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We study the two-dimensional global scale magnetic �eld structure for a

system of two merging cylindrical plasmas in a steady state. In the limit of

very large magnetic Reynolds numbers the reconnection process is slow, and

the plasma almost everywhere �nds itself in magnetostatic equilibrium. We

show that under certain conditions the classical Syrovatskii-type Y-point con-

�guration, with surface current concentrated only in the reconnection layer, is

not possible. Instead, a cusp con�guration is formed, with �nite surface cur-

rent in the separatrix. The equilibrium condition, together with constraints

on the volume per ux, enables us to determine the shape of the separatrix

and the magnetic �eld in the vicinity of the cusp point. Our solution is char-

acterized by a singular power law dependence of current density on the ux

coordinate 	 near the separatrix: j(	) � j	j�1=2. This solution gives us the

boundary conditions that are needed to �nd the ow in the reconnection and

the separatrix regions.

PACS number(s): 52.30.Bt, 95.30.Qd
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I. INTRODUCTION

It is generally accepted that magnetic reconnection is important in laboratory and space

plasmas. In order to understand the mechanism of magnetic reconnection in the limit of

large magnetic Reynolds numbers, it is necessary to understand the dynamic behavior of

the plasma in thin layers. A closer examination of these layers reveals that the reconnection

layer often ends in a cusp-like structure. It is the purpose of this paper to investigate when

such a cusp structure appears and to determine the magnetic and the velocity �elds in the

cusp region. We restrict ourselves to the two dimensional (2D) quasi steady state resistive

magnetohydrodynamics (MHD).

While most of our conclusions are rather general, we keep in mind the geometry of

two merging cylindrical plasmas relevant to the Magnetic Reconnection eXperiment (MRX)

[1]. The general con�guration in the middle of the reconnection process is presented very

schematically in Fig. 1. Regions I and II are ideal-MHD regions: regions I, which we call

the upstream regions, represent unreconnected ux and region II (the downstream region)

represents reconnected or common ux. The two regions I are separated by the very narrow

reconnection layer, lying on the midplane y = 0. The poloidal magnetic �eld reverses

across this layer, resulting in very high current density. Because of this, one must take into

account resistive e�ects to describe plasma in this region. Regions I and II are separated

by the separatrix region. In general, the poloidal magnetic �eld can have a discontinuity

across the separatrix, so that the separatrix region also requires resistive description. Overall

symmetry with respect both to the midplane and to the vertical y-axis is assumed.

In many astrophysical situations, the magnetic Reynolds number (or, rather, Lundquist

number) Rm is very high [2]. In laboratory experiments this number, though still much

greater than one, is much lower than in space (for example,Rm � 103 in the MRX experiment

[1]). Therefore, in order to connect the physics of the experiments to that of the space

plasmas, we discuss the problem in the limit of very large Rm.

In this limit, the reconnection velocity and the thickness of the resistive current layer are

small compared with the Alfv�en speed and the length of the layer, respectively. Thus, we
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have two di�erent scales for both distances and velocities in our problem:

- the global (or macroscopic) scale is represented by the half-length L of the layer and by

the Alfv�en speed VA. These are determined by the global solution in regions I and II, where

ideal MHD is valid, and are, therefore, independent of the details of the narrow reconnection

layer. In particular, they remain �nite in the limit Rm !1.

- the local (or microscopic) scale is represented by the thickness � of the layer and by

the reconnection velocity Vrec. These are determined by the solution of the local resistive

MHD problem considering the reconnection layer with the boundary conditions given by

the global ideal MHD solution. These quantities vanish in the limit Rm ! 1, so we shall

sometimes call them in�nitesimal.

These two di�erent scales allow us to break up the whole problem into two separate

ones [3]: the global problem involving the two ideal regions I and II, and the local problem

concerning the very thin resistive reconnection region and the separatrix region.

If the boundary conditions for the global problem change slowly compared with Alfv�en

time, the global ideal MHD problem becomes that of the magnetostatic equilibrium, and the

whole reconnection process can be described by a one-parameter sequence of magnetostatic

equilibria [3]. The plasma velocity is much slower than the Alfv�en speed almost everywhere,

with the exception of the in�nitesimally thin reconnection layer, and the separatrix region1.

