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Abstract

Recently, various schemes for controlling the resistive wall mode have been
proposed. Here, we formulate the problem of resistive wall mode feedback
control utilizing concepts from electrical circuit theory. We consider each
of the coupled elements (the perturbed plasma current, the poloidal pas-
sive shell system, and the active coil system) as lumped-parameter electrical
circuits obeying the usual laws of linear circuit theory. An inductance ma-
trix describes the interactions between the coupled circuits. The off-diagonal
elements (mutual inductances) are related to the geometry of the coupled
components and provide a means for evaluating the merits of proposed feed-
back schemes. The roles of the perturbed plasma current, the passive shell,
and the active coil elements are easily identifiable and the physics for con-
trol of n > 1 modes can be compared with the theoretical and experimental
results of n = 0 vertical position control.

1. Introduction

The ability to control the n = 0 vertical position instability in tokamaks
with shaped cross-section has been crucial to the success of modern tokamak
fusion research[1-10]. Key to the success of vertical position control is the
integration of a passive stabilizing system that slows the vertical growth rate
from an ideal time-scale (~ us) to a resistive wall time-scale (~ ms), and
an active feedback system which controls the measured amplitude of the
instability.

With high temperature regimes achievable, current large-scale tokamak
programs are now tackling the significant challenge of sustaining high-3 plas-
mas near the ideal-MHD [-limit for times long compared to the energy con-
finement time, 75. Major disruptions often prematurely terminate high-3



plasma discharges[11]. The ideal-MHD mode most often suspected of induc-
ing high-3 disruptions is the pressure driven external kink. Several exper-
imental results indicate that a passive shell (either a close-fitting vacuum
vessel wall or passive conducting plates) can reduce the external kink growth
rates to the resistive time-scale of the passive shell system [12, 13]. The re-
sulting resistive wall mode (RWM) [14] can then, in principle, be controlled
by a combination of the passive shell system and an active feedback control
system that operates on a modest time-scale in a manner similar to what has
been successful for n = 0 vertical position control.

Recently, various schemes for controlling the resistive wall mode have
been proposed which utilize integration of both active (feedback controlled)
and passive stabilizing systems. The “Intelligent Shell” scheme was originally
developed by Bishop[15] and proposed as a method to control locked modes
in RFP devices. The method reproduces the magnetic effects of a virtual
perfectly conducting wall, freezing the perturbed magnetic flux on a toroidal
surface at some appropriate distance from the plasma. The Fake Rotating
Shell scheme was developed by Fitzpatrick and Jensen[16, 17] and proposed
as an efficient means for stabilizing resistive wall modes on tokamaks. Here a
network of feedback controlled conductors surround the plasma and passive
shell and can be made to act like a secondary rotating shell. The combination
of a stationary conducting shell and a rotating secondary shell was shown by
Gimblett[18] to be capable of completely stabilizing resistive wall modes.

Here, we present a formulation for resistive wall mode feedback control
utilizing concepts from electrical circuit theory. We consider the perturbed
plasma current, the poloidal passive shell, and the active control coil as
lumped-parameter electrical circuits obeying the usual laws of linear circuit
theory (Kirchoff’s voltage and current laws). An inductance matrix describes
the interactions between the coupled circuits. The off-diagonal terms (mutual
inductances) are directly related to the geometry of the coupled components
and provide a useful means for evaluating the merits of proposed designs.
A simple set of coupled linear differential equations describe the time evo-
lution of the circuit currents. They have a form familiar to both physicists
and engineers and facilitate the analysis necessary for system design. This
approach has proved useful for both the analysis and design of power and
control systems for vertical position control[4].

In Sections 2 and 3, we derive circuit equations which describe the in-



teraction of a kink-unstable plasma with a resistive wall and with active
feedback coils. The derivation assumes a circular cylindrical pinch for the
plasma, and makes use of the thin shell approximation for the resistive wall.
In contrast to the usual treatment of kink modes (eg., see [14]) our formu-
lation separates the vacuum helical flux into contributions corresponding to
isolated currents in the various conducting structures (Fig. 1). A mutual
inductance matrix describes the coupling between the elements. In Sections
4 and 5 we discuss the dispersion relation obtained from the circuit equations
without active feedback. We show that the roots of the dispersion relation
reproduce known solutions for the growth rate of kink modes. An “effective
self inductance” of the plasma is introduced which describes the strength of
the unstable plasma kink drive. This inductance embodies all of the relevant
MHD properties of the plasma. Finally, the resistive wall mode limit of the
full circuit equations, including feedback, is taken and analogies to the circuit
equations for the n = 0 vertical instability are drawn.

In Section 6 we examine the dispersion relation for the RWM circuit equa-
tions using different models for the feedback. The feedback coil is driven by a
voltage which is proportional to a linear combination of the three independent
circuit currents; the perturbed plasma current, Iy, the passive shell current,
15, and the active coil current, I3. Four feedback schemes are discussed:
The Explicit Displacement, Shell Current, Total Flux, and Fake Rotating
Shell schemes. In the Explicit Displacement scheme the sensor signal is the
perturbed plasma current, [;. The control scheme is analogous to feedback
control on 0z/,14sma for n = 0 vertical displacement instabilities, where 6z
is the measured displacement of the equilibrium plasma. Although direct
measurement of [; is not practical for n > 1 kink mode control, a discus-
sion of this scheme provides a useful means for comparing the relative merits
of other schemes and for comparing these schemes with known features of
n = 0 control. In the Shell Current scheme, the sensor signal is the shell
eddy current, [, representing the flux loss due to the finite resistivity of
the shell. This scheme has been implemented successfully for n = 0 vertical
position control in PBX-M[10] and is shown here to be an attractive scheme
for n = 1 kink mode control. In the Total Flux and Fake Rotating Shell
schemes the sensor signal is the total perturbed flux, which depends on Iy,
I, and I5. In the Total Flux scheme, which is essentially Bishop’s Intelligent
Shell scheme[15], the voltage applied to the feedback coil is proportional to



the measured flux, with a constant of proportionality (the gain) that is real.
In the Fake Rotating Shell scheme, however, the gain coefficient is purely
imaginary. This introduces a phase shift between the sensor loop and feed-
back coil and leads to a feedback field that rotates relative to the plasma
perturbation. The mechanism of Fake Rotating Shell Scheme stabilization
is therefore analogous to kink mode stabilization by plasma rotation, a sub-
ject of active study in recent years by several authors[19-22]. The feedback
schemes are compared using a variety of techniques from control engineering.
We end with a Summary and Conclusions.

The work described in this paper is an extension of research presented by
the authors in references[23, 24].

