tive rate ωeff that, although scaling with ωs, was reduced
from ωs by rapid time variations. Analysis of various
computer simulations appeared to support their conclu-
sion: although ωs was far greater than the linear growth
rate γ, the turbulence appeared to saturate at a level for
which ωeff was of the order of γ.

Hahm et al. studied the effects of coherent (statistically
sharp) zonal flows on a passively advected scalar field ψ.
Recognizing that coherency was a poor assumption, they
called for a statistical analysis. In the present paper I
describe some introductory aspects of such an analysis.
The work should not be thought of as focusing primar-
ily on the details of zonal flows, for which a number of
important details are modeled inadequately, but rather
as discussing some interesting properties of random flows
and associated stochastic models.

One important goal of a statistical formalism is calcu-
lation of the turbulent flux Γ. The value of Γ is deter-
mined by a variety of effects, including the overall fluc-
tuation level (two-point correlations that are diagonal
in the field index); phase relations (off-diagonal corre-
lations); and spectral distributions, determined by non-
linear mode-coupling processes. Although in a fully self-
consistent theory all of these effects are determined simul-
taneously, it is instructive to study them independently.
The present paper concentrates on some properties of
fluctuation levels; it does not address the calculation of Γ.

The method I shall use involves analyses of highly
simplified stochastic models. In a stochastic dynami-
cal model, some details of the true nonlinear dynamics
are modified to include additional, externally specified
stochastic attributes that change the total probability
density functional of the turbulence (particularly in the
higher moments), but hopefully retain some reasonable
information about low-order (e.g., two-point) statistics.
The use of stochastic models is well accepted in general
turbulence theory3 for its pedagogical value and for pro-
viding rigorous benchmarks against which more detailed
calculations must be compared. (A recent example of the
use of a particular kind of stochastic model can be found
in Ref. 4.) However, it must be emphasized that the
models studied here are significantly lacking in physical
detail, so the present calculations are highly incomplete
and unsatisfying. They must be viewed as a way of il-
lustrating some basic conceptual points with a minimum
of complication. For applications, much more realistic
and involved calculations must be done; such work will
be presented elsewhere.

An outline of the paper is as follows. In Sec. II I in-
troduce a general model of passively advected turbulence.
Then, motivated by the discussion of rapidly varying, co-
herent zonal flows in Ref. 2, I consider the so-called rapid-
change model of random passive advection, in which the
stochastic velocity field varies very rapidly in time. In
that limit, which was discussed thoroughly in Ref. 5, it
follows immediately and rigorously that the rms shear
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does not control the saturation level at all; that level is
nonzero even in the limit of infinitely rapid velocity vari-
ations. I then consider to what extent nontrivial results
about fluctuation levels can follow from stochastic models
that involve the addition of spatially independent (hence
unsheared) velocity fields to a randomly forced turbulent
background. This is discussed in Sec. III, which contains
the bulk of the paper. When the velocities are uncor-
related with the random forcing, that basic question is
quickly answered in the negative (Sec. III A); such ve-
locities do not change the fluctuation level. However, I
show that a reduction in the saturation level can be found
by imposing statistical correlations between the explicit
flows and the background turbulence. To illustrate this,
I analyze a simple model, both exactly (Sec. III B) and
with the direct-interaction approximation (Sec. III C).
Sec. IV contains a brief discussion.

II. PASSIVE ADVECTION, RAPID CHANGE,
AND RMS SHEAR

Following current practice in the plasma-physics liter-
ature on shear-related effects, I shall consider the passive
advection of a scalar ψ such as temperature. To keep
the discussion as general as possible, I do not attempt
to model detailed linear physics, but rather encapsulate
it in a random external forcing δf(ext) and classical dis-
sipation ηcl = −Dcl∇2. One may think of the gradi-
ents as acting in the direction perpendicular to a strong
magnetic field. Since parallel dynamics will not be con-
sidered explicitly, the effective spatial dimensionality is
d = 2. For simplicity, I assume homogeneous statistics,
so statistical observables depend only on spatial differ-
ences. Furthermore, in order to clearly restrict the focus
to fluctuation levels, I shall assume isotropic statistics
(which requires, in particular, the absence of a mean field
with gradient in, say, the x direction). The mean flux
Γ .= 〈δVE,x δψ〉 therefore vanishes, although the fluctua-
tion level is nonzero (and fluctuations are still damped,
at a rate η that includes both turbulent and classical con-
tributions). Passively advected fluctuations then obey

∂tδψ(x, t) + δV (x, t) · ∇δψ −Dcl∇2δψ = δf(ext)(x, t),

(2)

where δV is a statistically specified random velocity
(with zero mean) that shall in the present section be
taken to be statistically independent of δf(ext) . (This
conventional assumption will be relaxed in Sec. III.)
δV may have an arbitrary Eulerian Fourier wave-number
spectrum δVk, possibly including zonal flows. The as-
sumption of random flows, with a given autocorrelation
time τac, generalizes the model studied in Ref. 2 of co-
herent flows oscillating with a frequency ωf ∼ τ−1

ac .
In general, the two-point statistics of the forced, dis-

sipative steady states achieved by Eq. (2) can be ade-
quately treated by the direct-interaction approximation

(DIA) or related Markovian approximations. (For dis-
cussion and original references on the DIA and related
closures, see Ref. 6.) However, it is very instructive to
consider the so-called rapid-change model7 in which both
the velocity field and the random forcing vary infinitely
rapidly in time. One takes

〈δV (x + ρ, t+ τ )δV (x, t)〉 = 2〈δV δV 〉(ρ)τacδ(τ ), (3a)

