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Abstract

The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo e�ects are

discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity
content of each plasma strongly a�ects the reconnection rate as well as the shape of the di�usion
region. Conversely, magnetic reconnection events also strongly a�ect the global helicity, resulting
in e�cient helicity cancellation (but not dissipation) during counter-helicity reconnection and a
�nite helicity increase or decrease (but less e�ciently than dissipation of magnetic energy)
during co-helicity reconnection. Close relationships also exist between magnetic helicity and
dynamo e�ects. The turbulent electromotive force along the mean magnetic �eld (�-e�ect), due
to either electrostatic turbulence or the electron diamagnetic e�ect, transports mean-�eld
helicity across space without dissipation. This has been supported by direct measurements of

helicity 
ux in a laboratory plasma. When the dynamo e�ect is driven by electromagnetic
turbulence, helicity in the turbulent �eld is converted to mean-�eld helicity. In all cases,
however, dynamo processes conserve total helicity except for a small battery e�ect, consistent
with the observation that the helicity is approximately conserved during magnetic relaxation.
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1. INTRODUCTION

Magnetic helicity, a measure of the \knottedness"and
the \twistedness" of magnetic �eld [Woltjer, 1958], is
closely related to �eld line topology [Berger and Field,
1984]. It is de�ned by

K =

Z
A �BdV (1)

where A is the vector potential of the magnetic �eldB
and the integration is over a volume V . The magnetic
helicity is an invariant within a 
ux tube in a perfectly
conducting plasma. Taylor [1974] conjectured that in
a \slightly"resistive plasma the total helicity is well-
conserved during plasma relaxation in which the mag-
netic energy decays toward a minimum-energy state.
This well-known hypothesis has been successful [Tay-
lor, 1986] in explaining magnetic structures in labora-
tory toroidal plasmas, such as the reversed-�eld-pinch
(RFP), spheromak, and multipinch. Recently, there
has been growing awareness that the global magnetic
helicity contained in 
ux tubes also plays an impor-
tant role in solar 
are evolution [Berger, 1984; Rust,
1994].

As an elementary process in resistive plasmas,
magnetic reconnection [Vasyliunas, 1975; Biskamp,
1993] has long been regarded as a key mechanism
in deciding the dynamics of solar 
ares [e.g., Parker,
1979], magnetospheric substorms [e.g.,Akasofu, 1972],
and relaxation phenomena in laboratory plasmas [e.g.,
Taylor, 1974]. Although this is a localized process,
it often causes fundamental changes in macroscopic
magnetic �eld topology through cutting and rejoin-
ing of �eld lines. Therefore, an inherent relationship
between global helicity and local reconnection events
must exist.

Dynamo e�ects also have been another focal point
of research in electrically conductive 
uids or plasmas
attempting to explain the observed solar and plane-
tary magnetic �elds. In particular, generation of an
electromotive force (EMF) along a mean �eld by tur-
bulence, or the well-known �-e�ect [Parker, 1955], is
an essential process in amplifying large-scale magnetic
�elds [e.g., Proctor and Gilbert, 1994]. These dynamo
e�ects drive parallel current which twists up the �eld
lines thus creating magnetic helicity on large scales.
Therefore, the helicity also must be closely related to
dynamo e�ects.

In the following sections, we discuss the relation-
ship between magnetic helicity and magnetic recon-
nection with emphasis on results from recent labora-

tory experiments, followed by discussions on the rela-
tionships between magnetic helicity and dynamo ef-
fects in a plasma.

2. RELATIONSHIP BETWEEN

HELICITY AND RECONNECTION

2.1. \Push" and \Pull" Reconnection

Consider the situation where two plasmas with par-
allel toroidal current interact with each other. Recon-
nection of the poloidal �elds results in the formation
of three regions in the system: private regions as-
sociated with each plasma and a public region sur-
rounding both plasmas, as illustrated in Fig. 1 (a).
This con�guration has been created in a laboratory
experiment, MRX (Magnetic Reconnection Experi-
ment) [Yamada et al., 1997], where two internal coils
are inserted in each private region (denoted by the
closed circles in Fig. 1). After the plasma is formed,
the private 
ux can be further increased to generate
\push" reconnection as shown in Fig. 1(b), where the
�eld lines are reconnected from the private regions
to public region. On the other hand, when the pri-
vate 
ux is decreased the poloidal 
ux is \pulled"
back from the public region to the private regions by
reconnection, as shown in Fig. 1(c). Both types of
reconnection can occur in nature and can be induced
in MRX by changing operational procedures. (Two
examples of natural pull reconnection are solar 
are
and magnetotail reconnection.)