2. Derivation of the Plasma Circuit Equation

We begin with the familiar eigenmode equations [25] used to determine
the stability of a circular cylindrical pinch:
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The form of (1) corresponds to that of Wesson [26], and assumes incompress-
ibility. In Eq. 1, &, is the radial component of the fluid displacement,

F = (a/BY(a))(BY(r)/r)(m —nq(r)) determines the equilibrium current pro-
file (¢ = rB./RBj is the equilibrium safety factor), m and n are poloidal
and toroidal mode numbers, v is the growth rate of the mode, and 74 =
p(l)/Qa/Bg(a) is the edge poloidal Alfvén time. Equation 1 is solved subject
to a regularity condition for £, at the magnetic axis, r = 0, and a plasma-

vacuum boundary condition at the plasma edge, r = a, of the form
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t(ay) is the vacuum poloidal flux evaluated at the unperturbed plasma sur-
face. The flux is defined in terms of the vacuum magnetic field by

L
SmR (4)
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and ¢’ denotes the derivative of flux with respect to r.
The boundary condition, Eq. 2, is used to provide a circuit equation for
the plasma, as follows: Define the quantity, 3°, such that

1 d(r¢,) B 0
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Then Eq. 2 can be rewritten as

ay'(ay)
my(ay)
We suppose that the plasma is surrounded by a resistive wall and by active

feedback coils. Using a terminology consistent with electrical networks, we
denote the current carrying “circuit” corresponding to the perturbed plasma

(Vra+ )8 = ff———5 +2f. (6)

as circuit “17, the circuit corresponding to the resistive wall as “2”7, and
the circuit corresponding to the active feedback coils as “3” (see Fig. 1).
Now write the poloidal flux in the vacuum region at the unperturbed plasma
boundary in terms of inductive contributions from the individual circuits:

Ylay) = L]y + Migly + Mysls. (7)

Ly is the self inductance of the plasma circuit, and the M;; are mutual
inductances between the plasma and resistive wall, and the plasma and active
coils. Similarly, for the radial derivative of the poloidal flux,

Plag) = Lili + Miplo + Myl (8)
Using (7) and (8) Eq. 6 can be rewritten as
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This circuit equation for the plasma can be further simplified using the rela-
tions al}/mL, = —1, aMji;/mM,; = +1, which are valid in the cylindrical
limit (see Appendix A).

In the usual treatment of kink mode stability, 3° would be determined
from the self consistent solution of Egs. 1 and 2. Clearly, its value depends on
the calculated growth rate. However, for a fixed position of the conducting
wall the growth rate is uniquely determined by the equilibrium current profile.
In Eq. 9, it is therefore possible to interpret 3% as an equilibrium parameter,
the value of which specifies the equilibrium plasma current profile. The

A

special case of a plasma with a uniform current density profile (¥’ = constant)

provides a useful example. Eqgs. 1, 2, and 5 are trivially solved to yield
ré ~r™, and 3° = 1.0, independent of the location of the conducting wall.
For more general profiles the value of 3° can differ substantially from unity

(see Sec. 4, Fig. 2).

3. Circuit Equations for the Resistive Wall and Active
Feedback System

To derive an equation for the circuit corresponding to the resistive wall

(circuit 2), we start with
a¢(rw) 812 8[1 813
=Lo— + Moyy— + Myz— 10

ot R TR T (10)
which is obtained by taking the time derivative of the perturbed flux at the
resistive wall utilizing (7). The radial component of Faraday’s law provides
an equation which replaces the LHS of (10): The r-component of Faraday’s
law 1s

OB, /0t = —""F,. (11)
T

Here, we have made the thin wall approximation so that only the axial com-
ponent of the electric field, E., is retained. Equation 4 relates B, to 1, and
Ohm’s law, F, = n.J,, provides an equation for £, in terms of the wall resis-
tivity, n, and the wall eddy current density, .J,. Finally, each side of (11) is
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integrated across the wall (of thickness d) to obtain

@L/J(rw)/@t = —RQIQ, (12)
where
2 w ro+d
I, =" / J,dr (13)
2m Tw
is the current in the resistive wall circuit, and
anRo
Ry = 14
2 w0 (14)

is the circuit resistance. The full circuit equation describing the interaction
of the resistive wall with the plasma and active feedback circuits is obtained

by replacing the LHS of Eq. 10 by the RHS of Eq. 12. Thus,
(vLa 4+ Ra) Il + y Moy Iy + yMasl5 = 0. (15)

The circuit equation for the active feedback coils is derived similarly. The
only difference is the inclusion of a voltage term to drive the feedback circuit.

Thus,
YMs [y + yMsa Iy + (vLs + Rs) 5 = V. (16)
The form of the feedback voltage, V3, depends on the details of the feedback

control scheme and will be discussed later.

Equations 9, 15, and 16 are circuit equations for the perturbed plasma
current, resistive wall, and active feedback circuits respectively. We will build
toward a discussion of the full dispersion relation for these equations by first
considering some special cases.

4. Circuit Dispersion Relation (CDR) for plasma with
no passive or active feedback

Consider an isolated plasma with no resistive wall (viz wall at infinity)
and no active feedback system. A dispersion relation is obtained from Eq. 9
by equating the coefficient of L1 to zero. Thus,

29 _ 2f (ﬁ0+1)]
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For a constant current density profile, where 8° = 1, the familiar form for
the dispersion relation of ideal external kinks is obtained, namely 72 73 =
2f(1 = f). The kink is unstable for f values in the range 0 < f < 1. For a
more general current profile, ¥2 73 can be determined numerically by solving
Eq’s 1 and 2. For example, consider a current profile of the “Wesson”

form[26]

2 ga/q0-1
where ¢,/qo is the ratio of the safety factor at the edge of the plasma to the
corresponding value at the magnetic axis. The value of ¢,/go determines the
peakedness of the current profile. The Wesson profile is consistent with a
safety factor profile of the form

r?/a*
Q(r) = qal o (1 o r2/a2)qa/q0 . (19)
Assuming an axis safety factor value of g9 = 0.8, an m = 2,n = 1 kink

external mode is found to be unstable for edge safety factor values in the
range 1.32 < g, < 2.0, corresponding to f values in the range 0.68 > f > 0.0.
For this range of profile shapes, 3% varies between 1.9 and oo, as shown in
Fig. 2. The dependence of v,,74 on f is also shown in the figure.

In the remainder of this paper we assume 7273 > 0, corresponding to
plasma conditions (values of f and (3°) such that, without feedback, the

plasma is unstable to an external kink mode.

5. CDR for plasma with conducting wall and no active
feedback

Consider now the effect of a conducting wall placed at a finite radius
r = ry. We assume that the conducting wall has been sensibly placed so
that the wall radius lies within the critical radius for which ideal external
kinks are stabilized by a perfectly conducting wall for some desired operating
range of plasma profiles (values of f and 3° in our model). This restriction
on ry provides a constraint on the mutual inductance Mi;. The constraint
is obtained by setting Ry = 0 in Eq. 15, suppressing the terms involving the



circuit label “3” in Eq’s 9 and 15, solving for 4*73, and forcing the stability
condition v273 < 0. The result is

M2
L - =12 <. (20)
Ly

Here, an “effective” self inductance for the plasma circuit has been defined

eff _ V2 Th _ 1—f(8°4+1)/2
iy

VeTA + 30

Liff is the drive term for the n > 1 MHD instability. For a constant current
density profile with 3° = 1.0, L/ = L1(1 = f). For a more general current
profile such as the Wesson profile, the evaluation of Liff requires, first, the
calculation of 3° by numerical integration of Eq’s 1, 2 and 5, then substitution
of 3% into Eq. 21. Fixing qo = 0.8 leads to a dependence of Liff on f shown
in Fig. 2. The value of Liff/l)l is always less than unity, independent of the
choice of current profile.

Equation 20 is a design criterion for the passive shell system. For control
of n > 1 kink modes, this condition must be satisfied, independent of any
details of the active feedback system. If the plasma drive is fixed, Eq. 20
defines a maximum radius at which an ideal passive shell can be placed to
stabilize the kink mode. If, instead, the ideal shell location is fixed, Eq. 20
defines a maximum plasma drive which can be stabilized by the shell. For
example, a plasma with an ideal conducting wall at ry/r; = 1.2 is stable to
m = 2,n = 1 kink modes for 8° = 1.0 and [ in the range 0.518 < f < 1.