At any given moment, once the global magnetostatic equilibrium is found, one can set

up the appropriate boundary conditions for the local problem. These boundary conditions

1Indeed, Vperp is small because of the Ohm's law: VperpB = E � B0VA. As for the parallel

component of velocity, it is small because of the following argument. The maximum distance the

plasma has to move along a line of force is L. The time it takes for the �eld line to move a distance

�x� � away from the separatrix in the perpendicular direction is �t ' �x=Vrec ' (�x=�)(L=VA).

The parallel velocity during this time can be estimated as vjj ' L=�t ' VA�=�x. Thus, for �x� �

the parallel velocity is small compared to VA.
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are obtained from the global solution in the vicinity of the reconnection layer and of the

separatrix. The term \in the vicinity of the reconnection layer" here means at distances from

the layer much larger than its thickness �, but still much shorter than the global size of the

system, for example, the length 2L of the layer. Since the velocity on the global scale is zero,

the only boundary condition we need to specify for the local problem is the magnetic �eld as

a function of the distance along the reconnection layer and along the separatrix as seen on

this global scale (and therefore the current density integrated across these surfaces). Note

that both the reconnection layer and the separatrix are in�nitesimally thin ux surfaces on

the global scale. Therefore, what we are really interested in is the magnetic �eld structure

around the system of current sheets consisting of a singular reconnection current layer of

length 2L lying on the midplane, and the separatrix branching o� somewhere near the

endpoints of the reconnection layer. The global solution should also give us the shape of the

separatrix. Despite the fact that the global magnetostatic equilibrium is di�erent in di�erent

situations, we can draw some general conclusions about the magnetic �eld structure near

an endpoint of the reconnection layer. This region is very important for understanding the

transition between the ow inside the reconnection region and the ow in the separatrix.

The analysis of the neighborhood of an endpoint is the main goal of this paper.

To determine the asymptotic behavior near the endpoint, one has to know the global

distribution of currents in the system, including both the surface current density in the

reconnection layer and the other global currents. The role of these other global currents is

di�erent in the following two cases:

Case 1. There are no additional current sheets attached to the reconnection layer. All the

currents are either located at some global distance from the endpoints (like external coils),

or distributed over large 2D regions (like the current in the plasma cylinders themselves).

These currents do not change the nature of the solution near the endpoints, and thus we are

lead to the Syrovatskii-like solution.

Case 2. More realistic situation with current sheets along each separatrix. In this case

the behavior near the endpoints is changed dramatically, leading to the cusp solution, �rst
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suggested by Low and Wolfson [4], and then studied in more detail by Vekstein and Priest

[5{8] in the context of the evolution of coronal arcades in response to a slow photospheric

footpoint motions.

Current in the separatrix is generally caused by a slow (compared with the Alfv�en time)

discontinuous change in the the global magnetostatic equilibrium, which can be attributed

to various reasons. In the situation considered by Low, Wolfson, Vekstein, and Priest, such

change of equilibrium occurs even before reconnection starts, and is caused by the change in

the global boundary conditions, namely, by the sheared motion of the footpoints on the sun

surface [4{8]. In this paper we consider a di�erent case, when the global boundary conditions

are held static, and the current in the separatrix appears due to the natural gradual change

in the global equilibrium caused by the reconnection process itself.

In Section II we describe briey the Syrovatskii solution and show how it is a�ected

by other global currents. We also show in this section how in the incompressible case one

can determine the velocity �eld in the downstream region in the vicinity of an endpoint.

In Section III we describe the cusp solution. These two sections are logically independent

from each other. In section III-A we explain how the reconnective evolution of two merging

plasmas leads to the current in the separatrix, and why this current leads to a cusp-like

magnetic con�guration near the endpoint. In section III-B we formally set up the problem

for the magnetic �eld near the separatrix. In section III-C we repeat the elegant calculation

due to Vekstein and Priest [6,7] concerning the downstream region in the vicinity of the

cusp point. In section III-D we consider carefully the volume per ux in order to obtain

the constraints necessary to uniquely determine the solution in the downstream region. In

section III-E we consider the upstream region and show that the solution suggested by

Vekstein and Priest for this region in Ref. [7] is not suitable for our geometry of two merging

plasmas, and we �nd another solution which matches properly with the downstream solution.

In section III-F we return to the downstream region and give analytical expressions for the

magnetic �eld and for the plasma velocity near the endpoint. In section III-G we briey

discuss the incompressible case. Finally, in section III-H we discuss the relation between our
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work and that of Vekstein and Priest. We present our conclusions in section IV.