2.2. E�ects of Helicity Content on

Reconnection

The most common description of magnetic �eld
line reconnection is shown in Fig. 2(a), on which
the two-dimensional theories have been based [Va-
syliunas, 1975; Biskamp, 1993]. However, magnetic
�eld lines have three vector components and the he-
licity content of each plasma has a dominate e�ect
on the local reconnection angle, as seen in the three-
dimensional pictures of Fig. 2(b). When the third
component Bt vanishes in both plasmas [null-helicity
case, Fig. 2(i)], conventional 2-D reconnection is ap-
plicable. In the presence of a third component, (1) the
�eld lines reconnect at an angle when uni-directional
toroidal �elds exist [co-helicity case, Fig. 2(ii)] or (2)
they reconnect with anti-parallel geometry when the
toroidal �elds are oppositely directed [counter-helicity
case, Fig. 2(iii)]. Note that the reconnecting �eld lines
are anti-parallel for both null-helicity and counter-
helicity cases.
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In MRX, the e�ect of merging angle on recon-
nection has been studied extensively [Yamada et al.,
1997]. Figure 3 shows examples of time evolution of
the poloidal 
ux contours obtained by a 90-channel
2-D magnetic probe array [Fig. 1(a)] during pull re-
connection. Two di�erent shapes of di�usion regions
are found, depending on the third components of the
reconnecting magnetic �elds. Other operational con-
ditions are held constant for each discharge. When
no magnetic reconnection is induced, a typical X-
shape separatrix region is observed as seen at t = 260
�s in both Fig. 3(a) and 3(b). As poloidal 
ux is
driven toward the di�usion region, a neutral sheet is
formed. Without the third component (null-helicity
reconnection), a thin double-Y shaped di�usion re-
gion is clearly identi�ed [Fig. 3(a)]. In the presence of
an appreciable third component (co-helicity reconnec-
tion), an O-shaped sheet current appears [Fig. 3(b)].

The existence of a magnetic island in the co-helicity
case indicates a much broader current sheet than the
counter-helicity case. Figure 4 presents the radial pro-
�les of poloidal �eld BZ , toroidal �eld BT , toroidal
current density jT , and pitch of �eld lines for co-
helicity and null-helicity reconnection. In the null-
helicity case, BT is almost zero resulting in an abrupt
transition of the pitch of �eld lines (�) at the recon-
nection point, while in the co-helicity case, BT is order
BZ resulting in a gradual change of � over R. In the
co-helicity case, the jT pro�le is broad with width of
order 10 cm. In the null-helicity case, one observes a
steepening of magnetic �eld slope at the di�usion re-
gion and therefore a sharp neutral sheet current. The
thickness of this current sheet is seen to be as narrow
as 1 cm, which is found to be proportional to the ion
gyro-radius, �i, de�ned using the ion temperature at
the center and BZ at the knee.

The existence of a sizable toroidal �eld (co-helicity)
also results in a much slower reconnection rate (by a
factor of 3) than the null-helicity case. Similar ob-
servations also have been made in an earlier exper-
iment, where two spheromaks were driven to merge
[Yamada et al., 1990; Ono et al., 1993]. A plausi-
ble explanation for the observed di�erence in recon-
nection rate is based on the incompressibility of the
plasma due to the toroidal �eld pressure in the co-
helicity case, while the absence of toroidal �eld makes
the plasma compressible in the null-helicity case [Ji et
al., 1998]. However, a quantitative comparison of the
observed reconnection rate with theoretical values is
not straightforward, since classical 2-D reconnection
models do not explicitly take into account the e�ects

of the third magnetic �eld component nor plasma
compressibility.

