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Abstract

The interaction of counter-propagating laser pulses in a plasma is considered.

When the frequencies of the two lasers are close, nonlinear modi�cation of the

refraction index results in the mutual focusing of the two beams. A short (of

order the plasma period) laser pulse can also be nonlinearly focused by a

long counter-propagating beam which extends over the entire guiding length.

This phenomenon of electromagnetically-induced guiding can be utilized in

laser-driven plasma accelerators.

Submitted for publication, 1998.
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The past decade witnessed a dramatic increase in intensities of laboratory-scale laser

systems [1,2], stimulating signi�cant interest in the nonlinear optics of plasmas [3{5]. One

of the areas of active research is propagation of intense laser pulses over long distances in

plasmas because of its importance for a number of applications, including laser wake�eld

particle accelerators [6]. A laser will, in free space, remain focused over a di�raction length

(Rayleigh range) Zr = ��2=�0, where �0 is the laser wavelength, and � is the laser spot size

at the focus. Nonlinear e�ects, such as relativistic and ponderomotive self-focusing, which

can overcome di�raction, have been studied theoretically [7,8] and observed experimentally

[9]. Nonlinear self-focusing is ine�ective for short laser pulses [10] and requires a very high

laser power Pc1 = 17!20=!
2

p GW, where !2p = 4�n0e
2=m is the plasma frequency, n0 is the

background electron density, and �e and m are the electron density and mass, respectively.

In this Letter we demonstrate how a laser pulse can be guided through the plasma

without di�raction due to its nonlinear interaction with another, counter-propagating pulse.

Such electromagnetically induced guiding (EIG) occurs at laser intensities much below the

relativistic threshold Pc1. Nonlinear interaction of the guiding and guided beams generates

a plasma density grating which backscatters the guiding pulse. The interference of this

backscattered wave with the guided pulse results in the channeling of the latter. Two

distinct problems are analyzed in this Letter: (i) mutual guiding of two long counter-

propagating laser pulses and (ii) guiding of an ultra-short tightly focused laser pulse by

a counter-propagating, lower intensity Bessel beam. In both cases the length of the long

(guiding) beam is approximately twice the desired propagation distance.

The technique of employing a second laser pulse to change the propagation properties

of the �rst pulse is widely known in conventional (atomic) nonlinear optics. For example,

by utilizing the e�ect of electromagnetically induced transparency (EIT) [14], the medium

which is opaque to the laser pulse taken alone can become transparent in the presence of

the second pulse. As was recently demonstrated by Harris [4], a similar process can take

place in cold electron plasmas, where the two lasers have to be detuned by �! � !p. The

transverse pro�le of the nonlinear index of refraction can be changed by the second pulse
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to prevent, e. g., an intense pulse from self-�lamenting [15]. EIG of co-propagating lasers in

plasma was also considered by Gibbon and Bell [16]; the required laser power in that case

is, however, much larger than in the counter-propagating case, and guiding of pulses shorter

than a plasma wavelength is impossible.

Consider two circularly polarized counter-propagating laser pulses ~a0 and ~a1, where

~a0;1 = a0;1=2(~ex � i~ey)e
i�0;1 + c:c: are the normalized vector potentials: a0;1(~r?; z; t) =

eA0;1=mc2. The subscripts 0 and 1 distinguish the right-moving (guided) pulse and the

left-moving (guiding) pulses, respectively. The phases of the waves are �0 = (k0z�!0t) and

�1 = (k1z+!1t), and we choose j�!j = j!0�!1j � !0. It is further assumed that the pulses

are propagating through a tenuous plasma !p � !0;1, so that the phase and group velocities

of both pulses are close to the speed of light c, and, to lowest order in !p=!0, k0 � k1 � !0=c.

When both lasers are of nonrelativistic intensity, a0;1 � 1, the only nonlinear coupling

mechanism between them is through the ponderomotively generated density perturbation

�n=n0 = n̂ exp i(�0 + �1)+c: c: This perturbation is generated by the ~v1� ~B0+~v0� ~B1 force,

where ~v0;1 = c~a0;1. Serving as an index grating with the wavenumber k = k0+k1, oscillating

at the di�erence frequency �!, this density perturbation scatters the left-going pulse a1 into

the right-going pulse a0, and vice versa. This is precisely the mechanism responsible for the

stimulated Raman backscattering in the plasma, which received a lot of theoretical [17,18]

and experimental [19,20] attention. Below we demonstrate how this interaction between the

counter-propagating lasers leads to the nonlinear focusing of one (or both) pulses.