〈δf(ext)(x + ρ, t+ τ )δf(ext)(x, t)〉 = F (ext)(ρ)δ(τ ). (3b)

In Eq. (3a), τac is assumed to be much smaller than an
eddy turnover time for δψ and formally goes to zero; how-
ever, in that limit8 the velocities must be rescaled such
that the turbulent diffusion coefficient

Dturb = τac

∑
k

〈|δVk|2〉 (4)

remains finite and nonzero, as does F (ext)(0) .= σ. [It
will be seen from Eq. (5) that σ is the externally in-
jected production of scalar variance.] Then the equation
for the two-space-point, equal-time correlation function
C(ρ, t) .= 〈δψ(x + ρ, t)δψ(x, t)〉 can be shown7 to rig-
orously close. For homogeneous, isotropic statistics one
finds

∂tC(ρ, t)− 2
ρd−1

∂

∂ρ
ρd−1D−(ρ)

∂C

∂ρ
= F (ext)(ρ). (5)

Here D−(ρ) .= D̂−(ρ) +Dcl, where

D̂−(ρ) .= τac

∑
k

(1− eik·ρ)〈|δVk|2〉. (6)

The content of Eq. (5) was discussed at length in Ref. 5,
where a number of misconceptions were identified. In
particular, although it has been frequently suggested in
the literature that the steady states of Eq. (5) are con-
trolled by the so-called clump lifetime9 τcl(ρ), a prop-
erty of the very small scales, it was shown in Ref. 5
that this is almost never the case. An equivalent state-
ment is that the Taylor velocity microscale λT

.= k−1
T ,

a measure [see Eq. (9)] of the rms velocity shear (hence
dominated by the small scales), does not determine the
steady-state fluctuation level. Instead, that level is de-
termined by properties of the large, energy-containing
scales. This can be readily seen from the steady-state
solution of Eq. (5), which specialized to the intensity
I
.= C(0, t = ∞) is

I = lim
ρ→0

C(ρ), (7a)

C(ρ) =
1
2

∫ ∞

ρ

dρ̄

ρ̄d−1D−(ρ̄)

∫ ρ̄

0

dρ̄′ ρ̄′d−1F (ext)(ρ̄′). (7b)

Because limρ→∞D−(ρ) = D
.= Dturb + Dcl, the ρ̄ inte-

gral would be divergent at large scales were it not for the
cutoff afforded by the ρ̄′ integral over F (ext), which is as-
sumed to occur at a macroscopic scale Lc. As discussed
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in Ref. 5 and can easily be seen on dimensional grounds,
the final result is

I = O(στD), (8)

where τD
.= L2

c/D is the diffusion time based on Lc. This
formula does not depend on

−∂
2D−(ρ)
∂ρ · ∂ρ

∣∣ρ=0
= τac

∑
k

k2〈|δVk|2〉 = τacω
2
s ≡ k2

TD (9)

—that is, it does not depend on the rms flow shear or on
the Taylor microscale. It does, of course, depend on the
Fourier spectrum of the large, energy-containing scales
through its dependence on Dturb.

By considering the dynamics of small-scale eddies and
by analyzing a variety of computer simulations, Hahm
et al. also concluded that saturation level did not appear
to be controlled by the total flow shear. Within their
framework of coherently oscillating flows of frequency ωf ,
they used a theory of small-scale eddy distortions due to
shear to derive a formula for an effective modal shearing
rate ωeff(k) that was reduced from the raw rms shear-
ing rate ωs when ζ

.= (ωf/ωt)2 � 1 (ωt is the turbulent
decorrelation time). Their result had the structural form

ωeff/ωs = g(ζ), g(0) = 1, g(∞) = 0, (10)

where g(ζ) is given by Eq. (13) of Ref. 2. Their data ap-
peared to be consistent with the balance

√
N ωeff(k) ∼

γk, N being the total number of zonal flow modes and en-
tering because of an assumption of incoherent superposi-
tion of modes. It is difficult to compare the predictions of
Ref. 2 with those of the present section because of (i) the
differing assumptions of coherent vs random advection;
and (ii) the approximate nature of the eddy-distortion
model used in Ref. 2 [recall that within the confines of
the rapid-change model, Eqs. (5)–(8) are exact]. How-
ever, it should be noted that the fluctuation level in the
rapid-change model does not involve ωs at all, whereas
predictions of ωeff from Eq. (10) scale with ωs. Further-
more, ωeff → 0 as ωf → ∞, so ωeff cannot be relevant
to the fluctuation level in that limit. To estimate the
rapid-change saturation level, note that if one approxi-
mates σ ∼ 2γI, where γ is a typical growth rate, then
Eq. (8) reads

τ−1
D ∼ γ, or D ∼ γ/k

2
, (11a,b)

where k = L−1
c . This is a familiar estimate, although it is

usually written with k replaced by an unspecified k. The
present derivation makes it clear that k is not arbitrary,
but is the correlation length of the turbulence. Note that
Eq. (11b) makes a statement only about typical values,
not detailed wave-number dependence. In principle, such
dependence can be obtained from the Fourier transform
of Eq. (7b). Unfortunately, insufficient data is presented
in Ref. 2 for one to attempt to evaluate formula (7b) even

approximately. Although that would be an instructive
exercise, it must be emphasized that (i) the simulations
(and physical experiments) are self-consistent, not pas-
sive; (ii) in reality, the velocity fields do not vary infinitely
rapidly; (iii) as consequences of (i) and (ii), Eq. (5) does
not rigorously hold and, even if it did, an accurate repre-
sentation of the effective, self-consistent F (ext)(ρ) is not
known. Therefore, without significant additional ana-
lytical and numerical work it is not possible to make
an accurate calculation of the fluctuation spectrum, be-
cause the large-scale dynamics that control the satura-
tion level involve mode couplings of comparable scales
that do not yield to perturbation expansion. (This same
remark would apply to transport levels, which are not
treated in the present model.) Numerical solution of var-
ious self-consistent models in the DIA is feasible, but is
not attempted here. But the general conclusion, that
the rms shear does not control the fluctuation level, is
robust. It transcends the rapid-change model,5 because
the final prediction (7b) for the spectrum involves only
the diffusion coefficient (a macroscopic property of the
turbulence), not the details of τac or δVk separately.