2.3. E�ects of Reconnection on Helicity

Conservation

Although magnetic reconnection is a localized pro-
cess, it often causes topological changes in macro-
scopic con�gurations, a�ecting the globally de�ned
magnetic helicity. Some properties of helicity conser-
vation during magnetic reconnection have been dis-
cussed [Wright and Berger, 1991; P�ster and Gekel-

man, 1991]. In this section, a detailed account of the
e�ects of reconnection on helicity conservation and
dissipation of magnetic energy is given.

2.3.1. Time evolution of helicity and energy.

The time rate of change of helicity de�ned by Eq.(1)
can be described by

dK

dt
= �2

Z
E �BdV �

Z
(2�B+A�

@A

@t
) � dS (2)

where � is the electrostatic potential and S is the sur-
face surrounding integrated volume. The �rst term on
the right hand side (RHS) represents the volume he-
licity rate of change while the second and third terms
are helicity 
ux through the surface via inductive and
electrostatic means, respectively.

A similar equation can be derived for the time
evolution of the volume integrated magnetic energy,
W =

R
B2=2�0dV ,

dW

dt
= �

Z
E � jdV �

Z
(E �B) � dS; (3)

where the �rst term on the RHS represents the energy
dissipation rate and the second term the Poynting

ux.

What is of interest here is how much helicity and
energy change occurs within the volume of integration
during the reconnection process. Therefore, only the
volume-dissipative terms E �B and E � j but not the
surface terms (which represent helicity or energy 
ux)
in Eq.(2) and Eq.(3) need to be examined.

2.3.2. Dissipation terms during reconnec-

tion. Now consider a Sweet-Parker type of recon-
nection [Sweet, 1958; Parker, 1957] as illustrated in
Fig. 5, where a rectangular di�usion region forms with
width 2� and length 2L. Recently, this type of re-
connection has been veri�ed experimentally in MRX,
where some other e�ects, including an enhanced re-
sistivity over the Spitzer value, are taken into account
[Ji et al., 1998]. (On the other hand, an alternative
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model by Petschek [1964], which is based on a much
smaller di�usion region and standing shock waves, has
not yet been con�rmed experimentally.) As is typical
for magnetic reconnection, the region outside of the
di�usion region can be treated by ideal MHD, where
E +V �B = 0 holds. Therefore,

E �B = ETBT +EPBP = 0

E � j = (j�B) �V;

leading to no changes in helicity (ETBT balances with
�EPBP ) and no magnetic energy dissipation (except
for an exchange with mechanical energy).

The situation changes when the di�usion region
is considered. By de�nition, the reconnecting �eld
BP � 0 and the Ohm's law can be approximated by
E +V �B = ��j, where �� is an e�ective resistivity
which includes all non-ideal MHD e�ects. Because
both ET and the non-reconnecting BT are unchanged
from outside the di�usion region, we have

E �B � ETBT (= ��jTBT ) (4)

E � j = (j�B) �V + ��j2; (5)

leading to possibly non-zero E �B (a net change in he-
licity) and a net energy dissipation. We shall discuss
these terms in the following sections for both counter-
and co-helicity reconnection.

2.3.3. Helicity neutralizationduring counter-

helicity reconnection. Consider the case of counter-
helicity reconnection shown in Fig. 2(iii), where the
third component BT changes sign across the current
sheet. In this case, BT is also reconnected as a re-
sult of �eld line di�usion. Therefore, BT � 0 in the
di�usion region, resulting in no helicity dissipation