II. THE SYROVATSKII SOLUTION.

On the global scale, the reconnection current layer looks like a singular current sheet

of zero thickness and of width 2L. The current sheet is described in terms of the surface

current density �(x); jxj � L; as a function of the distance x along the midplane y = 0.

Syrovatskii [9] gave a one-parameter family of solutions for the magnetic �eld surrounding

a single current sheet in two dimensions. In terms of the surface current density �(x), these

solutions can be written as

�(x) = �0
1 � x2=a2q
1 � x2=L2

(1)

Unless a = L, the current density develops a singularity at the endpoints x = �L.
Such solutions do not seem to be physically possible [10], and we shall not discuss them

here. Instead, we concentrate on the special Syrovatskii solution with a = L, obtained by

requiring the current density to vanish at both endpoints:

�(x) = �0

s
1 � x2

L2
(2)

This solution (as well as the general solutions (1)) is obtained as a solution of Laplace's

equation on the plane with a single branch cut representing the current sheet. It is assumed

that the normal to the midplane component of the magnetic �eld produced by the other

global currents in the system (such as external coils or plasma currents) is a linear function

along the entire current sheet: By;ext(x) � x; jxj � L. This assumption can be justi�ed only

if the current sheet's length 2L is much shorter than the size of the whole system, i.e. than

the distances to these other global currents (which in this section we shall call the external

currents). In a more general situation, when L is of the same order as these distances to

the external currents, the normal magnetic �eld due to these external sources can be an

arbitrary function of x, so that the function �(x) is di�erent from (2). We here show how

to obtain the solution for this general case.
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Suppose that from the global MHD equilibrium we know the global distribution j(~r)

of the external currents in the 2D region 
 surrounding the current sheet. Then we can

calculate the normal component of the magnetic �eld due to this current distribution at any

point on the midplane:

By;ext(x; 0) =
2

c

Z


j(~r0)

x� x0

j~r � ~r0j2 d2~r0 (3)

The normal component of the magnetic �eld due to the current sheet itself is

By;cs(x; 0) =
2

c

Z +L

�L
�(x0)

dx0

x� x0
(4)

Since the magnetic �eld immediately above and below the current sheet must be tan-

gential to the midplane, we can write

By(x; 0) = By;ext(x; 0) +By;cs(x; 0) = 0; jxj < L; (5)

which gives us the following linear integral equation for �(x) in terms of the known function

By;ext(x; 0): Z +L

�L
�(x0)

dx0

x� x0
= g(x) � � c

2
By;ext(x; 0) jxj < L (6)

This is a singular integral equation of the �rst kind with a Cauchy kernel. The exact

solution of this equation corresponding to �(�L) = 0 is available [11] for any function g(x)

satisfying the orthogonality condition
1R

�1

g(x)p
1�x2dx = 0. The symmetry with respect to the

vertical y-axis assures that g(x) is an odd function, so this condition is satis�ed. We get

�(x) =
1

�2

q
1� x2=L2

Z +L

�L

g(x0)q
1� x02=L2

dx0

x0 � x
(7)

In this section we consider the case when the external global currents are remote sources,

so that the function g(x) is a �nite regular function. The case when this is not so will be

considered in Section III.

The integral in (7) is then a slow function of x which is �nite everywhere in the layer

including the endpoints x = �L. Therefore, the current density in the current sheet can in

general be described as

�(x) =

s
1� x2

L2
f(x) (8)
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where f(x) is a smoothly varying function, the particular form of which depends on the

particular problem, i.e. on the global distribution of plasma currents and on the location of

external coils, etc.

This expression reveals an important universal feature of the current sheet, namely, the

square-root behavior of �(x) near the endpoints x = �L.
Formula (7) can be illustrated by the following example of a possible current distribution

in region 
. Suppose that all the current is concentrated in two singular wires, located

symmetrically above and below the midplane. Let a be the distance from each of the wires

to the current sheet, and let each of the wires carry current I0. Then, one can easily see

that ga(x) = �2I0 x
a2+x2

, and formula (7) gives:

�a(x) = �
2I0

�

a

a2 + x2

s
L2 � x2

L2 + a2
; (9)

which is in agreement with the result obtained by Green [12].

Now we can investigate the magnetic �eld structure in the vicinity of the endpoint. It

is more convenient to work here in polar coordinates with the origin at the endpoint, and

with angle � measured from the midplane (see Fig. 2).