III. THE EFFECTS OF CROSS-CORRELATIONS

Although realistic studies of physical turbulence re-
quire considerable additional analysis of self-consistent
nonlinearities, it is conceptually interesting to ask what
is the minimal model that makes nontrivial predictions
for fluctuation levels. In the present section I inquire
about the properties of simple stochastic models of pas-
sive advection that involve velocity fields dependent only
on time (thus possessing no shear whatsoever). That is,
I will study variants of the equation

∂tδψ + δV (t) · ∇δψ + η δψ = δf, (12)

where η represents turbulent and classical damping of the
background turbulence and δf represents the statistically
consistent forcing of that background (including not only
the “external” contribution discussed in the previous sec-
tion but also an internal contribution from incoherent
mode coupling). Unfortunately, one encounters the im-
mediate difficulty that when δV and δf are uncorrelated
it is clear, on general grounds of random Galilean in-
variance, and can easily be shown (Sec. III A) that the
contributions of space-independent velocity fields do not
affect the fluctuation level at all. For example, in the
rapid-change model such contributions disappear from
Eq. (7b) because k = 0 Fourier components do not
contribute to D−(ρ). [With respect to infinitely long-
wavelength fluctuations, any ρ is relatively very small,
and D−(ρ = 0) = 0.] Another way of saying this is that
Eq. (8) depends only on the k 6= 0 velocity spectrum.

Evidently models such as Eq. (12) exhibit nontrivial
fluctuation levels only if cross-correlations between δV
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and δf are allowed. In Secs. III B and III C I shall ex-
plore the consequences of such a model. To set the stage,
I first provide in the next section some background about
Langevin models for turbulence.

A. Langevin models including random zonal flows
and background turbulence

Let the background turbulence be described by the
general class of Markovian statistical closures represented
by the Langevin equation

∂tδψ(x, t) + η(x) ? δψ(x, t) = δf(x, t), (13)

where A(x)?B(x) .=
∫∞
−∞dxA(x−x)B(x) and δf(x, t) is

a random stirring, delta-correlated in time, that is statis-
tically consistent with the turbulent (plus linear) damp-
ing η:

〈δf(x, t)δf(x′, t′)〉 .= F (x, t; x′, t′) (14a)
= F (x− x′)δ(t− t′), (14b)

where F (ρ) is a certain function. In a particular statis-
tical closure10,6 such as the eddy-damped quasi-normal
Markovian (EDQNM) approximation,11 specific formulas
for η and F are given (usually for their Fourier transforms
with respect to ρ

.= x−x′). The detailed expressions are
not required here; the only (strong and unrealistic) as-
sumption is that they are unchanged when zonal flows
are added to the dynamics

The assumption that δf(ρ, τ ) (τ .= t − t′) is delta-
correlated is significant. Although it is rigorously true for
the EDQNM,12 it does not hold for more sophisticated
closures such as the realizable Markovian closure13 or the
direct-interaction approximation.14 As will be seen, it is
used here as a device to cleanly separate effects of cross-
correlations from more subtle effects involving the shapes
of correlation functions that are not known accurately
within the confines of the present theory.

1. Fluctuation levels in Langevin models

To find the fluctuation level of such background tur-
bulence, one can form the spectral balance equation for
the two-point correlation function

C(x, t; x′, t′) .= 〈δψ(x, t)δψ(x′, t′)〉 ≡ C(t | ρ, τ ) (15)

by multiplying Eq. (13) by δψ(x′, t′) ≡ δψ′:

∂tδψ δψ
′ + η ? δψ δψ′ = δf δψ′. (16)

Upon ensemble-averaging Eq. (16) and assuming periodic
boundary conditions (compatible with statistical homo-
geneity) and stationary forcing, one finds

∂tC(t | ρ, τ ) + η ? C = W (t | ρ, τ ), (17)

where

W (t | ρ, τ ) .= 〈δf(x, t)δψ(x′, t′)〉 (18)

describes the statistical effect of the random forcing.
The fluctuation level is I = C(t | 0, 0) =

∑
k Ck(t),

where Ck(t) is the Fourier transform of C(t | ρ) and
C(t | ρ) ≡ C(t | ρ, τ=0). The equation for the equal-
time correlation function follows from Eq. (17) as

∂tC(t | ρ) + [η(x) ? C(t | ρ) + (x ↔ x′)]
= 2W (t | ρ, 0). (19)

To calculate W , one may introduce the Green’s function
(infinitesimal response function) R, which obeys

∂tR(x, t; x′, t′) + η ? R = δ(x− x′)δ(t− t′). (20)

[R is statistically sharp because the left-hand sides of
Eqs. (13) or (20) contain no random elements.] Then

δψ(x′, t′) =
∫ t′

−∞
dt

∫ ∞

−∞
dxR(x′, t′; x, t)δf(x, t) (21)

(a transient contribution from initial conditions is ig-
nored) and

W (t | ρ, 0) =
∫ t

−∞
dt

∫ ∞

−∞
dx 〈δf(x, t)R(x′, t; x, t)δf(x, t)〉.