[Eq.(4)]. However, the original helicity contained in
each plasma has been lost as a result of reconnec-
tion, and this process can be described as helicity
neutralization or cancellation. The end product of the
counter-helicity reconnection is a toroidal con�gura-
tion (called a Field Reversed Con�guration, or FRC)
consisting of only toroidal current (or poloidal �eld)
with no toroidal �eld, or no helicity. This physical
process has been demonstrated experimentally [Ya-
mada et al., 1990; Ono et al., 1993] as illustrated
in Fig. 6. One unique feature of an FRC is that a
high � (� 1) plasma heated by reconnection is con-
�ned by the perpendicularly 
owing current, most of
which is carried by ions. The observed stability of
such a con�guration cannot be explained by Taylor's
theory since it contains no apparent magnetic helic-
ity. Recently, there have been attempts [Steinhaurer

and Ishida, 1997; Hegna, 1998] to generalize relax-
ation theories, using electron helicity to describe par-
allel current and ion helicity to describe perpendicular
current or plasma 
ow, in order to minimize the total
energy including kinetic and thermal energies. Then,
FRC plasmas can be classi�ed as a minimum energy
state with zero electron helicity (or magnetic helicity)
but �nite ion helicity (or kinetic helicity) [Steinhaurer
and Ishida, 1997].

2.3.4. Helicity change during co-helicity re-

connection. As illustrated in Fig. 2(ii), the third
component BT will be non-zero during co-helicity re-
connection, introducing a non-zero helicity change.
With respect to BT , however, the direction of ET can
be parallel or anti-parallel, depending on push or pull
reconnection, as discussed previously. For the case
of positive helicity as shown in Fig. 7, ET is parallel
to BT during pull reconnection resulting in a negative
�E�B or decrease in helicity, while ET is anti-parallel
toBT during push reconnection resulting in a positive
�E �B or increase in helicity.

An intuitive picture of helicity change during co-
helicity reconnection is given as follows. In the case
of co-helicity reconnection, only the poloidal �eld BP

is di�used and reconnected in the di�usion region.
The poloidal �eld lines slip from up-stream to down-
stream as soon as it enters the di�usion region, with
a speed on the order of c. Meanwhile, the toroidal
�eld BT is not di�used and still frozen with plasma,
which moves with a speed on the order of the Alfv�en
speed (VA � c). This slippage of BP relative to
BT gives rise a change in linkage (or helicity) with
toroidal 
ux contained in the di�usion region. Fol-
lowing this argument, two more examples for helicity

change can be given as shown in Fig. 8, which are
often seen in sawtooth reconnection in tokamaks [Na-
gayama et al., 1991] and relaxation events in reversed
�eld pinches (RFP's) [Schnack et al., 1985] if one re-
gards the \toroidal �eld" as the parallel component
along a resonant line and the \poloidal �eld" as the
perpendicular reconnecting component.

2.3.5. Relative rate of change in helicity and

energy. A quantitative account of helicity change
always needs to be compared with energy dissipation
since only their relative di�erence has physical mean-
ing. Volume integration of E � B and E � j over the
di�usion region,

dK

dt
= �2 ETBT 2� 2L 2�R

dW

dt
= �ET jT 2� 2L 2�R;
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gives changes in helicity and energy per reconnected
poloidal 
ux 	,����dKd	

���� = 8�LBT = 2�DR (6)

dW

d	
= �

4LBP

�0
; (7)

where 2�R is the total length of di�usion region, �DR

is toroidal 
ux contained with the di�usion region.
(To derive Eq.(6) and Eq.(7), the relations d	=dt =
2�RET and jT � = BP =�0 have been used.) Since
generally W and K are related by W=K � 1=(�0L),
the ratio of the rates of change is given by����WK dK

dW

���� � 2
�

L

jBT j

BP

: (8)

We note that not only the current sheet thickness but
also the reconnecting angle � = 2 tan�1 (BP = jBT j)
determine the relative rate of change.

An alternative form of Eq.(8) can be written as����WK dK

dW

���� � 2
�global

�DR
;

where � � �0j � B=B
2, a parameter often used in

the equation r � B = �B to describe the force free
state [Taylor, 1974]. When the plasmas are close to
their relaxed states, then �0W=K � 1=L � �global.
Similarly, � can also be de�ned in the di�usion region
as �DR � �0jT=BT , although it is not clear why the
di�usion region has to be in a relaxed state also. But
if this is so as suggested by Biskamp [1993], then the
relative ratio of change should only be decided by
2�=L since �DR � 1=� and �global � 1=L.