Equation 20 is analogous to the equivalent condition for n = 0 control:

2

M
! 2 <. (22)

ext I
2

The two conditions (Eq’s 20 and 22) are pre-requisites for feedback stabiliza-
tion of the respective modes. For the n > 1 instability, the condition can be
interpreted as follows: A helical plasma current perturbation [y gives rise to
a flux change of Iy My, at the ideal passive shell. This flux change induces
a current on the shell of magnitude I, = Iy M3/ L,. The induced current in
turn produces a flux change of I, My, at the plasma surface. For the ideal
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passive shell to stabilize the kink mode, this flux change must be greater
than the flux change Lifffl associated with the plasma instability. For the
n = 0 vertical instability the energy source for the instability is the external
field curvature, M,  instead of L7, The flux change is due to the vertical
displacement of the equilibrium plasma column so that a spatial derivative
of the mutual inductance, Mj,, appears in Eq. 22 instead of M,.

Assuming a resistive wall location such that Eq.20 is satisfied, the growth
rate for the kink mode is reduced to the time-scale of the resistive shell. Then
y74 < 472 ~ 1. The kink mode is now called a resistive wall mode (RWM).
The RWM limit for the circuit equations is obtained by dropping the 273

terms in Eq. 9. The plasma circuit equation becomes a constraint condition
eff —
Ly L+ Myl + Mysl; = 0. (23)

We can also rewrite Egs. 15 and 16, non-dimensionalizing the growth rate ~
using the L/ R time constants of the resistive wall and feedback coil systems:

(yr2)Mar Iy + (ym2 + 1) Laly 4 (y72) Masls = 0, (24)
and
(y73)Msy Iy + (y73) Mg Iy + (4713 + 1) Lals = Vas. (25)

Here, 7 = L3/ Ry, and 73 = L3/Rs3. Fquations 23, 2/ and 25 are circuil
equations describing the interaction of a feedback circuit with a resistive wall
mode.

The dispersion relation for a RWM with no feedback coil is obtained by
solving Eq.’s 23 and 24, dropping terms having the subscript “3”. We obtain

YT = — Q== = FTQ, (26)
1 N M12 21
Liff
where
R L R M
Liff = Ll—lv Mij = L']7 (27)

are normalized self (effective) and mutual inductances.
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Assuming a flat current density for the plasma, and cylindrical limit ex-
pressions for the mutual inductances, 3% = 1, L&/ = (1 —f), and My =
My = (a/ry)™. The growth rate, Eq. 26 simplifies to

1 1 (28)
YT = — = — —.
’ LM _(a/ry)?
Ly Lt (1=1)

The expression on the right side of the second equality is the familiar growth
rate for the RWM. However, it is interesting to compare the first equality in
the dispersion relation, expressed in terms of inductances, with the dispersion
relation for the vertical position instability of a filamentary plasma, namely

1
g
LoM"

ext

(29)

n=0 __
VT = —

Liff represents the energy source term for the n > 1 MHD instability, anal-
ogous to M, for the n = 0 vertical positional instability.

6. CDR for plasma with various active feedback schemes

We now examine the dispersion relation obtained using different models
for the feedback. The various schemes differ in the choice of sensor signal.
The signal is determined by some combination of the three independent cir-
cuit currents; the perturbed plasma current I;, the passive shell current Iy,
and the active coil current I5. Four feedback schemes are discussed: the
Explicit Displacement (E.D.), Shell Current (S.C.), Total Flux (T.F.), and
Fake Rotating Shell (F.R.S.) schemes.

6.0.1. Explicit Displacement Feedback

The first feedback scheme we consider assumes that the voltage supplied
to the feedback circuit is proportional to the perturbed plasma current flow-
ing in the plasma circuit, /;. For the voltage appearing on the RHS of Eq.
25 we write

Varg = GeLIIh (30)
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where (. is the (real) voltage gain. We discuss this case because of its close
analogy with n = 0 feedback schemes where flux loop sensors measure the
explicit vertical displacement 0z of the plasma from its equilibrium location.
Feedback on [; is equivalent to feedback on I,,smq02z for the n = 0 mode.
Such a feedback scheme has been implemented for n = 0 control in most
shaped tokamak experiments [1-10]. Although direct measurement of [
is not practical for n > 1 kink mode control, a discussion of this scheme
provides a useful means for comparing the relative merits the Shell Current,
Total Flux, and Fake Rotating Shell feedback schemes and for comparing
these schemes with known features of n = 0 control.

Using Eq. 30 in the right hand side of Eq. 25 and solving Eq.s 23 - 25,
a quadratic formula for the growth rate is easily obtained (see Appendix B).
If we assume that the /R time of the active circuit is short compared with
the L/R time of the passive conducting shell, 73 < 75, the dominant root of
the dispersion relation is

M.
1 -I_ Geze—i}
VT R L T (31)
Try G (M:n - M32M21) W

Here I'my > 0 is the growth rate of the RWM in the absence of active feedback
and was first defined in Eq. 26. If G, < 0, the growth rate decreases with
increasing magnitude of the voltage gain. Complete stabilization is achieved
when G, < —lA)‘fff/Mgl.

The term

. A oA 1 G, M3y My, 1
G. (M31 — M32M21) W = L_g(M31 T, ) L7

appearing in the denominator of Eq. 31 is a measure of the shielding of the
field from the active coil by the conducting shell. When the active coil is
energized with current I3, an eddy current is generated on the passive shell
of magnitude I, = I3M35/Ly. This current produces a helical magnetic flux
= (IsMsy/Ly) M3y on the plasma surface in opposition to the stabilizing
direct flux Ms;15 from the active coil. If M3; is comparable to Mz, M,/ Lo
the active control field is shielded from the plasma and the voltage required
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to decrease the growth rate to a desired level is increased. The plasma drive
term, Liff, affects the overall gain magnitude but does not affect the shielding
balance.

In the cylindrical limit, at infinite aspect ratio, the shielding factor May —
MggMgl is zero (perfect shielding). For a finite aspect ratio toroidal system
this term will certainly be nonzero; the shielding will not be perfect. Unfor-
tunately the calculation of mutual inductances for multiple helicity toroidal
systems is beyond the scope of this paper. To assess in an ad hoc way the
impact of finite shielding we define

My — Msy My
My

A

(32)

In the absence of a detailed toroidal calculation of the shielding factor we will
eliminate any occurrence of Mgl — MggMgl in the circuit dispersion relations
in favor of A, and consider the effect of A = 0 (the cylindrical limit) and
A=0.2.

The validity of the assumption 73 < 75 which led to Eq. 31 depends on
details of the control system design. For example, the n = 0 feedback con-
trol systems on ALCATOR C-MODI[27], PBX-M[10], and DIII-D[28] have
active/passive time constant ratios of 0.6, 1.0 and 2.6, respectively. To ex-
amine the behavior of the feedback system for general values of 75/7; it is
convenient to trace numerically the loci of roots of the dispersion relation
as the gain, (7., is varied. Fig. 3 presents root locus plots [29] for the Ex-
plicit Displacement scheme. Plasma parameters are [ = 0.6 and 3° = 1.0;
the passive shell and feedback coil radii are ro/r; = 1.20 and r3/r; = 1.30,
respectively. In Fig.s 3a,b the ratio of time constants of the active coil and
passive shell is 73/7 = 5.0.Root loci are shown for A = 0.0 and A = 0.2.
Without feedback (G. = 0) both roots of the dispersion relation are real
and have opposite sign (one stable and one unstable). As the gain is in-
creased, the unstable root moves toward the stable region (Re(y) < 0). If
the shielding factor, A, is zero (Fig. 3a) there is no value of the gain for which
stability is achieved. Beyond some | G | the growth rate becomes complex
(Im(~) # 0); the oscillation frequency increases rapidly with increasing gain
magnitude. For finite values of A the system growth rate is damped (Fig. 3b)
However, the oscillation frequency can dominate the damping rate, and the
feedback system is ineffective. The system characteristics improve with in-
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creasing gain. With large enough gain magnitude, the oscillation frequency
becomes zero.