This endpoint is a Y-point, so the magnetic �eld must go to zero at the origin. This

means that in the vicinity of this point, r � L, the zero-order magnetic �eld produced

by the current sheet is canceled by the zero-order magnetic �eld produced by all the other

currents in the system. The next order correction to the magnetic �eld due to these other

currents should be linear in r, while the next order correction to the magnetic �eld due to

the current sheet is of the order
p
r, and thus, this contribution dominates in this region.

Then, to the leading order in r=L, the magnetic �eld can be written as

Br = B0

q
r=L sin

3�

2
(10)

B� = B0

q
r=L cos

3�

2
(11)

The separatrix makes a 60� angle with the midplane (see Fig. 2).
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Now let us consider the slow velocity �eld in the downstream region in the vicinity of

the endpoint. While the discussion of the magnetic �eld structure was independent of the

plasma dynamics, in order to �nd the velocities we need to make some assumptions. For

example, we assume that the uid is incompressible. Also we use the fact that ideal MHD is

valid in this region (which is outside the resistive current layer). Then we get the following

two equations for the two unknown components of velocity:

r � ~v = 0 (12)

~v � ~B = �c ~E = const; (13)

with the boundary condition v�(� = 0) = 0.

The solution of this system is:

v� =
cEz

3B0

q
r=L

(cos
3�

2
)1=3I(cos

3�

2
) (14)

vr = �
cEz

B0

q
r=L cos 3�

2

"
1 � 1

3
(cos

3�

2
)1=3I(cos

3�

2
) sin

3�

2

#
; (15)

where

I(�) =
Z 1

�

d�

�4=3
p
1� �2

(16)

The asymptotic behavior of I(�) as � goes to zero (i.e. �! 60�) is I(�) ' 3��1=3 � 2:2405.

The bulk of the plasma owing out of the reconnection region is diverted from the

midplane and ows along the separatrix (here Ez < 0, and so vr > 0). One can easily see

that, as we approach the separatrix line, vr goes to in�nity. This singular behavior near the

separatrix (where ideal MHD is expected to break down) must be asymptotically matched

with the very fast (of order VA) ow in the separatrix, which requires a local scale analysis

taking into account dissipative e�ects.

The solution for the velocity in the upstream region can not be found as easily as in

the downstream region, because, even though the equations are the same, the boundary

conditions for the ow in the upstream region can only be set up on the vertical axis x = 0, far
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from the endpoint. Then the solution will depend on the magnetic �eld structure everywhere

along the current layer.

III. THE CUSP SOLUTION.

In this section we consider the magnetic con�guration with �nite surface current in the

separatrix, which leads to the cusp solution. We concentrate our discussion on the closed

�eld line geometry corresponding to two merging cylindrical plasmas. Our approach is in

a way an extension of Vekstein and Priest's treatment [6,7] of the solar corona problem in

which the �eld lines are open. However, careful consideration of volume per ux in our

analysis allows us to uniquely determine the magnetic �eld structure in the vicinity of the

endpoint, and also to calculate the velocity �eld in the downstream region.

III.A The Need for a Cusp-like Con�guration.

In the Syrovatskii-like solutions it is assumed that there are no current sheets attached

to the reconnection layer, in particular, that there is no current in the separatrix. Such

solutions do not involve the actual plasma dynamics, and are, therefore, of limited physical

interest. More relevant is the situation when the separatrix itself is a current sheet with

integrated current density of the same order as that in the reconnection layer. Then the

function g(x) introduced in the previous section is not regular near the endpoint, so that

the square-root behavior of the current density in the reconnection layer breaks down. As

a result, the magnetic �eld structure in the vicinity of the endpoint changes dramatically,

with the Y-point becoming the cusp-point.

Current in the separatrix can emerge even before the reconnection process starts, if there

is a discontinuous change of the global boundary conditions. This situation for a force-

free compressible plasma was studied by Low and Wolfson [4] and by Vekstein, Priest and

Amari [5] in the case of open-�eld-line geometry, where this change of the global boundary

conditions is represented by sheared displacement of the foot-points on the sun surface. We
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consider a rather di�erent physical situation, which nevertheless is characterized by very

similar behavior. In our case of two merging plasmas, the magnetic �eld lines are closed,

and the current in the separatrix arises very naturally due to the reconnective evolution of

the system, even with static global boundary conditions.