2.3.6. How well is helicity conserved dur-

ing reconnection?. Based on Eq.(8), the relative
ratio of change of helicity to energy due to co-helicity
reconnection can be estimated. For pull co-helicity re-
connection in MRX, as shown in Fig. 3(b), �=L � 1=2
and BT=BP � 1 so that j(W=K)(dK=dW )j � 1 if the
island structure is ignored. Taking into account the
presence of the island structure would likely decrease
the estimated ratio.

A second case of interest is the RFP plasmas from
where the idea of helicity conservation originates.
However, the current sheet thickness � is not mea-
sured in RFP's during a reconnection event. One way
to estimate � is to relate it to the relative parallel
drift parameter de�ned as vdrift=vth;e (vdrift � j=en

and vth;e is the electron thermal velocity) by

� =
Brec

�0jk
=

Brec

�0envth;e

�
vdrift

vth;e

��1
; (9)

where Brec is the reconnecting �eld, which is typically
the radial �eld Br in the RFP. The typical drift pa-
rameter can be estimated to be on the order of 0.2-0.3
based on the observation of current carrying fast elec-
trons [Stoneking et al., 1994] or the measured jk, n,
and Te [Ji et al., 1994]. Using typical parameters [Ji,
Prager, and Sar�, 1995] in MST (Madison Symmet-
rical Torus) plasmas as we shall mention in the next
section, i.e.,BT = 2kG, n = 1�1019=m3, Te = 100eV,
and the plasma radius a = 0:5m, we have �=a � (1:5-
2:5) � 10�3. Using observed BT=Br � 100 and
�0W=K � 1=(0:73a), the relative rate of change of
helicity to energy j(W=K)(dK=dW )j �0.4-0.7, which
is consistent with the observed � 0:4 during a relax-
ation event [Ji, Prager, and Sar�, 1995]. This esti-
mate suggests that the helicity conservation is only
marginally satis�ed in the RFP plasmas.

The last interesting situation is how well helicity
is conserved during a solar 
are, where reconnection
is considered to play a essential role. Again, the cur-
rent sheet thickness � is undetermined observation-
ally. Using Eq.(9) with a drift parameter of 0.2 and
the typical parameters (BT = 500G, n = 1015=m3,
Te = 100eV, L = 10; 000km), we have � � 300m
and �=L � 3 � 10�5. If we choose BT=BP � 1
as one might consider if the plasma is close to a
relaxed state, an estimated relative rate of change
j(W=K)(dK=dW )j � 6 � 10�5 is obtained. Because
any adjustment of plasma parameters is unlikely to
change this relative rate to a number close to unity,
one may conclude that the helicity is indeed conserved
relative to energy change in the solar corona.

3. RELATIONSHIP BETWEEN

HELICITY AND DYNAMO

EFFECTS

The dynamo e�ect, or, generation of magnetic �eld
by motions in an electrically-conducting medium, is
another focal point of understanding solar magnetic
activities [Parker, 1979]. In this section, close rela-
tions between dynamo e�ects and magnetic helicity
are discussed.

3.1. MHD Dynamo and Diamagnetic

Dynamo

A widely used scheme to discuss dynamo e�ects
arising from MHD turbulence has been based on
the mean-�eld electrodynamics [Krause and R�adler,
1980], where every quantity x is divided into a mean
part x �< x >, averaged over ensembles or space,
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and a turbulent part ex: x = x + ex. Therefore, the
mean MHD Ohm's law can be written as,

E+ v �B+ < ev � eB >= �j;

where the last term on the left-hand side is the mean
electromotive force (EMF) E arising from turbulence,
and it can be expressed approximately as

E = �B� �r �B: (10)

Here � and � are determined by turbulence, often
called the �-e�ect and the �-e�ect [Parker, 1955]. It
can be seen easily that the �-e�ect, which has been re-
garded as an essential process for a working dynamo,
represents an electromotive force generated by turbu-
lence in the direction along the mean magnetic �eld.