Fig. 3¢ and (d) show root locus plots for 73/7 = 0.5 with plasma pa-
rameters 3° = 1.0, f = 0.6. For this smaller value of 73/7 = 0.5 (compared
with Fig. 3a and b), the unstable root can be stabilized without oscillation.
Clearly, it is desirable to have feedback system parameters such that the
damping is large and purely real. At some critical gain value the damping
rate becomes complex. Fig. 4 shows a plot of the maximum purely real damp-
ing rate as a function of 73/7,. We see that if the damping rate is required
to be non-oscillatory there is a design requirement on 73/7; for a given wall
and active coil position. If the required damping rate using E.D. feedback is
at least one inverse wall time constant then 73/m < 1 is required.

~J

6.0.2. Shell Current Feedback

The second feedback scheme we consider assumes that the voltage sup-
plied to the feedback circuit is proportional to the measured eddy current in
the resistive shell. Specifically, for the voltage appearing on the right hand
side of Eq. 25 we write

Varg = G5L2]27 (33)

where (7, is the (real) feedback gain. Assuming 73 < 73, the dominant root
of the quadratic dispersion relation (see Appendix B) is found to be

1

YTy R —, (34)
L e w, - MaM
FTQ s 32 iiff

A necessary condition for decreasing the growth rate by increasing the
voltage in the feedback circuit is

ad, (Msz - %) < 0. (35)
1

The LHS of Eq. 35 exhibits the shielding effect of the passive shell. In contrast
with the Explicit Displacement scheme, where the shielding depended on
purely geometric factors, the magnetic shielding in Shell Current feedback

14



includes the plasma effective inductance Liff. Here, the active coil produces
the flux ¥ = I[3M35; at the plasma surface, which drives a circuit current
I = [3M31/L§ff. This, in turn, creates a flux ¢ = [3M31M12/Liff at the
passive shell. To produce a stabilizing effect, this flux should be larger than
the direct flux at the shell due to the control field, I3Ms3,.

Fig. 5 shows a root locus plot for feedback control using the Shell Cur-
rent feedback scheme. Plasma parameters are 3° = 1, f = 0.6; the passive
shell and active coil radii are ro/r; = 1.20 and r3/r; = 1.30, respectively.
For comparison with the E.D. root locus plots, shielding parameter values
of A = 0.0 and 0.2 are considered for time constant ratios of the active and
passive systems of 73/7 = 5.0 and 0.5. The sign of the gain is chosen so
that with increasing gain the roots both move in the direction of increased
stability (G5 > 0). As noted in Appendix B, both roots of the dispersion
relation are purely real for all assumed values of 73/ and of the gain, G.
The unstable root approaches zero as the stable root approaches negative
infinity. The absence of oscillation is in contrast to the Explicit Displace-
ment scheme discussed in the previous section, and to the Total Flux and
Fake Rotating Shell schemes to be discussed later. Complete stabilization
of the n > 1 mode is not possible. However, with a large enough gain the
growth rate can be made as small as desired. In Sec. 8, we will see that
the stable root determines the system response time, and the fact that this
root rapidly obtains large negative values as the gain is increased makes the
S.C. feedback method an attractive feedback scheme in spite of the fact that
there is always one unstable root. The dependence of growth rate on the
plasma drive parameter, f, will be discussed in Sec. 9. The feasibility of
Shell Current feedback has been demonstrated for n = 0 position control in
PBX-M by routinely producing strongly shaped plasmas, applying feedback
on the n = 0 component of the eddy current on the shell[10]. The sensor
signal was obtained from Rogowski coils inserted in the passive shell. Some
advantages of Shell Current feedback for n = 0 mode control compared with
Explicit Displacement feedback have been reported in [10].

6.0.3. 'Total Flux Feedback

For this feedback scheme the voltage is assumed to act in response to
a measurement of the total perturbed flux at radius r = rg. The voltage
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appearing in Eq. 25 is written as
Varg = Gy(Mioly + Maoly + Msgls), (36)

and we assume that the gain, Gy, is real. A dispersion relation is found for
the growth rate in a manner analogous to that discussed in the previous two
sections.

If 73 < 7, the solution corresponding to the dominant root is (see Ap-

pendix B)
- (M30 - T)
Ly

1 M A A M M A A A M ’
- — Gt{% + My (M32 — %) + (M31 — M32M21) [Aje—}?z}
1

F T2 1

Y72 ~

(37)

where 'y 1s the growth rate of the RWM in the absence of the active feedback
circuit (see Eq. 26). From Eq. (37) it can be seen that the kink mode can
be completely stabilized by Total Flux feedback if the numerator can be
made negative. The factor (Mgo — MglMlo/ziff) is therefore key: For fixed
locations of the passive shell and active coil, this factor is negative if the flux
measurements are made within some critical radius which depends on the
value of Lt/ (see Sec. 7). The sum of terms inside the curly brace in the
denominator of Eq. (37) is positive. Therefore, if the sign of the gain, G,
is chosen negative and its magnitude exceeds some critical value, the kink
mode can be stabilized.

Fig. 6 and Fig. 7 show root locus plots for feedback using the Total Flux
feedback scheme. The behavior of the roots of the dispersion relation are
shown for two assumed locations of the flux sensors. As before, ro/ry = 1.20,
r3/ry = 1.30, f = 0.6, and $° = 1.0. For a sensor location of ro/r;y = 1.22
(Fig. 6), the unstable root is stabilized if the gain is sufficiently large. When
the time constant ratio is 75/7 = 5.0, significant mode oscillation is induced
(c.f., Explicit Displacement feedback, Fig. 3b). If the time constant ratio is
lowered, the critical damping rate at which oscillation first occurs is increased,
and the maximum oscillation frequency is lowered. If the flux sensor is placed
at a greater radius, say ro/r1 = 1.26 (Fig. 7), the initially unstable RWM
root remains unstable for all values of the gain. The unstable growth rate
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does not approach zero as GG; — —oo although for this value of the sensor
location, the magnitude of the unstable growth rate becomes a fraction of the
inverse wall time. In this limit for the gain the stable growth rate approaches
negative infinity along the real axis.

6.0.4. Fake Rotating Shell Feedback

In common with Total Flux feedback, for this feedback scheme it is as-
sumed that the voltage acts in response to flux measurements made at radius
r = rg. The sensor location is shifted poloidally with respect to the feedback
actuator providing a phase shift between the measured flux and the feedback
voltage[16, 17]. The voltage appearing in Eq. 25 is written as

Vars = imG ¢(Myolh + Mooz + M3 l3). (38)

The essential difference between the Fake Rotating Shell feedback scheme
and the T.F. scheme of the previous section is the /—1 multiplying the gain
coefficient.

If 73 < 75 the solution corresponding to the dominant root is (see Ap-

pendix B)

. ~ MBIMIO
1— Zme (Mgo — W)
AT N N VT Vo)
. 30 ~ ~ 31 12 ~ ~ ~ 10
F—7_2 — szf{F—TQ + My (M32 - W) + (M:n - M32M21) W}

(39)

where 'y 1s the growth rate of the RWM in the absence of the active feedback
circuit (see Eq. 26). Since this (complex) growth rate is of the form
1 —1aGy

— —1bG
FT2 ! f

(40)

V72 =

1
stability requires R.(y7) < 0 = T + abef < 0. Since I'ry > 0, a necessary
T2

condition for stability is abG'% < 0, which implies

(Mgo — ztffl()) . { 2+ My (M32 — %) + (M31 — M32M21) [Aje—}?e} <0,
1 1




(41)

independent of the sign of the gain 4. For fixed locations of the passive and
active circuits, this equation provides a necessary condition on the location
of the observation points used in the feedback system. A sufficient condition
for stability, assuming 73 < 7, is

- My M Msg - [~ Mg M . -\ M
(Mso - ?leffm) : { % 1 My (M32 - %) + <M31 - M32M21) Tj‘?‘}
Ly Ly Ly

1

< - 42
mQFTQG?e (42)

An interesting feature of this scheme is the insensitivity of the feedback to
the sign of the gain. As seen in Eq. 42 the gain appears as G3. This is a
contrast to the other schemes where the gain appears linearly.