(22)

Since R is statistically sharp, the ensemble average rig-
orously factors:

〈δf(x, t)R(x′, t; x, t)δf(x, t)〉 = F (x, t; x, t)R(x′, t; x, t).

(23)

Upon recalling that F is delta-correlated in time, one can
perform the integral in Eq. (22) to find

W (t | ρ, 0) =
1
2
F (ρ). (24)

Here one noted that R(x, t+ε; x, t) = δ(x−x) or, equiv-
alently, that R(x, t; x, t) = 1

2
δ(x−x) (in the symmetrical

Stratonovich interpretation). The spatial Fourier trans-
form of Eq. (17),

∂tCk(t) + 2 ReηkCk = Fk, (25)

has the steady-state solution

Ck = Fk/(2 Re ηk). (26)

Since both F and η depend on all of the Fourier com-
ponents of C, Eq. (26) is a self-consistent integral
equation15 for Ck. In practice, the steady-state spectrum
is determined as the time-asymptotic state of an initial-
value problem, as reviewed and illustrated in Ref. 16, for
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example. However, the details are not of concern here; I
simply assume that the steady-state solution Ck(t = ∞)
has been determined.

Now consider the effects of a random Gaussian ensem-
ble of zonal flows added to Eq. (13). There is no direct
change to the forcing, since zonal flows are not linearly
driven. Dissipation of the flows, very important in de-
termining their ultimate saturation level,17,18 is ignored
since they are here being specified passively at a fixed
level. In self-consistent problems, there would be indirect
changes in η and δf because of changes in the spectrum
due to mode coupling, but those are ignored in passive
problems. One thus analyzes, for fixed background forc-
ing and damping,

∂tδψ(x, t) + δVE,y(x, t)∂yδψ + η ? δψ = δf(x, t), (27)

where the underlined term was absent in Eq. (13). Let us
first assume that the zonal flows are statistically indepen-
dent of δf and repeat the previous calculations with the
underlined term included. The left-hand side of Eq. (19)
acquires the term

∂y〈δVE,y(x, t)δψ(x, t)δψ(x′, t)〉+ (x ↔ x′)
= ∂y〈[δVE,y(x, t)− δVE,y(x′, t)]δψ(x, t)δψ(x′, t)〉, (28)

the last result following by virtue of translational invari-
ance in y. For x-independent flows, this term is seen to
vanish, so the left-hand side of Eq. (19) is unchanged by
such flows. In Eqs. (21) and (22), one must replace R
by the random response function R̃, where R̃ evolves ac-
cording to the left-hand side of Eq. (27) and is random
because δVE,y is. However, because of the assumed sta-
tistical independence of δVE,y and the background tur-
bulence, the result (23) (with R̃ on the left-hand side)
is again obtained rigorously. One therefore recovers the
right-hand side of Eq. (19) unchanged. Thus for x-
independent flows and vanishing cross-correlations one
recovers Eq. (25) and its solution (26), which contain no
vestige of the zonal flows. This is true even though the
two-time properties of the fluctuations (cf. the response
function R) are modified by those flows. This discussion
simply repeats well-known properties of random Galilean
invariance.19

(I remind the reader that I am postulating symme-
try assumptions such that net transport vanishes. In
the general case extra terms due to anisotropy arise that
are related to net transport; their values are affected by
the two-time properties. This emphasizes the point that,
in general, transport and fluctuation levels need not be
tightly coupled.)

Given the desire to study passive models of the
form (12), evidently the only way of finding fluctuation
levels dependent on δṼ (t) is to permit flows statisti-
cally correlated to the background turbulence. This is
a somewhat unusual and simplistic way of representing
the mode-coupling effects introduced by advection with
nontrivial space dependence. It might also be viewed

as a way of partially capturing the functional depen-
dence between the velocity field and random forcing that
would arise in a self-consistent problem. More must be
said, however, since in a properly space-dependent model
the two-point cross-correlations between zonal flows and
background fluctuations vanish as a trivial consequence
of homogeneity, since by definition they have different
wave numbers. However one looks at it, quantitatively
faithful modeling of realistic turbulence requires much
more sophisticated models than those discussed here.
Nevertheless, it is of some interest to pursue the anal-
ysis of a stochastic model with cross-correlations, as it
illustrates some general points in statistical turbulence
theory and may be useful in future turbulence modeling
efforts.

2. A stochastic-oscillator model

In order to engage in a preliminary discussion of the
qualitative effects of cross-correlations, it is useful to em-
ploy as simple a model as possible. Note that if one uses
appropriate formulas for ηk and Fk, the solution (26)
is valid for all wave numbers, from the small, energy-
containing ones to the large, dissipative ones. How-
ever, that is more information than necessary; because
transport is determined mostly by the energy-containing
modes, it is adequate to consider a simpler description
that merely retains the qualitative behavior of the more
general model. For the background turbulence, such a
description is

∂tδψ(x, t)−D∇2δψ = δf(x, t). (29)

Here linear effects have been ignored for simplicity, D is
the turbulent diffusion coefficient (independent of x), and
δf is a random forcing, statistically consistent with D,
that may be taken to be a centered Gaussian with
variance20

〈δf(x, t)δf(x′, t′)〉 = Fδ(x− x′)δ(t − t′), (30)

where F .= 2κ2D and κ is a constant that measures the
strength of the forcing and, thus, the saturation level
of the turbulence. For this model, which has ηk →
νk

.= k2D (the usual assumption of Dupree’s resonance-
broadening theory21,22), the analysis of the fluctuation
level goes through as before. One finds a fluctuation level