In order to include other possible dynamo e�ects
in a plasma, the same process can be repeated for the
generalized Ohm's law (ignoring the electron inertial
term) [Spitzer, 1962]

E + v �B�
j�B

en
+
rPe

en
= �j; (11)

where n is the electron density and Pe the electron
pressure. Then the mean EMF in a turbulent plasma
becomes

E =< ev � eB > � < ej� eB > =en; (12)

where the second term is often called the Hall term
and we have neglected < enr ePe > =en2 (a battery
e�ect, see the next section). Since v = (mivi +
meve)=(mi +me) � vi and j = en(vi � ve), Eq.(12)
can be rewritten as

E =< (ev �ej=en) � eB >�< eve � eB >; (13)

where vi (ve) is the ion (electron) 
ow velocity. We
note that the appearance of ve only is consistent with
the Ohm's law being a force balance of electrons.

The parallel component of E , or the �-e�ect, along
the mean �eld are of interest. Therefore, only the
perpendicular turbulent 
ow and magnetic �eld are
relevant, i.e.,

Ek =< eve � eB >k=< eve? � eB? > : (14)

An alternative form of the parallel Ohm's law can be
derived by substituting the perpendicular component
of Eq.(11),

eve? � ev? � ej?
en

�
eE? �B

B
2

+
r?

ePe �B

enB
2

; (15)

into Eq.(14) to yield

Ek =< eE? � eb? > + <r?
ePe � eb? > =en (16)

where b � B=B.

We identify two possible �-e�ects [Ji et al., 1995,

1996] in Eq.(16). The �rst term < eE? � eb? >,
represents the contribution to eve? from the tur-

bulent eE? � B=B
2

drift which is a MHD (single

uid) e�ect (MHD dynamo), while the second term,

<r?
ePe � eb? > =en, is the contribution from the tur-

bulent electron diamagnetic driftr?
ePe�B=B2

which
is an electron 
uid e�ect in the two-
uid framework
(diamagnetic dynamo). We emphasize here that only
the MHD dynamo e�ect has been studied in most
dynamo theories and simulations, while both MHD
and diamagnetic dynamo e�ects have actually been
detected in the laboratory [Ji et al., 1995, 1996].

3.2. Helicity Conservation During Dynamo

Action

Both the MHD and diamagnetic dynamos drive a
parallel current twisting up the �eld lines, which can
be translated into creation of magnetic helicity. Then
one question may arise: can magnetic helicity be gen-
erated by dynamo action without any constraints?
The answer is no: the total helicity must be con-
served, except for a battery e�ect, as discussed below.

By using the generalized Ohm's law, the rate of
change of helicity can be rewritten as

dK

dt
= �2

Z
�j �BdV � 2

Z
rPe �B

en
dV

�

Z
(2�B+A�

@A

@t
) � dS: (17)

The �rst term on the RHS is not a dynamo e�ect but a
resistive e�ect, which vanishes with zero resistivity. A
�nite resistivity introduces not only the usual resistive
helicity decay but also a helicity increase or decrease
during magnetic reconnection, a phenomenon which
happens only in a resistive plasma (see Section 3).
The last term on the RHS is surface integration, which
transports helicity across space while conserving the
total helicity. Indeed, the dynamo e�ect can originate
from this surface term, as shall be seen in the next
section.

The second term on the RHS of Eq.(17) can be
rewritten asZ

rPe �B

en
dV =

Z
Te

e
B �dS+

Z
Te

en
rn �BdV (18)
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where the �rst term is a surface term that does not
change the total helicity while the second term does
in certain conditions. Obviously, one such condition
is a �nite density gradient along the �eld line. How-
ever, this condition is not enough to change the total
helicity. The integral of the second term in Eq.(18) is
equivalent to

Te

en
rn �B =r �

�
Te

e
lnnB

�
� lnnr

Te

e
�B; (19)

where the �rst term leads to a surface term with no
e�ects on the total helicity. From the second term, it
can be seen that a �nite temperature gradient is re-
quired for a �nite change in the total helicity. There-
fore, both �nite gradients in density and electron tem-
perature (of course also in electron pressure) along the
�eld line are necessary conditions to change the total
helicity. However, we note that such parallel gradi-
ents, especially rkTe, are very small owing to fast
electron 
ow along the �eld lines. Such e�ects, often
called the battery e�ect [Parker, 1979], provide only
a seed for magnetic �eld to grow in a dynamo process
and, of course, it can be accompanied by a small but
�nite magnetic helicity.