The nonlinear interaction between the a0 and a1 is calculated by substituting the modi�ed

plasma density into the paraxial wave equations for the right and left-moving pulses. For

example, for the guided pulse obtain 2ik0

 
@

@z
+
1

c

@

@t

!
a0 +r2

?

a0 = �k2p�0a0, where �0 is

the nonlinear index of refraction witnessed by the guided beam, given by

�0(� ) =
2!2

0
ja1j2
!p

Z
1

0

du sin (!pu)e
i�!ua0(� � u)

a0(� )
; (1)

where � = t� z=c is a co-moving with the guided pulse coordinate, and the guiding pulse is

assumed very long.
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The advantage of using counter-propagating pulses is made apparent by Eq. (1): the lon-

gitudinal gradient scale of laser intensity becomes very small (about �0=2), greatly reducing

the laser power required to produce a given density modulation. As Eq. (1) indicates, the

EIG of a given longitudinal laser slice � is determined by the laser intensity at all earlier

instances � 0 < � , so that the degree of focusing experienced by a short pulse is not uniform

along the pulse and determined by its longitudinal pro�le. One �nds that, if the pulse inten-

sity drops o� faster than exponentially in j� j, the ratio a0(� � u)=a0(� ) decreases with j� j.
For example, for a longitudinally Gaussian pro�le a0 = �0 exp (�� 2=2� 2L) the leading edge

� < ��L slowly erodes because �0(� ) / � 2L=�
2. However, for a0 = �0 sec (�=�L) (exponential

decay in j� j) the leading edge is uniformly focused: �0 = 2ja1j2!20� 2L=(1 +!2p�
2

L) for �! = 0.

Since the plasma does not respond on a time scale faster than 1=!p, the guiding is reduced

for ultra-short pulses.

For a guided pulse of duration �L � min(1=�!; 1=!p) the nonlinear index of refraction is

independent of � , ensuring uniform focusing of the entire guided pulse: �0 = 2ja1j2!20=(!2p �
�!2). Thus, the nonlinear index of refraction acquires a transverse variation proportional to

the transverse pro�le of the guiding laser. Two long transversely Gaussian beams focus each

other if �! < !p. Since this type of nonlinear guiding relies on a rather delicate mechanism

of generating an index grating with a very short wavelength, and then backscattering o� this

grating, we use direct Particle in Cell (PIC) simulation in a slab geometry to demonstrate the

existence of the mutual focusing e�ect. Then we develop a simpli�ed analytical description

of the nonlinear guiding of Gaussian pulses in the slab and cylindrical geometries, interpret

the simulation results, and address problem (ii).

To simulate the mutual focusing of two identical laser pulses we use a 2D version of the

relativistic electromagnetic PIC code VLPL (Virtual Laser Plasma Lab) [21] running on a

single processor workstation. The grid size was 4000 � 120 with 4 � 106 electrons on it.

The two counter-propagating laser pulses with wavelengths �1 = �0 = 1�m are focused to

the spotsizes �0 = �1 = 3�m at their corresponding entrances into a 400�m � 40� slab of

n0 = 1019cm�3 plasma. The normalized vector potentials of both lasers at their respective
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foci are equal to �0 = 0:07. The intensity gray scale plots for the right-moving pulse in

vacuo and in the plasma are shown in Figs. 1(b) and 1(c), respectively. The snapshots at

t = 500�0=c of the on-axis (x = 0) laser intensities for both cases are plotted versus the

propagation distance in Fig. 1(a).

As Fig. 1(a) demonstrates, in the presence of the plasma the intensity of the right-going

laser ja0j2(z = Lg) is increased by a factor 2. Thus, the nonlinear interaction between the

lasers strongly reduces laser spreading, con�rming the electromagnetically induced guiding.

The simulation was run till t = 800�0=c, with no degradation of the mutual focusing. The

driven density modulation remains coherent despite the modest plasma heating, which raises

the temperature to about 500 eV. Note that for the parameters of the simulation the growth

rate of the Raman backscattering (RBS) instability of the guiding beam RBS � !p, so

that the frequency of the guided beam is outside of the RBS ampli�cation bandwidth. RBS

can grow from plasma noise, causing the beam reection from the plasma. However, the

saturated reectivity is quite small for the underdense plasma assumed in the simulation

[18].