First, we use the following very crude argument to show how the transfer of plasma from

the unreconnected region I into the reconnected region II gives rise to the �nite current

in the separatrix. Consider a thin ux layer �	 before and after reconnection. In the

case of compressible plasma (the incompressible case will be discussed in section III-G), we

can use energy conservation. Assuming that there are no energy losses (radiation, etc.),

the amount of magnetic energy destroyed in the reconnection process is �nally converted

into thermal energy, plus the work done by the ux layer under consideration during its

expansion. Therefore, the pressure on the �eld line after reconnection PII is increased by

a �nite amount PII � PI over the pressure PI on the �eld line before reconnection. The

pressure balance across the separatrix then requires that the magnetic �eld strength have a

�nite jump, meaning �nite current in the separatrix.

To see, what this �nite current means for the global magnetic structure in the vicinity

of the endpoint, we use the following argument, which is very similar to the arguments in

Ref. [4,5] for the case of solar corona.

Consider two �eld lines, one before reconnection, the other after reconnection, but both

very close (on the global scale) to the separatrix. Both magnetic surfaces are in equilibrium,

so that the pressure is constant along each of them. The di�erence PII � PI is �nite, which

corresponds to �nite surface current in the separatrix. There is also a pressure balance

across the separatrix (we can neglect global curvature of the magnetic �eld lines, because

the two surfaces are very close to the separatrix):

B2
I (l)

8�
� B2

II(l)

8�
= PII � PI = const > 0 (17)

where l is the distance from the endpoint measured along the separatrix, I represents the

magnetic �eld line before reconnection, and II after reconnection. Applying Eq. (17) at some
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cross-section very close to the endpoint, at r � L (but still r� �x, where �x is the distance

between the two magnetic �eld lines at this cross-section, so that Eq. (17) is still valid),we

see that, even as BII ! 0 as r ! 0, BI(r) must remain �nite. At the endpoint r = 0,

BI(r) reaches its minimum value BI;min = 8�(PII � PI), which is �nite and is determined

by the whole global solution. This is in contradiction with the classical Syrovatskii solution

BI(r) = BII(r) � r1=2 ! 0. Moreover, in any solution with the separatrix making a �nite

angle with the midplane, both BI(r) and BII(r) go to zero as r ! 0. Thus, we have to

conclude that the only plausible con�guration of magnetic �eld near the endpoint is cusp-

like, with the separatrix tangent to the midplane at the endpoint of the reconnection layer

(see Fig. 3). A possible hint of the cusp can be seen in numerical simulations by Biskamp

[13].

Note that the relative amount of the magnetic energy destroyed in the reconnection

layer is roughly proportional to L=(L + L1), where L is the half-length of the reconnection

layer, and L1 is the length of the separatrix, from the endpoint of the reconnection layer to

the top point A (see Fig. 1). In general, L and L1 are expected to be of the same order

of magnitude, so that the relative jump of magnetic �eld strength across the separatrix is

�nite. However, if L� L1, we recover a separatrix without current, leading to the transition

to the Syrovatskii solution: PII � PI � B2
I =8� ) BI(0) � BI(l � L1). The cusp region

becomes very small, and the separatrix turns rather sharply.

III.B Formulation of the Problem

Now let us investigate the magnetic �eld structure near the cusp point. This is more

di�cult than in the Syrovatskii solution. For one thing, the exact shape of the separatrix is

not known and must be determined self-consistently. Also, as we shall see, the contribution

from the global distributed currents can not be neglected.

We choose to work in polar coordinates with the origin at the cusp point and with the

midplane lying along the x-axis. We assume symmetry with respect to the midplane. On

the separatrix 	 = 0, and we choose the convention that 	 > 0 in the upstream region I,
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and 	 < 0 in the downstream region II (see Fig. 3).

The magnetic �eld is determined from the solution of the Poisson equation

r2	(r; �) = �4�

c
j(	) (18)

separately in regions I and II. (Since plasma is in magnetostatic equilibrium, the current

density is constant along the �eld lines: j = j(	).) The boundary conditions are given on

the midplane and on the separatrix of some yet unknown shape � = �s(r). For region I the

boundary conditions are:

	I(r; �) = 0; and 	I(r; �s(r)) = 0; (19)

and for region II they are:

	II(r; �s(r)) = 0; and
@	II

@�
j�=0 = 0 (20)

The shape of the separatrix �s(r) is �xed by imposing the condition of pressure balance

across the separatrix:

B2
sI (l)

8�
� B2

sII(l)

8�
= PII � PI = const > 0; (21)

whereBsI(l) and BsII(l) are the magnetic �elds on the two sides of the separatrix as functions

of the length measured along the separatrix.