In summary, dynamo e�ects conserve the total he-
licity except for a small battery e�ect. This conclu-
sion is consistent with the observation that the helic-
ity is approximately conserved during magnetic relax-
ation [Ji, Prager, and Sar�, 1995]. In the following
section, the battery e�ect will be ignored for simplic-
ity.

3.3. Helicity in Mean and Turbulent Fields

Dynamo action ampli�es a seed magnetic �eld into
a large-scale, mean �eld and maintains it against re-
sistive decay. Magnetic helicity associated with the
mean �elds must also be generated and maintained
by dynamo e�ects. According to the last section,
however, the helicity in the total (mean plus turbu-
lent) �eld cannot be created (except for a small bat-
tery e�ect). Therefore, only two possibilities exist for
the mean-�eld helicity: either it is transported across
space or it is separated from the helicity associated
with turbulent �elds. We shall see that both mech-
anisms are possible depending on the nature of the
dynamo process.

We begin with the rate of change of the helicity in
the mean �eld, Km =

R
A �BdV , and the helicity in

the turbulent �eld, Kt =
R
< eA � eB > dV :

dKm

dt
=�2

Z
E �BdV �

Z
(2��B+A�

@A

@t
) � dS(20)

dKt

dt
=�2

Z
< eE � eB > dV �

Z
(2 < e�eB >

+ < eA�
@ eA
@t

>) � dS; (21)

and their sum, Km + Kt, is the total mean helicity,
K. By using an alternative form of the generalized
Ohm's law, E + ve �B+rPe=en = �j, we have

E+ ve �B+
rP e

en
+ E = �j (22)

eE+ eve�B+ve� eB+ eve� eB�E +r ePe
en

= �ej; (23)
where E =< eve � eB >. Substituting these two equa-
tions into Eqs.(20) and (21), after some algebra, we
obtain

dKm

dt
=�2

Z
�j �BdV + 2

Z
E �BdV

�

Z
(2��B � 2

P eB

en
+A�

@A

@t
) � dS (24)

dKt

dt
=�2

Z
� < ej � eB > dV � 2

Z
E �BdV

�

Z
< 2e�eB� 2

ePe eB
en

+ eA�
@ eA
@t

> �dS: (25)

The �-e�ect appears as the second terms in the RHS
of these equations but with opposite signs. It might
be concluded that the dynamo e�ects would generate

the same amount of helicity but with opposite signs
in the mean �eld and the turbulent �eld [Seehafer,
1996]. However, it may not be the case depending on
types of dynamo e�ects.

Following Eq.(16), the �-e�ect is

E �B = � <r?
e� � eB? > � <

@ eA?

@t
� eB? >

+
<r?

ePe � eB? >

en
; (26)

where the three terms correspond to e�ects due to
electrostatic, electromagnetic, and electron diamag-
netic turbulence, respectively. Substituting Eq.(26)
into Eqs.(24) and (25),

dKm

dt
= �2

Z
(�j �B+ <

@ eA?

@t
� eB? >)dV
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�

Z
(2��B� 2

P eB

en
+A �

@A

@t

+2 < e�eB�
ePeeB
en

>) � dS (27)

dKt

dt
= �2

Z
(� < ej � eB > � <

@ eA?

@t
� eB? >)dV

�

Z
< eA�

@ eA
@t

> �dS: (28)

are obtained. In the case of electromagnetic turbu-
lence, i.e., eve is driven by an inductive electric �eld,
the dynamo e�ect generates the same amount of he-
licity both in the mean and turbulent �elds but with
opposite signs, as seen from the second terms of the
above equations. Techniques often used in the labo-
ratory to drive currents in a plasma by an incident
electromagnetic wave fall into this category. The
wave helicity is converted to the mean-�eld helicity
by interaction between the wave and the background
plasma. (We note that the last term in Eq.(28) rep-
resents an electromagnetic wave propagating across
space without interacting with the mean �eld.) In
the case of electrostatic or electron diamagnetic tur-
bulence, i.e., eve is driven by electrostatic �eld or per-
pendicular electron pressure, the dynamo e�ect does
not a�ect the turbulent helicity but merely transports
the mean-�eld helicity across space, as seen from the
surface terms in Eq.(27).