A simpli�ed analytical treatment of electromagnetically induced guiding can be devel-

oped by assuming that the guided laser pulse has a Gaussian transverse pro�le when it

enters the plasma, and that it remains such in the plasma. Flat and cylindrical beams

are considered separately because of the di�erent laser intensity normalizations. The case

of at beams is important because it provides the basis for comparison with the results

of the 2D PIC simulation. Guided beam is assumed to have an intensity pro�le given by

jaj2
0
= (1=R0)�

2

0
exp [�x2=2R2

0
�2] in slab geometry and jaj2

0
= (1=R2

0
)�2

0
exp [�r2=R2

0
�2] in

cylindrical geometry, where R0 is the dimensionless spotsize. Applying the source-dependent

expansion to the envelope equations for a0 similarly to the way it was done in Ref. [8], the

equation for the normalized radius of a guided beam is derived:

d2R0

d�z2
=

1

R3
0

+
2k2p�

2

p
2�R2

0

Z
+1

�1

dyye�y
2=2R2

0

@�0

@y
(2)

for at beams, and

5



d2R0

d�z2
=

4

R3
0

+
4k2p�

2

R3
0

Z
+1

0

d��2e��
2=R2

0

@�0

@�
(3)

for round beams, where y = x=� and � = r=� are the normalized transverse coordinates,

and d=d �z = 2k0�
2(@=@z + @=c@t).

To interpret the results of the PIC simulation, assume that the guiding pulse is also

Gaussian with radius R1, simplifying Eq. (2) to yield

d2R0

d�z2
=

1

R3
0

� 4k2p�
2�20!

2

0

!2p ��!2
R0

(R2
0 +R2

1)
3=2

; (4)

con�rming that the lasers focus each other if �! < !p. According to Eq. (4), the two lasers

can, in principle, form a mutually guided state R0 = R1 = 1 if �0 � 0:05. This state is,

however, unstable, so that it is never reached in a time-dependent situation, such as the one

modeled by the PIC simulation. At the beginning of the plasma region the guided pulse

interacts with the di�racted guiding pulse of much lower intensity. This explains why a

somewhat higher �0 = 0:07 was needed in the simulation to observe the EIG.

We now address the second problem: focusing of an ultra-short tightly focused laser pulse

by a counter-propagating lower intensity long laser pulse. One application of such ultra-short

pulses is laser-wake�eld acceleration. To increase the �nal energy of accelerated electrons,

two quantities have to be maximized: the amplitude of the plasma wave left behind the

pulse and the total acceleration length. Large plasma wake is excited by a laser pulse of a

duration shorter than the plasma period. Assuming that the guided pulse has a longitudinal

pro�le a0 = �0 sec (�=�L), it can be demonstrated that the optimal pulse duration for wake

excitation is �L = 1:2=!p. The guiding pulse should propagate without di�raction over the

entire region of the plasma since its propagation is una�ected by the short guided pulse.

It has been known for some time [28] that apertured Bessel beams with sharply peaked

radial pro�les propagate without di�raction over the distances much exceeding the Rayleigh

length. Such beams transport energy within a narrow spot �1 � W over the distance of

order Lg = 2�W�1=�1, where the laser intensity pro�le is given by ja1j2 = �21J
2

p (r=�1),

and the beam is apertured at the radius W � �1 [28]. The total power of a Bessel beam
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is given by PBp=P0 = �W�1j�1j2=�20, where P0 = mc3=re = 8:0 GW and re = e2=mc2

is the classical electron radius. Therefore, the propagation distance is proportional to the

beam power. Below we demonstrate how low-intensity Bessel beams can be used to guide

ultra-intense short Gaussian beams. Apart from the basic interest to nonlinear laser-plasma

science, an experimental implementation of this novel guiding scheme would enable, for

example, detailed studies of the stability of guided laser propagation in over-moded channels

[22]. Note that directly generating a plasma wake with a Bessel beam o�ers no advantages

over a Gaussian beam since the product of the peak on-axis intensity and the propagation

distance is, approximately, the same for the equal power Gaussian and Bessel beams [23].

Guiding can also be achieved by generating a plasma density depression on axis through the

hydrodynamic expansion of laser-produced plasmas [24] or in a capillary discharge [25].

The choice of p, the order of the Bessel beam, depends on the frequency detuning of

the lasers. The nonlinear index of refraction �0 changes sign when �! crosses !p. If

�! < !p; 1=�L, the zeroth-order Bessel beam generates the �0 with a maximum on axis (as

required for guiding). For example, for �! = 0 the leading edge of the pulse experiences

�0 = 2ja1j2!20� 2L=(1+!2p�
2

L). In the opposite regime of �! > !p; 1=�L the index of refraction

is negative: �0 = 2ja1j2!20=(!2p � �!2). Therefore, to ensure focusing, the appropriate

guiding pulse is the �rst-order Bessel beam, which has an intensity minimum on axis. First

we consider guiding by the zeroth-order Bessel beam.