Shielding by the passive shell is identical to the shielding that occurs
in Total Flux feedback; For effective F.R.S. feedback the flux at the obser-
vation point produced through the interaction with the plasma response,
(Mgllg/Liff)Mlo, must be stronger than the direct flux, Msq/s.

Fig. 8 and Fig. 9 show root locus plots for feedback using the Fake Ro-
tating Shell feedback scheme. The behavior of the roots of the dispersion
relation is shown for plasma parameters f = 0.6, 3° = 1.0, and for passive
shell and active coil locations of ry/r; = 1.20 and r3/r; = 1.30, respectively.
The figures show results for 73/m = 0.5 and 0.1. For the F.R.S. feedback
scheme to stabilize the kink mode the time constant ratio, 73/7 must be
small (no stabilization is found for 75/ = 0.5), and the flux observation
point must be sufficiently close to the plasma. Stabilization is seen in Fig. 8c
and (d) for 73/m = 0.1 and ro/ry = 1.22. If ro/r1 = 1.26, however, no sta-
bilization is achieved (see Fig. 9). The F.R.S. feedback characteristics are
prone to oscillation since one of the roots satisfies Im(y7) — oo as Gy — oc.

7. The Issue of Sensor Loop Location

The Total Flux and Fake Rotating Shell feedback schemes rely on flux
measurements at radius, rg. Root locus plots for these schemes show that
the choice of rq, for a given f and 73/7;, can determine whether or not a
given kink mode can be stabilized. In this section, we determine the stable
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and unstable regions for placement of the sensor loop as a function of the
plasma drive parameter f = m —ngq,, for different assumed values of the time
constant ratio 73/m. We assume 3° = 1.0,7y/r; = 1.20, and r3/r; = 1.30.
Stability requires Re(y) < 0 for finite Im(~) at finite gain.

A stability diagram for the F.R.S. scheme is shown in Fig. 10a. The
shaded region in the figure is the stable region for placement of the sensor
loops assuming 73/7, = 1.0. If 73/7; is decreased, e.g., to 0.1, the range of
values of f that can be stabilized increases, as does the size of the window at
fixed f. The upper boundary of the stable region, representing the maximum
ro for a given f is determined by the condition M30 - M31M10/L eff — =0, and
is achieved only at infinite gain. This boundary is independent of the value
of m3/7. The lower boundary, representing the minimum rq for stability is
independent of f and depends on the value of 73/7. Stable and unstable
regions for the Total Flux feedback scheme are shown in Fig. 10b. The
shaded area is thg staAble region for 7‘3/7'% = }.0. For any value of 73/7,, and
> f =100 = MuMp)+ m3/7((1 — M3y My3)]/(1 + 73/72), the minimum
sensor radius for which stability can be achieved is rqg = r1, the plasma radius.
For more unstable plasmas, with f < f., the minimum rq is the shell radius,
ro = ra. A comparison between Fig. 10a and (b) clearly shows that the T.F.
scheme is more forgiving with respect to the placement of sensor loops than

is the F.R.S. scheme.

8. Time Response of the Feedback Schemes

The stable/unstable boundaries shown in Fig. 10 correspond to infinite
gain solutions of the dispersion relation. In the practical implementation of
a feedback scheme we are limited to finite gain scenarios. In this section we
display time histories of the perturbed plasma current, I1(), for the various
feedback schemes. Finite values for the gain coefficient G are used, and
the abilities of the feedback schemes to suppress the mode amplitude are
compared.

Fig. 11 shows a plot of the time dependence of the perturbed plasma cur-
rent using the Shell Current feedback scheme. Plasma parameters are f = 0.6
and By = 1.0. The resistive shell and feedback coil radii are r;/r; = 1.2 and
r3/r1 = 1.3, respectively, and the ratio of time constants of the active and
passive systems is 73/7 = 1.0. The different curves are labelled by the value
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of the gain coefficient, GG;. Each curve is obtained from the response of the
circuit equations, Eq. (59), to initial conditions with zero current in the feed-
back circuit, I3(0) = 0, but finite current in the resistive shell. The curve
labelled G5 = 0 shows exponential growth of the resistive wall mode without
feedback. For GG; = 10 the kink mode amplitude initially decreases, over-
shoots | I; |= 0, then increases without bound. (The absolute value of I1(t)
is plotted, hence the appearance of the cusp as the amplitude goes through
zero). For larger values of the gain, G5, the amplitude rapidly decreases,
overshoots the zero, then dwells near the initial value for a time interval
that increases as the gain is increased. With an infinite gain, the amplitude
can be maintained near the initial value for an infinite time, independent
of the plasma and circuit parameters. The guaranteed improvement in the
suppression of the mode growth with increasing G5 is a consequence of the
asymptotic approach of the unstable root locus to Re(y) = 0 seen in Fig. 5.

The following estimate shows that gain factor values of G, ~ 10° — 10*
are possible for a realistic feedback scheme. Rearranging Eq. (33) for the
voltage supplied to the feedback circuit gives

Gy=—22— (43)

where the inductance L, has been eliminated in favor of 75 R;. Now interpret
I, in this expression as a minimum detected current for which the feedback
system is to respond with the maximum supplied voltage, V5. For a conser-
vative estimate, assume I = 100A and V5 = 500V. Assume 73/7 = 1.0. For
the resistance of the passive shell, R, use Eq. (14) with a poloidal mode-
number of m = 2, aspect ratio Ry/r; = 3.0, passive shell radius ry/r; = 1.2,
and a lem thick stainless steel passive shell (n = 11 x 1078Q — m). The
estimate is G, = 5 x 10%.

Fig. 12 shows a similar plot using the Total Flux feedback scheme. The
same plasma and circuit parameters are used for the T.F. simulation as
were used for the S.C. simulation. The flux sensor was assumed to be at
location ro/r; = 1.24, which is in the stable region of the stability diagram,
Fig. 10. We see that for a gain of G; = —10 the plasma mode amplitude
initially decreases, but overshoots zero and increases without limit. For G; =
—100, although there is an initial overshoot, the mode amplitude is eventually
driven toward zero. Fig. 13 shows the behavior of Total Flux feedback when
the sensor location is moved slightly beyond the edge of the stable region, to

20



ro/r1 = 1.26. The behavior of the mode amplitude is qualitatively similar to
that in the Shell Current scheme, except that the mode amplitude cannot be
maintained near its initial value for arbitrary times. No matter how large the
gain is, the resistive wall mode will eventually grow. This is a consequence
of the asymptotic approach of the unstable root locus to a finite Re(y) > 0
as Gy — —oo, as seen in Fig. 7.

9. Flux Compensation Coefficient

Here, we introduce a useful parameter for determining the expected range
of plasma profiles that can be stabilized by the Shell Current and Total Flux
feedback schemes. This parameter, named the flux compensation coefficient,
C'y, 1s the ratio of the flux produced at the passive shell by the active coil
to the sum of the fluxes due to the passive shell and the perturbed plasma
current:

M3y
C 3213

= 44
v Mo Ih + Ly, (44)

If Cy = —1 the field due to the active coil instantaneously compensates 100 %
of the flux loss in the shell. The shell therefore acts as a perfect conductor and
is guaranteed to stabilize the kink mode. Realistic feedback systems cannot
achieve C'y, = —1. For a feedback system operating with some given gain, CY,
is a measure of the efficiency of the feedback scheme. An efficient feedback
system will reduce the growth rate of the instability with a minimum amount
of flux compensation.