Therefore, it is crucial to know the type of turbu-
lence which generates the dynamo e�ect in a turbulent
plasma in order to assess the role of dynamo e�ects
on magnetic helicity, even though the total helicity is
always conserved. In the case of a laboratory plasma
(the MST RFP), direct measurements indicated that
the turbulence is predominantly electrostatic, thus
causing helicity transport in the mean �eld with no
e�ects on the turbulent �eld. Figure 9 shows such
an example of measured helicity 
ux caused by the
electrostatic turbulence [Ji, Prager, and Sar�, 1995]
together with the measured �-e�ect [Ji et al., 1994].

4. CONCLUSIONS

Magnetic helicity is closely related to magnetic re-
connection and dynamo e�ects, both of which involve
changes in magnetic �eld topology. Recent labora-
tory experiments have provided opportunities to test,
verify, and discover the relationships between them as
summarized below.

When two plasmas are driven to merge, the he-
licity content of each plasma determines the recon-

necting angle which strongly a�ects the reconnection
rate and the shape of the di�usion region. Conversely,
magnetic reconnection events also strongly a�ect the
global helicity, resulting in e�cient helicity cancella-
tion (but not dissipation) during counter-helicity re-
connection and a �nite helicity increase or decrease
(but less e�ciently than dissipation of magnetic en-
ergy) during co-helicity reconnection.

The turbulent electromotive force along the mean
magnetic �eld (�-e�ect), due to either electrostatic
turbulence or the electron diamagnetic e�ect, have
been measured in an RFP plasma. These dynamo ef-
fects transport mean-�eld helicity across space with-
out dissipation, as seen in direct measurements of he-
licity 
ux. When the dynamo e�ect is driven by elec-
tromagnetic turbulence, helicity in the turbulent �eld
is converted to mean-�eld helicity. In all cases, how-
ever, dynamo processes conserve total helicity except
for a small battery e�ect, consistent with the obser-
vation that the helicity is approximately conserved
during magnetic relaxation.
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(a) MRX setup

(b) "Pull" Reconnection

(c) "Push" Reconnection

Figure 1. Experimental setup in MRX (a) and illustration of \push" (b) and \pull" (c) reconnection.
PPPL#96GR044A
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(Antiparallel)

Reconnection

( ii )    Co-helicity

Reconnection

( iii )    Counter-helicity

Reconnection

Figure 2. (a) 2-D and (b) 3-D schematic views of magnetic reconnection for three cases: (i) null-helicity (ii) co-
helicity and (iii) counter-helicity.
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Figure 3. Time evolution of poloidal 
ux measured by internal magnetic probes By t = 290 �s, a double-Y shaped
and O-shaped di�usion regions are formed in the (a) null-helicity case and (b) co-helicity case, respectively.

Figure 4. Radial pro�les of measured BZ , BT , �eld line angle (�), and jT at Z = 0 cm and t = 290 �s in the
(a) null-helicity and (b) co-helicity cases.
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Figure 5. Illustration of a Sweet-Parker type of magnetic reconnection.
Counter-helicity

Spheromaks Zero Helicty FRC 

Figure 6. Helicity neutralization during a counter-helicity merging of spheromaks, resulting in a Field Reversed
Con�guration (FRC) with no magnetic helicity but �nite ion kinetic helicity.
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Figure 7. Illustration of co-helicity reconnection in the positive helicity case: \pull" (\push") reconnection leads
to a decrease (an increase) in helicity.
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Figure 8. Two more examples for helicity change during co-helicity reconnection.
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Figure 9. Measured (a) parallel EMF (�-e�ect) due to electrostatic turbulence, < eE? � eb? >, and (b) helicity


ux (dotted line), < e�eB > in a laboratory plasma. The solid line in (b) is the prediction from the helicity balance
equation.