Ck = κ2D/νk = (κ/k)2; (31)

this is a familiar mixing-length formula. Of course,
in reality wave-number spectra will probably not liter-
ally vary as k−2 for either large or small k; missing
from the present model are the details of inertial- and
dissipation-range effects, as well as mode couplings be-
tween the energy-containing scales. However, those are
not important for a qualitative discussion of the effect on
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the macroscopic turbulence level of random zonal flows.
The k in formula (31) must be viewed as a typical energy-
containing wave number.20

I shall now add zonal flows to Eq. (29), but simplify the
analog of Eq. (27) further by ignoring the x dependence
(hence the shearing effect) of δVE,y: δVE,y(x, t) = δṼ (t),
δṼ being a centered Gaussian time series with specified
autocorrelation function and rms level V . Then one may
rigorously Fourier analyze Eq. (27) and obtain the forced
stochastic oscillator equation

∂tδψk + iδωk(t)δψk + νkδψk = δfk(t), (32)

where δωk(t) .= kyδV (t) and

〈δfk(t)δf∗k (t′)〉 = Fδ(t− t′). (33)

In the absence of forcing and damping, Eq. (32) has been
studied in depth, both as a model of certain physical
processes23,24 and, in the limit of time-independent δω,
as a nontrivial test case for statistical closures.3,10 (For
some recent plasma-physics applications of such a model,
see Refs. 25 and 26.) If one assumes that the velocity
autocorrelation function is characterized by a single au-
tocorrelation time τac, it is well known that the left-hand
side of Eq. (32) is parametrized by just two dimensionless
parameters, the Kubo number K and the Reynolds num-
ber R. Regimes of the R–K space for passive models like
Eq. (32) were discussed in Ref. 27. The Kubo number
measures the rapidity of the velocity fluctuations. In the
present problem, it may be defined as

K .= kyV τac. (34)

Although K is scale-dependent, that dependence is trivial
here because ky is a good quantum number; the advec-
tion due to the zonal flows does not couple the ky’s. The
Reynolds number, a measure of (inverse) dissipation, is
defined as

R .= V L/D, (35)

where L is conventionally taken to be a macroscopic
length. However, due to the special status of ky in the
present model, it is convenient to take L = k−1

y . Then
with times measured in units of L/V = (kyV )−1, the
Kubo number is just the dimensionless velocity autocor-
relation time of the velocity. In dimensionless units, the
primitive amplitude equation retains the form (32) with
δωk having unit variance and autocorrelation time K,
and with νk = k

2
/R, where k

2 .= (kx/ky)2 +1. The forc-
ing adds a third dimensionless parameter, with strength
F (ext) = 2κ2/R, κ .= κ/ky. Physically κ would be small,
but it may be chosen arbitrarily in the present dynami-
cally linear problem, as it just rescales the steady-state
fluctuation level.

Ignoring the x dependence of Ṽ (t) is a very strong as-
sumption; ultimately, of course, it must be included. The

motivation here is that interesting statistical effects are
already present when decorrelation mechanisms are intro-
duced by any means whatsoever (e.g., random time de-
pendence), so one should understand their consequences
first before addressing additional physical and mathemat-
ical complications. This philosophy is well established in
the theory of stochastic models.23,24,3

B. Exact solution of the stochastic-oscillator model

Equation (32) can be formally solved exactly. I now
drop the k labels, which are irrelevant since mode cou-
pling is not treated explicitly. In terms of the random
Green’s function

G̃(t; t′) .= exp
(
−

∫ t

t′
dt̂ [ν + iδω(t̂)]

)
, (36)

one has

δψ(t) =
∫ t

−∞
dt G̃(t; t)δf(t) (37)

and

〈|δψ|2(t)〉 =
∫ t

−∞
dt

∫ t

−∞
dt
′ 〈G̃(t; t)G̃∗(t; t′)δf(t)δf∗(t′)〉.

(38)

In the absence of cross-correlations between δω and δf ,
the factorization

〈G̃(t; t)G̃∗(t; t′)δf(t)δf∗(t′)〉
= 〈G̃(t; t)G̃∗(t; t′)〉〈δf(t)δf∗(t′)〉 (39a)

= e−2ν(t−t)Fδ(t− t
′) (39b)

is rigorous; then formula (38) evaluates to

〈|δψ|2(t)〉 =
∫ t

−∞
dt e−2ν(t−t)F = F/2ν, (40)

in agreement with Eq. (26). In the presence of
cross-correlations, the Schwartz inequality |〈AB〉| ≤
〈|A|2〉1/2〈|B|2〉1/2 can be used with A = G̃(t; t)G̃∗(t; t′)
and B = δf(t)δf∗(t′) to conclude that the general re-
sult (38) must be less than the correlation-free result (40).
In other words, cross-correlations reduce the fluctuation
level.

C. The direct-interaction approximation in the
presence of cross-correlations

For a more quantitative analysis of Eq. (32), one may
use a statistical closure approximation. [Although it
would be possible in principle to evaluate formula (38)
directly, for example by using Monte–Carlo integration,
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the result would provide little insight into the structure of
more complicated problems in which closure is essential.]
In order to discuss the dependence of the steady-state
fluctuation level I ≡ C(t = ∞) on the strength of the
cross-correlation X between δf and δω, I shall apply the
direct-interaction approximation3,10 to Eq. (32). That
theory is well justified for considering the relative effects
of the various time scales inherent in such a statistical
problem. (The DIA is not random-Galilean-invariant,19

but that is not important here since one is not studying
properties of small spatial scales.) Algorithmically, one
can obtain the DIA equations by appropriately iterating
Eq. (32), treating the stochastically nonlinear3 iδω term
as a small correction, then replacing any zeroth-order
response functions R(0)(τ ) .= H(τ )e−ντ (H is the unit
step function) that appear on the right-hand side of the
evolution equations with the true response function R(τ )
(which must be determined self-consistently). In terms
of the functions