An equation can be derived for the circuit equation growth rate in terms
of the flux compensation coefficient. First we rearrange the resistive wall
circuit equation, Eq. (23), in the form

Iy/1
Ty = 2/1s = . (45)
L1y, Mahs
[3 FTQ 23 j;iff

The flux compensation coefficient, C'y, can also be written in terms of the
current ratio I3/l by eliminating /; from Eq. (44) using the plasma circuit
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equation, Eq. (23):

_ — My
Iy 1 My M
[3 FTQ j;(iff

Cy (46)

The circuit equation growth rate y7,, expressed in terms of C, is therefore

72 — 1 Cw _ M21M13/M23
I'ry 14+ Cy Ly '

(47)

We see that for fixed resistive shell and active feedback coil locations, y7; is
a function of € and [Affff(f, 39, but is independent of 73/7; and rq. For a
given plasma drive, the dependence of y7; on (Y, is independent of the details
of the feedback scheme; it is the same for the Shell Current, Total Flux, and
Fake Rotating Shell schemes.

In general, the flux compensation coefficient is a complex number. For
the Shell Current feedback scheme, € is real for all values of the gain Gi.
For the Total Flux scheme, 'y, is real for all values of GGy unless the two roots
of the dispersion relation coalesce. Whether or not there is a coalescence
depends on the location of the flux sensor and on the value of 75/ (see
Fig. 6). If a coalescence occurs at Gy = —G<™, C is real for GS'* < G < 0.
For the Fake Rotating Shell scheme, Cy, is real only for Gy = 0 and |G| = oo.

A plot of v, versus (' is shown in Fig. 14a for three values of the plasma
drive parameter, f, assuming 3° = 1.0. The plot assumes that both 7, and
('y are real and therefore applies only to the Shell Current and Total Flux
feedback schemes. We now ask what is the minimum growth rate that can
be achieved by these feedback schemes? Since 7, is monotonic in Cy, the
answer is found by seeking the maximum value for the flux compensation
coefficient for each of the feedback systems. To find this maximum we con-
sider the infinite gain limit of the feedback circuit equation, Eq. (25). If
the gain is infinite and the feedback system is to be effective the circuit
currents and the growth rate must remain finite. Therefore the coefficient
of GG in the expression for V373 must vanish. For Shell Current feedback,
where V313 = G Lo, infinite gain implies that I, vanishes. Substituting
I/I3 = 0 in Eq. (46), and the resulting expression for C7'*" into Eq. (47),
yields ym = 0 for the minimum growth rate achievable using Shell Cur-
rent feedback for any plasma drive. This, of course, agrees with the root
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locus plot discussion in Sec. 6.0.2. For the Total Flux feedback scheme, the
condition on V373 at infinite gain implies that Myol; + Magly + Msels = 0.
Eliminating /; in terms of [; and I3 using the plasma circuit equation leads
to I/ls = —(Msg — May Mo/ L)/ ((Myy — Myy Myo/Li?7).  Substitution
into Eq. (46) leads to an expression for C7'*®. Since I;/I3 depends on the
mutual inductances Mjo, C'* depends on the location of the flux sensor.
Using the cylindrical limit expressions for the M;q, a plot of sensor radius,
ro/ry versus C7'°% is obtained (Fig. 14b). Three dashed lines are drawn cor-
responding to sensor locations that can completely stabilize plasmas with
f=0.600, f =0.565, and f = 0.530. If the sensor is placed at ro/ry = 1.23,
Fig. 14 shows that infinite gain implies a flux compensation coefficient of
Cy = —0.90. The figure also shows that plasmas with f > 0.565 can be sta-
bilized by the Total Flux scheme using infinite gain. However, if f = 0.530
the feedback system is ineffective at reducing the growth rate with this sensor
loop no matter how large a gain is used.

Although, with infinite gain, the Shell Current method can reduce the
RWM growth rate to zero for any plasma profile, we must accept that system
noise and discreteness of the feedback coil design will limit the reduction in
flux at the resistive wall. Prototype feedback circuits have been designed and
tested for reducing the fluctuating magnetic field normal to a square coil[31]
and have shown reductions in the field of 90%, corresponding to a Cy = —0.9.
Such a reduction is probably a realistic goal for a tokamak experiment with
a discrete coil set. This upper limit on Cy; sets a limit on the range of profiles
a feedback system can expect to stabilize.

10. Summary and Conclusions

In this paper we have introduced a circuit equation formulation for the
feedback stabilization of resistive wall modes in tokamaks. The formalism is
analogous to the circuit equation approaches commonly used for the design
and analysis of n = 0 control systems. Several feedback schemes have been
discussed. The various schemes differ in the choice of sensor signal. Although
the results presented in this paper are limited to proportional feedback con-
trol, the addition of differential and integral feedback terms is a trivial mod-
ification. In practical feedback system design, these additional terms should
be regarded as corrections to proportional control.
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The Shell Current scheme assumes that the voltage supplied to the feed-
back circuit is proportional to the measured eddy current flowing in the
passive conducting shell. Although complete stabilization of an n > 1 kink
mode is not possible with this scheme, the unstable growth rate can be made
extremely small if the gain is large, effectively suppressing the RWM for
times that are orders of magnitude longer than the time constant of the pas-
sive shell. For the Shell Current scheme the roots of the RWM dispersion
relation are purely real. This is an advantage over other schemes discussed
here; oscillatory characteristics of a feedback system can be problematic if the
plasma MHD mode frequency coincides with the feedback system oscillation
frequency.

The Total Flux and Fake Rotating Shell feedback schemes rely on local
measurements of the total perturbed flux. They have the potential advantage
over the Shell Current scheme of being able to completely stabilize the kink
mode. Both of these schemes show oscillatory feedback characteristics. The
“correct” placement of the flux sensors is also an issue for these schemes.
This is especially true for the Fake Rotating Shell scheme which does not
allow placement of the sensors near the passive shell unless the ratio of time
constants for the passive shell and active coil systems, 73/7; is small.

The present analysis is valid in the cylindrical limit of infinite aspect ratio
where a single m/n helicity is present. For generalization to toroidal config-
urations, a critical factor is whether a single helicity remains dominant. For
the n = 0 instability there is a dominant quasi-uniform radial magnetic field
pattern at the plasma surface and at the passive shell. This quasi-uniform
Bpr pattern can be easily produced by a simple active coil arrangement. For
n > 1, the normal magnetic field pattern due to the plasma perturbation
can have a rich poloidal spectrum at the plasma surface. However this spec-
trum looks remarkably simple when evaluated at the surface of a perfectly
conducting shell[30] near conditions of marginal stability. A feedback coil
system that seeks to make the total normal magnetic field at the passive
shell vanish and make the passive shell appear to be perfectly conducting
need only produce the negative of this simple field pattern. Details of RWM
stabilization in fully toroidal geometry remain to be investigated.