While the complete solution of this problem requires the knowledge of the entire global

magnetostatic equilibrium, it turns out that one can make some universal conclusions about

the asymptotic behavior near the endpoint which are valid for a variety of global equilibria.

In the next two sections we consider only the downstream region II. As we show in the

Appendix, the downstream current density as a function of ux must be singular near the

separatrix 	 = 0. As will be justi�ed a posteriori, we may assume that this is a power law

singularity:

j(	) = � c

4�
D (�	)�n; D > 0; n > 0 (22)

(we include the \-" sign here because in the reconnection layer and in the separatrix the

current density is negative, and we want to be able to match the global divergent j(	) to
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the local current density in the separatrix continuously). Since the magnetic �eld does not

diverge at the separatrix, the inequality 0 < n < 1 must be satis�ed.

Thus, we obtain the following nonlinear Poisson equation:

r2	 = D(�	)�n; (23)

with the boundary conditions given by (20).

III.C The Vekstein and Priest Solution for the Downstream Region.

The basic approach to the analysis of the cusp region was set forth by Vekstein and Priest

in connection with the solar corona problem [6,7]. Although the global geometry in the case

of two merging cylindrical plasmas is rather di�erent, a signi�cant part of their analysis still

applies. In this sub-section we present, in a slightly di�erent notation, that part of Vekstein

and Priest's analysis of the downstream region, which is relevant to our problem.

In the vicinity of the endpoint (r � L) the asymptotic expression for the shape of the

separatrix can be written as

�s(r) = Kr�; (24)

where � > 0;K > 0.

For r� L we expect that Eq. (23) has a scaling solution of the following form:

	 = �r�f(�) (25)

where � = �=�s = �=Kr� ; 0 < � < 1.

One can write down the expression for magnetic �elds in terms of f(�):

Br =
@	

r@�
= � r��1��

K
f 0(�) (26)

B� = �
@	

@r
= �r��1f(�) � �r��1f 0(�)� (27)

The requirement that Br; B� go to zero as r! 0 gives

� > 1 + � > 1 (28)
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Substituting (25) into Eq. (23) we get

r2	 = �r��2
�
f 00(�)

1

K2 r2�
+ f 00(�)�2�2 + �2f(�) � (2� � �)��f 0(�)

�
=

= Dr��nf�n(�) (29)

For very small r, such that �s(r) � 1, the �rst term in the brackets is much greater

than all the other terms; the function f(�) and its derivative are �nite (or small), and f 00(�)

changes, as can be seen from Eq. (29), from a �nite constant at � = 0 to in�nity at � = 1.

Thus, in the limit r� L, Eq. (23) is indeed satis�ed by the scaling solution (25) with

n =
2� + 2� �

�
(30)

and with f(�) satisfying the following second order ODE:

f 00(�) = ��
2
f�n(�); � = 2DK2 > 0 (31)

The boundary conditions for f(�) follow from Eq.(20):

f(1) = 0 f 0(0) = 0 (32)

Taking into account that f 0(�) � 0 everywhere (so that Br � 0, see Eq. (26)), and de�ning

f0 = f(0), we obtain from Eq. (31):

f 0(�) = �
s

�

1 � n

q
f1�n0 � f1�n(�) (33)

The solution of (33) is given implicitly by integration:

Z f0

f

dfq
f1�n0 � f1�n

=

s
�

1� n
� (34)

The boundary condition f(1) = 0 can be used to determine the value of f(�) on the

midplane � = 0 in terms of � and n:

f0 =

�
�

1� n

� 1

1+n
�

1

1� n
B

�
1

1� n
;
1

2

��� 2

1+n

(35)
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From Eq. (33) and again using f(1) = 0 we get:

f 0(1) = �
s

�

1� n
f

1�n

2

0 (36)

Magnetic �eld components on the separatrix are:

Brs(r) = �
1

K
r��1�� f 0(1) > 0 (37)

B�s(r) = ��r��1 f 0(1) > 0 (38)

Since � > 0, Brs � B�s for r !1.