C(t, t′) .= 〈δψ(t)δψ∗(t′)〉, (41a)
V (t, t′) .= 〈δψ(t)δω∗(t′)〉, (41b)
W (t, t′) .= 〈δψ(t)δf∗(t′)〉, (41c)
X(t, t′) .= 〈δf(t)δω∗(t′)〉, (41d)
S(t, t′) .= 〈δω(t)δω∗(t′)〉, (41e)

F (ext)(t, t′) .= 〈δf(t)δf∗ (t′)〉 (41f)

(with ω being real), the equations of the DIA for nonva-
nishing cross-correlation X but vanishing mean field are

[R(0)]−1R +
∫ t

t′
dtΣ(t; t)R(t; t′) = δ(t− t′), (42a)

[R(0)]−1C +
∫ t

0

dtΣ(t; t)C(t, t′) +
∫ t

0

dtΣ′(t; t)V ∗(t′, t)

=
∫ t′

0

F (int)(t, t)R∗(t′; t) +W∗(t′, t), (42b)

[R(0)]−1V +
∫ t

0

dtΣ(t; t)V (t, t′) +
∫ t

0

dtΣ′(t; t)S∗(t′, t)
= X(t, t′), (42c)

[R(0)]−1W +
∫ t

0

dtΣ(t; t)W (t, t′) +
∫ t

0

dtΣ′(t; t)X∗(t′, t)

= F (ext)(t, t′). (42d)

Here

Σ(t; t) .= R∗(t, t)S∗(t, t), (43a)
Σ′(t, t) .= R∗(t; t)V (t, t), (43b)

F (int)(t, t) .= C∗(t, t)S∗(t, t) + V ∗(t, t)V (t, t). (43c)

Terms that vanish with X have been underlined. Note
that the left-hand side of the V equation is linear in V , so
V ∝ X. The notation F (ext) replaces what was called F

in the previous parts of Sec. III in order to avoid confu-
sion with the covariance of the internal noise F (int) that
arises from the random advection.

According to Eq. (32), in order to guarantee that
〈δψ〉 = 0 one must require

V (t, t) = 0. (44)

[Physically, V (t, t) represents the divergence of the flux
due to zonal flows, which would vanish for homogeneous
statistics in y.] The cross-correlation X(t, t′) may be
specified arbitrarily, except that one must respect the
Schwartz inequality (a realizability constraint)

|X(t, t′)| ≤ F (ext)(t, t)1/2S(t′, t′)1/2. (45)

Thus, with the strengths of F (ext) and S fixed, the mag-
nitude of X must be less than some maximum value.
Another way of seeing this is to note the inequality

|V (t, t′)| ≤ C(t, t)1/2S(t′, t′)1/2. (46)

As we shall see, C decreases as X increases. Since
V ∝ X, one infers a maximum magnitude of X above
which Eq. (46) can no longer be satisfied and realizabil-
ity fails.

Upon recognizing that the first two terms on the left-
hand side of Eq. (42d) can be written as (R−1W )(t, t′),
that W∗(t′, t) is required on the right-hand side of
Eq. (42b), and that F (ext)(t, t′) = F (ext)∗(t′, t) ≡
F (ext)†(t, t′), one finds

W∗(t′, t) = [F (ext) + ∆F ] ? R†, (47)

where

∆F .= −X ? Σ′† (48)

and ? denotes convolution. For X ≡ 0, V van-
ishes as does Σ′, Eq. (47) reduces to W∗(t′, t) =∫ t′

0
dt F (ext)(t, t)R∗(t′; t), and Eq. (42b) becomes R−1C =

[F (int) + F (ext)] ? R†, or (now dropping the ?)

C = R[F (int) + F (ext)]R†. (49)

This is the standard form of the two-time spectral bal-
ance equation;10,6 it shows that F (int) represents the vari-
ance of an internal stochastic or “incoherent” noise. For
X 6= 0, the last term on the left-hand side of Eq. (42b)
may be moved to the right-hand side and written as

−Σ′V †R−1†R† = −Σ′(R−1V )†R†. (50)

From Eq. (42c) one has R−1V = X −Σ′S, or

V = R(X − Σ′S). (51)

Thus Eq. (42b) can be written as

C = RKR†, (52)
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where

K
.= F (int) + F (ext) − (XΣ′† − Σ′SΣ′† + Σ′X†) (53)

is manifestly symmetric. A Schwartz inequality guaran-
tees that the underlined term is positive-definite.

With C(t) ≡ C(t, t), the single-time spectral evolution
equation follows from Eq. (42b) as

∂tC(t) + 2νC

+ 2 Re
∫ t

0

dt [Σ(t; t)C∗(t, t) + Σ′(t, t)V ∗(t, t)]

= 2 Re
∫ t

0

dtF (int)(t, t)R∗(t; t) + 2 ReW (t, t). (54)

Upon noting the formulas (43), one sees that the non-
linear terms [those involving Σ, Σ′, and F (int)] cancel in
Eq. (54). That cancellation arises because the nonlin-
ear part of Eq. (32) conserves 〈δψ2〉, and demonstrates
the systematic nature of the DIA; such cancellations are
usually lost in more heuristic approximations such as
resonance-broadening theory.28 One thus has

∂tC(t) + 2νC = 2 ReW (t), (55)

with the steady-state solution

I = ReW/ν. (56)

For ∆F = 0, Eq. (56) reduces to Eq. (40). More gen-
erally, the form of Eq. (47), involving the minus sign in
Eq. (48), suggests that the presence of cross-correlations
reduces the effective forcing and steady-state fluctuation
level. One must verify that the sign of the XΣ′ convolu-
tion remains positive. As a crude consistency check, note
that according to Eq. (42c) V changes sign with X, so
XΣ′ is invariant under an overall sign change of X. (R is
independent of V and X.)