The present circuit equation approach to resistive wall mode feedback
control suggests the possibility of building a 3-dimensional hardware simula-
tor to test feedback control strategies in realistic geometry. This would be an
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important extension of the hardware simulator of Platt and Robertson[31]
who used an idealized geometry. The present formulation shows the possibil-
ity of including a plasma circuit whose inductance can be varied to simulate a
variety of plasma profiles. Such a simulator would be a cost effective method
for exploring the efficacy of kink mode control on advanced tokomaks.
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11. Appendix A: Derivation of Circuit Self and Mutual
Inductances

From the requirement of continuity of the total perturbed pressure across
the perturbed plasma-boundary interface, we easily derive

(a/Bg(a))By*(a) = ifés(a), (48)

where By*“(a) is the perturbed vacuum poloidal field evaluated at the unper-
turbed plasma edge. The poloidal field is imagined to be generated by helical
current filaments wrapped on a toroidal surface with major radius R = Ry
and minor radius r = a. The current in each filament is

2ma

[1 = WB;/QC(G,_F). (49)
Using the radial projection of Faraday’s law,
(a/BY(a))B, = iF¢,, (50)

continuity of B, across the plasma-vacuum interface, and Eq. 4 to replace
B, in terms of the poloidal flux, 1, leads to

I, = ¥/ Ro. (51)
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The self inductance of a circuit is defined through the relationship of the
poloidal flux due to the current in the circuit, and the current carried by the
circuit, where the flux is evaluated at the location of the circuit. Thus, for

circuit “i”,

b(r=r;) =L (52)
From Eq. 51, we therefore identify
L1 = Ro. (53)
Since the poloidal flux in the vacuum region due to the isolated plasma circuit
isp ~r7 " Y(ay) = —(m/a)p(as). Therefore
L = —(m/a)L, (54)

(1992 W
1 J

is defined in
» .

Similarly, the mutual inductance between circuits and

terms of the flux at the location of circuit due to a current in circuit “i

-
¥(3) = My; L. (55)
In the cylindrical limit,
(1) o< (rifri)™ ri <T1j,
< (rfr)™ s (56)

Also, as r; — r;, M;; — L;. Thus,

M;; = Ro(ri/r;)™ ri <1,
= Ro(?”j/?”i)m r; > T;. (57)

12. Appendix B: Details of the Derivation of the Cir-
cuit Dispersion Relation.

The circuit equations decribing the interaction of a feedback circuit with
a resistive wall mode are Eq.s 23 - 25. The feedback voltage V can in general
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be written as the product of a gain factor, G, and an observed flux to feedback
on:

Vi3 = Gip(at obs. location),
= G(Mioly + My ly + Msol3). (58)

For the Explicit Displacement feedback scheme we keep only the term which
multiplies /1, and set G; = G.L11; (see section Sec. 6.0.1). For the Shell
Current scheme we keep only the term with /5, and set Gy = G La1y (see
section Sec. 6.0.2). For the Fake Rotating Shell scheme we keep all terms
and set G; = Gy = G5 = imG (see section Sec. 6.0.4).

Using Eq. 23, we eliminate [; from equations Eq. 24 and Eq. 25, and
obtain dynamical circuit equations for the passive shell and active feedback
circuits in the form

. o1 .
M—+RI=V 59
T : (59)
where . .
v Ly Mss Ry O
M - ~ ~ R =
A
= |0 | L
V—[VS], and I—[[S]. (61)
Here,
‘737'3 = G(M20[2 + M30[3), (62)
L; = Mj, (63)
and Mij are “dressed inductances” defined by
~ My My
M” — MZ] - LTf]. (64)
1
The Laplace transform of Eq.s 59 is
N(v)
I(y) = 1(0), (65)
D)



where the transfer matrix elements, NV,

1 - -\ M . Moy My5\ -
Niy = (77'3){F ™ + (MSI — M32M21) L }i + (M32 %) Mz3}
1 ~ M31M10
— 1 -G M3y — ———
+ FTQ{ ( 30 Liff )}’
Nip = —(Mza - %){1 - G(Mgo - %)},
L] L
M21M13 G [ ~ Mgle
- )2 (St

1 M - My M .
Nyg = (773) { F— (MSI M32M21) Le}i + (M32 %) MZS}
1

M M My M-
( 31 13) G(M20 — MQlMlO) (M32 — %)

are

and the denominator is
1 ~ M M A A A A
D(f)/) :(77—2)(77—3) [F T + (MBQ - %) M32 + (Mgl — M32M21) W‘|

1 M. ~ My My - . e o\ M
+(772)[ G{ﬂ ‘I’ (MBQ - %) M20 ‘|‘ (Mgl - MSQMQI) ze—jl‘?'}]

FTQ FTQ 1
M31M13
_(77'3) [1 [Afiff ]
Moy M
_[1_G<MSO— zleffm)] (67)
1

The characteristic equation defining the growth rates of the linear feedback
equations is D(vy) = 0. This quadratic equation has the form

v*(arsmy) + (b7 + ¢m2) +d = 0. (68)
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The condition for complex roots is
(brs/T2 + ¢)* — dadrs /T < 0. (69)

For Shell Current feedback we note that d < 0 . This is the only feedback
scheme that guarantees purely real growth rates, independent of the value of
the gain or time constants of the passive and active feedback systems.

Assuming that the L/R time for the active circuit is much slower than
that of the passive circuit (i.e., 73 < 73) the two roots of Eq. 68 are yr, &
—d/c and vy & —c7y/ars. The first of these is the most unstable root and
is given by

1_G{MBO_M}

j’/eff
ST T o
30 - - 3112 - A 10
F—T2 — G{F—TQ + My (M32 — W) + (MSI — M32M21) W}

(70)

By substituting the appropriate expression for the gain, G, the Shell Current,
Fake Rotating Shell, and Explicit Displacement dispersion relations (Eq’s 34,
39 and 31 ) are obtained.

It is interesting to note that the expression, Eq. 70 for the case of Shell
Current feedback is identical to that obtained if V33 = G, Ly15 is replaced
by the current feedback law I35 = GI,. The algebra for this case is trivial,
since the solution of Eq.s 23 and 24 with this restriction on /3 is linear in the
growth rate.
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Figures

Fig. 1. A plasma extends from r = 0 to r = r;. A (magnetically) thin
passive conducting shell, of thickness ¢, is located at r = ry. An active
feedback coil is at radius r3. The perturbed plasma current is represented
as a current in an electrical circuit, labelled “1”7 at radius r;. The eddy
current on the passive shell is a current in circuit “2” at radius ry, and
the active feedback current is a current in circuit “3” at radius rs. L;

w»
1

is the self inductance of circuit “i”, and the M;; are mutual inductances

w»
1

and

between circuits “7

, which relate the current in circuit 3”7 to the
flux at r;. Helical flux contributions from the individual circuit currents
are shown.

Fig. 2. For a Wesson current profile (Eq. 1) with axis safety factor go = 0.8,
unstable to an m = 2,n = 1 external kink instability, profile parameter 3°
(Eq. 5), growth rate v,,74 (Eq. 17), and plasma effective self inductance
Lt (Eq. 21) are plotted as a function of 1 — f, where f = m — ngq,.

Fig. 3. Root locus plots for the Explicit Displacement feedback scheme, Sec. 6.0.1.

Loci of roots of the dispersion relation (eq. 68) are traced as the gain,
G. < 0, is varied. For each of two values of the ratio of time con-
stants for the active and passive feedback system, 73/75, two values of
the shielding factor, A = (Mgl — MggMgl)/Mgl are assumed: (a) 73/7y =
5.0,A = 0.0, (b) 73/m2 = 5.0,A =0.2, (¢) 73/72 = 0.5,A = 0.0, and (d)
73/m2 = 0.5, A = 0.2. The resistive wall and active feedback circuits are
located at ro/rqy = 1.20,7r3/r1 = 1.30, respectively. Plasma parameters
are [ = 0.6,3° = 1.0. Arrows denote the direction of motion of the roots
as the magnitude of the gain is increased.

Fig. 4. Maximum value of the mode damping rate, Re(y72), in the Explicit
Displacement scheme for which the oscillation frequency, Im(y7s), re-
mains zero. Large values of | Re(y7;) | are desirable. This favors small

7'3/7'2.

Fig. 5. Root locus plots for the Shell Current feedback scheme, Sec. 6.0.2.
Plasma parameters and feedback circuits are the same as in Fig. 3. The
gain, G is chosen positive for this scheme. As (G is increased, the unsta-
ble root approaches the origin, the stable root approaches negative. Both
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roots are real for all values of 73/7 and A.

