PPPL-3371 is available in pdf or postscript formats.
A Visual Detection System for Determining Tritium Surface Deposition Employing Phosphor Coated Materials
C.A. Gentile, S.J. Zweben, C.H. Skinner, K.M. Young, J. Parker, L. Ciebiera, S.W. Langish, A. von Halle, C.W. Kennedy, and K. Isobe
Date of PPPL Report: October 1999
Presented at: The 18th IEEE/NPSS (Institute for Electrical and Electronics Engineers/Nuclear and Plasma Science Society) Symposium on Fusion Engineering (SOFE) which was held in Albuquerque, NM,on October 25-29, 1999.
A method for visually observing tritium deposition on the surface of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles is being investigated at the Princeton Plasma Physics Laboratory. A green phosphor (P31, zinc sulfide: copper) similar to that used in oscilloscope screens with a wavelength peak of 530 nm was positioned on the surface of a TFTR D-T tile. The approximately 600 gram tile, which contains approximately 1.5 Ci of tritium located on the top approximately 1-50 microns of the surface, was placed in a two liter lexan chamber at Standard Temperature and Pressure (STP). The phosphor plates and phosphor powder were placed on the surface of the tile which resulted in visible light being observed, the consequence of tritium betas interacting with the phosphor. This technique provides a method of visually observing varying concentrations of tritium on the surface of D-T carbon tiles, and may be employed (in a calibrated system) to obtain quantitative data.