It is consistent to impose the symmetries

V (t′, t) = V (t, t′), X(t′, t) = −X(t, t′). (57a,b)

Then Eqs. (42a)–(42c) can be integrated as a initial-value
problem in the domain t ≥ t′ [or (t, τ ) ≥ 0]. [Although
Eq. (42d) could also be integrated, it need not be be-
cause of the result (47).] I now discuss representative
numerical solutions obtained from an extension to passive
advection of the code DIA29,30 that has been previously
used31–33 to study various self-consistent statistical prob-
lems in plasma physics. To approximate delta-correlated
external forcing, F (ext)(τ ) is taken to be proportional to
the normalized Gaussian

G(τ ; σ) .= (2πσ2)−1/2e−τ2/2σ2
, (58)

where σ = (2/π)1/2τ
(ext)
ac � 1. As a nontrivial test of the

code, one can demonstrate that for X ≡ 0 the steady-
state fluctuation level is independent of the presence of
the nonlinear terms. That can be done by switching

those terms on and off in two otherwise identical runs;
the result confirms that the code preserves the appropri-
ate symmetries. One can also check the predicted X = 0
level quantitatively. One may take κ = 1 [F (ext) = 2].
Ideally one would recover the result (40), but that is cor-
rect only for strictly delta-correlated F (ext). The exact
result is

I =
∫ ∞

0

dτ F (ext)(τ )R(τ ); (59)

in practice, one must take account of the finite width of
F (ext), which averages over the initial decaying portion of
R(τ ). For ν = O(1) and K � 1, R is expected to decay
exponentially (Markovian approximation) with damping
rate Γ .= ν + η, where η ≈ K. The expected level is
therefore

I = g(Γ; σ(ext))F (ext)/ν, (60)

where

g(Γ; σ) .=
∫ ∞

0

dτ e−ΓτG(τ ; σ) =
1
2
eγ2/2 erfc(γ/

√
2), (61)

γ
.= Γσ. For ν = 1, K = 0.25, τ (ext)

ac = 0.2, and
F (ext) = 2, one has g ≈ 0.4294, I ≈ 0.859. As shown
in Fig. 1, the code predicts I = 0.876 for integration
with a time step of ∆t = 0.02; this agreement is sat-
isfactory. The computed response function is shown in
Fig. 2; it compares very well with the Markovian approx-
imation. [In this and the subsequent runs, the arbitrary
initial condition C(0) = 1 was used.]

FIG. 1. Time evolution of the fluctuation level C(t) for

X = 0, F (ext) = 2, τ
(ext)
ac = 0.2, ν = 1, and K = 0.25.
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FIG. 2. The computed response function (solid curve) for
the parameters ν and K of Fig. 1. Dotted curve: exp(−ντ).
Dashed curve: exp(−(ν + K)τ).

I now discuss a representative solution for X 6= 0.
Without further research on physics that is beyond the
scope of this paper, there is considerable arbitrariness in
the forms of S(τ ) and X(τ ). I shall take

S(τ ) = e−|τ|/τac , (62a)

X(τ ) = [(τ/τac)e−|τ|/τacτ−1
ac ]δ, (62b)

where δ is an adjustable strength parameter and τac ≡ K.
This choice for the functional form of X ties its time vari-
ation to that of S, which may not be exactly true in more
realistic applications but is satisfactory for purposes of il-
lustration. For the parameters τ (ext)

ac = 0.2, F (ext) = 2,
ν = 1, K = 0.5, and δ = 2, Fig. 3 shows V (τ ) (inde-
pendent of t), Fig. 4 shows the correction ∆F to F (ext)

[Eq. (48)], and Fig. 5 shows the evolution of C(t) to the
forced, dissipative steady state. At short times, V evolves
quadratically from τ = 0 [recall the initial condition
V (τ = 0) = 0] until it integrates over the body of X; at
long times, the linear and nonlinear dampings force V to
decay. Σ′(τ ), being the product of R(τ ) and V (τ ) [recall
V (−τ ) = V (τ )] possesses a similar shape, being peaked
away from τ = 0. The convolution ∆F .= −Σ′ ? X av-
erages that peak over a nonzero portion of X selected
by τ , giving a nonzero result at τ = 0. For large τ , the
peak falls on the decaying portion of X, so ∆F → 0.
According to Fig. 4, the overall sign of ∆F is negative,
indicating a reduction in the fluctuation level consistent
with Fig. 5.

FIG. 3. The calculated V (τ) (solid curve) for F (ext) = 2,

τ
(ext)
ac = 0.2, ν = 1, K = 0.5, and δ = 2. Dashed curve: the

specified X(τ).

FIG. 4. The nonlinear correction to F (ext) due to nonzero
cross-correlation. Parameters are as in Fig. 3.
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FIG. 5. Evolution of the spectral intensity C(t) to steady
state for the parameters of Fig. 3.

The result of performing a series of runs in which the
strength δ of the cross-correlation is varied while all other
parameters are held fixed is shown in Fig. 6. For these
parameters, realizability evidently fails for δ slightly big-
ger than 4. Figure 6 also shows that the parabola
I = I0(1 − αδ2) gives a good fit. That dependence is
easy to understand from the results that C(t) ∝ W (t)
[Eq. (55)] and that W varies according to Eq. (47); ∆F
[Eq. (48)] is proportional to −δ2 because Σ′ ∝ V and
V ∝ X. One is led to the same conclusion by examining
the results (52) and (53). It is difficult to perform accu-
rate analytical calculations of the parameters I0 and α
because the peak in V occurs for τ 6= 0 and is broad,
in general. In any event, it does not seem pressing to
attempt such a calculation for the present passive model
because the real physical interest lies in self-consistent
problems in which the shapes of S(τ ) and X(τ ) must be
determined as part of the solution.