Fig. 6. Root locus plots for the Total Flux feedback scheme. Plasma param-
eters are [ = 0.6,3° = 1.0; passive shell and active coil locations with
respect to the plasma surface are ro/ry = 1.20 and r3/r; = 1.30, respec-
tively. The flux sensor location is ro/r; = 1.22. With sufficient gain,
the unstable RWM root is damped. However a signifoscillation frequency
may be obtained, especially for large 73/7;.

Fig. 7. Root locus plots for the Total Flux feedback scheme with a flux sensor
location of ro/ry = 1.26. These should be contrasted with the plots shown
in Fig. 6, where the flux sensor was at a smaller radius.

Fig. 8. Root locus plots for the Fake Rotating Shell feedback scheme with
ro/r1 = 1.22. Mode damping is achieved only if 73/7 is small. A large
oscillation frequency is always obtained. Note that Im(y7m) — oo as
Gf — 00

Fig. 9. Root locus plots for the Fake Rotating Shell feedback scheme with
ro/r1 = 1.26. This placement of the flux sensor is too distant from the
plasma to stabilize the kink mode.

Fig. 10. Stable and unstable regions for placement of sensor loops for (a)
the Fake Rotating Shell, and (b) the Total Flux feedback systems. For
any value of f, there is a stable window for placement of rq whose width
depends on the assumed value of 73/7,. The shaded region in each of the
figures corresponds to 73/m = 1.0.

Fig. 11. Time dependence of the plasma circuit current, /;(¢), using the Shell
Current feedback scheme. FEach curve is labelled by the value of the
gain, ;. Plasma parameters are f = 0.6,3° = 1.0. The radii of the
resistive shell and active feedback coils are ry/r; = 1.2, and r3/r; = 1.3,
respectively. The ratio of time constants for the shell and active coil
circuits is 73/m = 1.0.

Fig. 12. Time dependence of the plasma circuit current, /;(¢), using the Total
Flux feedback scheme using a flux sensor location of ro = 1.24, which is
in the stable region of Fig. 10. Plasma and circuit parameters are the
same as in Fig. 11.
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Fig. 13. Time dependence of the plasma circuit current, ;(¢), using the Total
Flux feedback scheme using a flux sensor location of ro = 1.26. This is
in the unstable region of Fig. 10. Plasma and circuit parameters are the
same as in Fig. 11.

Fig. 14. (a) Feedback system growth rate, ym, as a function of the flux
compensation coefficient, C'y. Three curves arew shown, labelled by the
value of the plasma drive f = m —ngq,. The curves do not depend on the
details of the feedback system, i.e., on 73/73, or ro/r1.

(b) The dependence of the maximum achievable Cy (infinite gain limit)
on flux sensor radius, ro/r;.
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circuit "1" circuit "2" circuit "3"
(L) (Lo) (Lg)

" ~

I’l r2 I’3

plasma passive shell active coil

Figure 1: A plasma extends from r = 0 to r = r1. A (magnetically) thin
passive conducting shell, of thickness §, is located at r = ry;. An active
feedback coil is at radius r3. The perturbed plasma current is represented
as a current in an electrical circuit, labelled “1”7 at radius ry. The eddy
current on the passive shell is a current in circuit “2”7 at radius r,, and the
active feedback current is a current in circuit “3” at radius r3. L; is the

self inductance of circuit “i”
“i”

, and the M;; are mutual inductances between

and “j”, which relate the current in circuit “j” to the flux at r;.

Helical flux contributions from the individual circuit currents are shown.

circuits
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Figure 2: For a Wesson current profile (Eq. 1) with axis safety factor go = 0.8,
unstable to an m = 2,n = 1 external kink instability, profile parameter 3°
(Eq. 5), growth rate y.,74 (Eq. 17), and plasma effective self inductance j)iff
(Eq. 21) are plotted as a function of 1 — f, where f = m — nq,.
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Figure 3: Root locus plots for the Explicit Displacement feedback scheme,
Sec. 6.0.1. Loci of roots of the dispersion relation (Eq. 68) are traced as the
gain, G, < 0, is varied. The resistive wall and active feedback circuits are
located at ry/r; = 1.20,r3/r; = 1.30, respectively. Plasma parameters are
f=10.6,8° =1.0. Arrows denote the direction of motion of the roots as the
magnitude of the gain is increased. Various values of 75/7, (the ratio of time
constants of the active and passive circuits) and of the shielding factor A
(—eqrefdelta-def) are assumed.
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Figure 4: Maximum value of the mode damping rate, Re(y72), in the Explicit
Displacement scheme for which the oscillation frequency, Im(vy7;), remains
zero. Large values of | Re(y7,) | are desirable. This favors small 73/7;.
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Figure 5: Root locus plots for the Shell Current feedback scheme, Sec. 6.0.2.
Plasma parameters and feedback circuits are the same as in Fig. 3. The gain,
(s is chosen positive for this scheme. As (s is increased, the unstable root
approaches the origin, the stable root approaches negative. Both roots are
real for all values of 73/m and A.
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Figure 6: Root locus plots for the Total Flux feedback scheme. Plasma
parameters are f = 0.6, 3° = 1.0; passive shell and active coil locations with
respect to the plasma surface are ry/r; = 1.20 and r3/r; = 1.30, respectively.
The flux sensor location is rq/r; = 1.22. With sufficient gain, the unstable
RWM root is damped. However a significant oscillation frequency may be
obtained, especially for large 73/7;.
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Figure 7: Root locus plots for the Total Flux feedback scheme with a flux
sensor location of ro/ry = 1.26. These should be contrasted with the plots
shown in Fig. 6, where the flux sensor was at a smaller radius.
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Figure 8: Root locus plots for the Fake Rotating Shell feedback scheme
with rg/r; = 1.22. Mode damping is achieved only if 73/7 is small. A large
oscillation frequency is always obtained. Note that Im(y7;) — oo as G§ — oo
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Figure 9: Root locus plots for the Fake Rotating Shell feedback scheme with
ro/r1 = 1.26. This placement of the flux sensor is too distant from the plasma
to stabilize the kink mode.
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Figure 10: Stable and unstable regions for placement of sensor loops for (a)
the Fake Rotating Shell, and (b) the Total Flux feedback systems. For any
value of f, there is a stable window for placement of rq whose width depends
on the assumed value of 73/75. The shaded regions correspond to 73/ = 1.0.
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Figure 11: Time dependence of the plasma circuit current, /1(¢), using the
Shell Current feedback scheme. Each curve is labelled by the value of the
gain, (¢;. Plasma parameters are f = 0.6, 3% = 1.0. The radii of the resistive
shell and active feedback coils are ro/r; = 1.2, and r3/r; = 1.3, respectively.
The ratio of time constants for the shell and active coil circuits is 73/7 = 1.0.
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Figure 12: Time dependence of the plasma circuit current, [1(t), using the
Total Flux feedback scheme and a flux sensor location of rg = 1.24 (in the
stable region of Fig. 10). Each curve is labelled by the value of the gain, G.
Plasma and circuit parameters are the same as in Fig. 11.
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Figure 13: Time dependence of the plasma circuit current, [1(¢), using the
Total Flux feedback scheme and a flux sensor location of rg = 1.26 (in the

unstable region of Fig. 10). Plasma and circuit parameters are the same as
in Fig. 11.
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Figure 14: (a) Feedback system growth rate, y72, as a function of the flux
compensation coefficient, Cy. Three curves are shown, labelled by the value
of the plasma drive f = m — ng,. The curves do not depend on the details
of the feedback system, i.e., on 73/7, or ro/ry.

(b) The dependence of the maximum achievable Cy (infinite gain limit) on
flux sensor radius, ro/ry.