III.D The Volume per Flux.

Our main goal is to determine the three power exponents �, �, and n describing the

solution in the vicinity of the endpoint. Eq. (30) gives us one relationship between the

exponents. In this section we show that in the case of two merging plasmas (not considered by

Vekstein and Priest), it is possible, under certain conditions, to derive a second relationship

between the power exponents. Finally, in section III-E, the matching with the upstream

solution will give us the third relationship (which will di�er from that obtained by Vekstein

and Priest), thus �xing the values of �, �, and n.

The total volume per ux on �eld line 	 is:

V (	) =
Z L1

0

dl

B(l;	)
; (39)

where the integral is taken along a quarter of the �eld line in region II, namely, from the

cusp region up to the y-axis near point A2.

We are looking at the volume per ux on a �eld line close to the separatrix, corresponding

to small 	. To zeroth order in 	, the volume per ux is equal to the value on the separatrix

V (0). Our goal is to estimate the corrections to V (0) of the lower than linear order in 	.

2The symmetry with respect to the x- and y-axes allows us to consider only the upper right

quadrant of our system, so that the actual total volume per ux should be four times the value in

Eq. (39).
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For compressible plasma, we show that the leading correction to the volume per ux

should be proportional to (�	)1�n. Vekstein and Priest discussed this correction for the case
of open �eld lines in a force-free equilibrium produced by the footpoint shearing displacement

[7,8]. In the case of the reconnective evolution of two merging cylindrical plasmas such a

non-regular correction can be explained as follows.

First, let us estimate the di�erence between the magnetic �eld B(r; 0) on the separatrix

	 = 0 and the magnetic �eld B(r;	) on a �eld line 	 < 0 close to the separatrix. This is

possible due to the fact that j is constant along magnetic �eld. At some �nite distance r

from the endpoint the magnetic �eld line is almost parallel to the separatrix, and we can

write, denoting the distance from the separatrix by x0:

B(r;	) = B(r; 0) +
4�

c

Z x0

0
jdx0 = B(r; 0)�D

Z x0

0
(�	)�ndx0

If 	 is small enough, the magnetic �eld does not change signi�cantly, and we can estimate:

dx0 = d(�	)
B(r;0)

. Then,

B(r;	) = B(r; 0)� D

B(r; 0)

(�	)1�n
1� n

(40)

plus higher order terms, which we neglect here. Notice that we can regard the di�erence

betweenB(r;	) andB(r; 0) as a small correction only ifD(�	)1�n � B2(r; 0). The smallest

value of B(r; 0) is at distances r � L, where we can estimate B(r; 0) ' �f 0(1)=Kr��1��.

Thus, for the expression (40) to be valid we need

r� R1(	); (41)

where R1(	) = (�	=f0)1=� is the distance from the cusp point to the point where the �eld

line 	 crosses the midplane (see Fig. 3).

Eq. (40) and pressure balance across the magnetic �eld then give:

�P (	) = P (	) � P (0) =
D

4�

(�	)1�n
1� n

> 0 (42)

Now, assume that in region II plasma density is constant along each �eld line. This can be

justi�ed by observing that due to the dissipative e�ects in the in�nitesimally thin separatrix
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region, such as parallel thermal conductivity, the entropy density is equalized along each

newly reconnected �eld line. After reconnection, the quantity s � P=�0 (here we denote

the adiabatic constant by 0 to distinguish it from the power exponent  de�ned later in

this section) remains to be constant along each �eld line, since plasma evolves adiabatically

in region II: s = s(	). Since the pressure is also constant along magnetic �eld, then so is

the plasma density: � = �(	).

Now, during the adiabatic plasma evolution after reconnection, the value of s on a given

�eld line in region II does not change. This value is equal to its initial value on the same �eld

line before reconnection, plus a change due to the entropy production which occurred inside

the reconnection layer and the separatrix at the time when the given �eld line underwent

reconnection. In general, both the initial value of s and its change are regular smooth

functions of the �eld line label 	. Therefore, s(	) can be Taylor-expanded at any value of

	 in region II. In particular, for a �eld line 	 su�ciently close to the separatrix 	 = 0 we

can write:

s(	) = s(0) + s0(0)	

This equation means that there is no deviation of s(	) from s(0) of lower than linear order

in 	.