FIG. 6. Dependence of the saturation level I on the
strength δ of the cross-correlations. Other parameters are
as in Fig. 3. Solid line: DIA predictions. Dashed line (prac-
tically indistinguishable): fit to the parabola I = I0(1− αδ2)
with α ≈ 0.052.

IV. DISCUSSION

In this paper I focused on two facets of fluctuation
levels in stochastic models of passive advection (possess-
ing sufficient symmetry so that net transport vanishes):
(i) the role of small-scale velocity shear; (ii) the impor-
tance of cross-correlations in particular time-dependent
models.

First, I recalled in Sec. II the result of Ref. 5 that
saturation levels are in general not determined by the
rms shear ωs, in contradiction to a widespread current be-
lief. Specifically, with ωf being the effective frequency of
the random velocity, the limit ωf →∞ was treated rigor-
ously by means of the rapid-change model. The effective
shearing rate ωeff based on a theory of small-scale eddy
distortions is proportional to ωs and vanishes as ωf →∞,
both features implying that such a theory cannot deter-
mine the saturation level. Instead, that level is deter-
mined from the properties of the long-wavelength portion
of the spectrum, which lead to the balance D ∼ γ/k

2
,

where k
−1

= Lc is the correlation length of the turbu-
lence.

Second, I turned in Sec. III to discussions of Langevin
models involving background turbulence plus additional
random velocity fields depending only on time. For such
models the additional velocity fields do not change the
fluctuation level in the absence of cross-correlations be-
tween the flows and the background turbulence, regard-
less of the correlation time of the flows, even though those
flows do affect the two-time characteristics of the corre-
lation functions. Although general Langevin models in-
volve wave-number-dependent turbulent damping, a sim-
pler Langevin model comprising a constant diffusion co-
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efficient and statistically consistent Gaussian forcing be-
haves qualitatively similarly. That approximation leads
to a stochastic-oscillator type of model containing only
random time dependence; that model was analyzed both
exactly and with the direct-interaction approximation. It
was shown that in the presence of cross-correlations the
fluctuation level is reduced. This result is obtained for
a stochastic model that contains no shearing effect (as it
involves no x dependence); the reduction depends on the
magnitude of the cross-correlations, which in the passive
model can be varied independently of the autocorrelation
time of the velocity field.

Compelling evidence that zonal flows influence the ul-
timate level of turbulence34 can be found in the com-
puter simulations of Lin.17,18 However, the details of the
self-consistent statistical interactions that lead to the ul-
timate steady state may be difficult to untangle; for-
malisms that focus only on correlation times or lengths or
on the dynamics of small-scale eddies are inadequate, as
can be seen from the results of Sec. II, and cannot lead
to accurate quantitative predictions of fluctuation and
transport levels. The details of the x dependence of the
flows are clearly important, even if it is not rms shear that
controls fluctuation levels. The self-consistent magnitude
of the (functional) cross-correlations between zonal flows
and background turbulence will depend, in part, on the
general structure of the statistical interactions in a way
similar to the above model with cross-correlations, and,
in part, on the autocorrelation time of the turbulence,
which will be affected by the long-wavelength dynamics
of the random flows. Sufficient information is contained
in the DIA, and a self-consistent DIA analysis of a physi-
cal model containing random zonal flows is a natural next
step. In such problems, coupling between many Fourier
amplitudes presents a substantial additional complica-
tion; nontrivial numerical work is required.

It must be emphasized that neither the (rigorous) anal-
yses of the rapid-change model in Ref. 5 and Sec. II,
the DIA calculations in Sec. III C, nor more general
DIA analyses make any use of the so-called “two-point
theory” (a misnomer35) as it is understood in the con-
text of Dupree-style renormalizations9,36 and that has
been used, for example, in previous analyses of two-
dimensional turbulence37 and the effects of flow shear
on correlation times and lengths.38–41,2 That approxima-
tion has been analyzed extensively42,35,43,5 and shown to
be inapplicable to calculations of macroscopic spectral
properties such as correlation scales, fluctuation inten-
sity, and transport coefficients. In brief, the issue is that
the two-point theory uses approximations appropriate for
only the smallest scales of turbulence, and those can-
not be extrapolated to the energy-containing scales that
dominate transport. For detailed discussion, see Ref. 5,
where it was shown how the two-point theory predicts the
wrong answer (both qualitatively and quantitatively) for
the physically relevant and exactly solvable rapid-change
model. This does not mean that useful, experimentally
relevant predictions can never emerge from such analy-

ses, because important trends are highly constrained by
dimensional consistency, but one must be careful to dis-
tinguish dimensional results from refined calculations of
details. The present work (on very simplified models)
demonstrates how one can elucidate some of those de-
tails. Unlike the two-point theory, the Markovian clo-
sures mentioned in Sec. III A and the direct-interaction
approximation used in Sec. III C are very well suited to
that end, as they can deal with the entire gamut of scales,
including in particular the energy-containing ones.

Finally, although the importance of the DIA for pro-
viding conceptual insights has been widely recognized,
it is frequently considered to be too complicated for use
in practical calculations. In general, realizable Marko-
vian approximations13,31–33 provide a viable alternative.
However, the passive stochastic-oscillator model studied
in Sec. III is a case (nontrivial in the presence of cross-
correlations) in which the DIA can be quantitatively
studied without difficulty. That analysis is therefore in-
teresting in its own right.
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