Numerical modeling of guiding a short pulse by the Bessel beam requires a 3D PIC

simulation and imposes very strict limitations on the spatial and temporal resolution and

the size of the simulation domain. This makes direct PIC simulations very di�cult, and

we rely on our analytical results. The required for guiding power of the backward-moving

Bessel beam PB0 is estimated by substituting ja1j2 = �21J
2
0 (r=�1) into Eq. (3) and assuming

R0 = 1:

k20�
2j�1j2

2!2p�
2

L

1 + !2p�
2
L

"
t
d

dt

�
e�tI0(t)

�#
= �1; (5)

where t = �2=2�21 and I0(t) is a modi�ed Bessel function. The strongest focusing occurs for
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�1 � 0:8�. Since the guiding distance Lg is related to the beam power PB0, Eq. (5) can be

rewritten as a power threshold for the EIG:

PB0 = 1:27GW
1 + !2p�

2

L

!2p�
2
L

Lg

k0�2
: (6)

The EIG threshold PB0 di�ers from the relativistic guiding threshold Pc1 in two respects:

�rst, it is independent of the plasma density, enabling electromagnetically-induced channel-

ing in very tenuous plasmas, and, second, it depends on the propagation distance. The

qualitative reason for the �rst di�erence is that, although smaller plasma density reduces

the e�ectiveness of the nonlinear guiding for the same fractional density perturbation n̂, a

smaller laser intensity is needed to generate the same n̂, according to Eq. (1). The theory

of the EIG, developed in this paper, assumes a linear plasma response, which is only valid

when n̂ < 1. Combining this restriction with the guiding condition, given by Eq. (5), im-

poses an upper limit on the intensity of the guided pulse: �0 � �0�=�
2

p. More extensive

numerical study is needed to fully understand how the guiding is a�ected when the linear

theory breaks down, but it is reasonable to expect that the guiding saturates and weakens

at higher intensities of the guided pulse.

As evident from Eq. (3), the focusing strength is determined by the curvature of the �0

rather than by its absolute value. Therefore, a possible solution to the nonlinear saturation

of the EIG is to use a �rst-order Bessel beam, which has an intensity node on axis. The

density perturbation on axis vanishes while its curvature does not, providing the guiding

for the counter-propagating short pulse. Moreover, using the J1 beam detuned by �! >

!p; 1=�L enables guiding ultra-short pulses of almost arbitrary longitudinal shapes (including

Gaussian) without the leading edge erosion. The guiding condition similar to Eq. (5) can

be derived for the J1(r=�1) beam. The strongest focusing occurs for �1 = 1:04�, yielding

k2
0
�2�2

1
= 5[(�!=!p)

2 � 1], from which the power threshold condition can be derived:

PB1 = 3:6GW(�!2=!2p � 1)
Lg

k0�2
: (7)

The linear theory breaks down at r � � if �0 > 2:7�0�=�
2

p. In practice, this limitation is

likely to be over-stringent since the nonlinear saturation of the EIG in a limited spatial region
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may not strongly inuence the overall focusing. As a numerical example, consider guiding

a �L = 10 fs long, � = 18�m wide laser pulse through 1 cm of n0 = 1019cm�3 plasma. For

�!=!p = 1:5 the threshold power of the Bessel beam PB1 � 16 GW. This beam can guide

a pulse with a normalized vector potential up to at least �0 = 0:5, or 2:2TW. Although an

appreciable long-wavelength (� = �p) plasma wake is generated by the guided pulse, it will

not interfere with the short-wavelength density perturbation as long as the plasma behaves

linearly (�0 < 2:7�0�=�
2

p < 1), and the total density perturbation is a linear superposition

of the short- and long-wavelength wakes.

In conclusion, we demonstrated analytically and numerically the electromagnetically-

induced guiding of two counter-propagating lasers in the plasma at intensities much below

the threshold for relativistic guiding. In addition, we described the technique for electro-

magnetic channeling of an ultra-short laser pulse by a lower-intensity counter-propagating

Bessel beam.

The authors gratefully acknowledges helpful discussions with J. S. Wurtele. This work

was supported by the United States Department of Energy (US DoE) contract No. DE-

AC02-CHO-3073.
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FIG. 1. (a) On-axis intensity of a right-going laser focused at z = 0 in vacuum (dashed line)

and in the plasma (solid line). Contour plot of the intensity of the right-going laser in vacuum (b)

and in the plasma (c).
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