Thus, using Eq. (42) and the de�nition of s(	), we can estimate ��(	) = �(	) � �(0)

as

��(	) =
D

4�0P (0)

(�	)1�n
1� n

�(0) (43)

The massM(	) on the given ux surface is also conserved, which means that, just as we

did for s(	), we can write: M(	) =M(0)+O(	). On the other hand, M(	) = �(	)V (	),

so, to lowest order in (�	),

�V (	) = V (	)� V (0) = �V (0) � D

4�0P (0)

(�	)1�n
1 � n

< 0 (44)

We have thus shown that the leading correction to the volume per ux is negative and is of

order (�	)1�n, as stated above. (The transition to the incompressible case can be obtained

18



by taking the limit 0P (0)!1, in which case the (�	)1�n-correction vanishes, see section

III-G.)

Since, according to (40), B(r;	) < B(r; 0), the fact that �V (	) < 0 can be attributed

only to the shortening of �eld lines with increased (�	). This means that the contribution

from the vicinity of the cusp-point (where, as can be seen from Fig. 3, the �eld lines do

shorten) must play an important role. In order to isolate the role of this contribution, we

shall divide the whole volume per ux on a given �eld line into two parts (see Fig. 3):

V (	) = V<(R;	) + V>(R;	); (45)

where V<(R;	) corresponds to r < R, and V>(R;	) corresponds to R < r < Rmax. Here

Rmax is the distance from the origin to the point A at the top, and R is chosen so that

R � L, hence �s(R) � 1, and Eq. (25) is still valid. On the other hand, we take R large

enough: R� R1(	). In other words, for given small R� L we consider �eld lines that are

su�ciently close to the separatrix.

Let us �rst estimate the correction due to V>(R;	). For r > R� R1(	), magnetic �eld

lines are almost parallel to the separatrix, and we can use Eq. (40) for the magnetic �eld.

This equation enables us to estimate:

V>(R;	) = V>(R; 0) +
D(�	)1�n

1� n

L1Z
l(R)

dl

B3(r; 0)
(46)

Note that the correction is always positive: V>(R;	) > V>(R; 0). Since, according to (44),

the total �V (	) is of order (�	)1�n and negative, this means that �V<(R;	) must also

be of the same order and negative. The condition for this to be possible will give us an

additional relationship between � and �.

Let us now consider V<(R;	). Using Eq. (26) for Br, we get

V<(R;	) =
Z l(R)

0

dl

B(r;	)
=

RZ
R1(	)

dr

Br(r;	)
= �K

RZ
R1(	)

r1+���dr

f 0(�)
(47)

Going from the integration over r to the integration over f at �xed 	, and using expression
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(33) for f 0(�), we get

V<(R;	) =
K

�

s
1� n

�
f
�1=�
0 (�	)�1 I(") (48)

I(") =
Z 1

"

x�dxp
1 � x1�n

; (49)

where x = f=f0, " = x(R) = �	R��=f0 =
�
R1(	)

R

�� � 1, and

 =
2 + �

�
(50)

We now consider the asymptotic expansion of (49) in "� 1 for di�erent values of  and

n.

It is easy to see that, if  < 1, I(") converges as "! 0, and V<(R;	)! 1 as 	! 0.

Therefore, in order for the volume per ux on the separatrix V<(R; 0) to be �nite, we must

require that

 > 1 ) � < 2 + � (51)

Then, the integral (49) diverges as "! 0: I(") � 1
�1"

1� ! +1 , and so, to the lowest

order in (�	), we get:

V<(R;	) ' �
K

f 0(1)

R2+���

2 + � � �
= V<(R; 0) (52)

(This result for V<(R; 0) and the condition (51) can also be obtained immediately by using

Eq. (37) for Brs(r).)

An expression similar to (48-49) and the result (52) for the volume per ux on the

separatrix have been derived by Vekstein and Priest [7], and are valid in either case. However,

the next order terms in the expansion of I("), corresponding to the di�erence between

V<(R;	) and V<(R; 0), must be analyzed di�erently. We can write

�V<(R;	) = V<(R;	)� V<(R; 0) =
K

�

s
1� n

�
f
�1=�
0 (�	)�1 �I("); (53)

where

�I(") =
Z 1

"
x�

"
1p

1� x1�n
� 1

#
dx� 1

 � 1
(54)
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Notice that the �rst term is always positive and the second term is negative.

Suppose that the integral in (54) goes to in�nity as " ! 0, i.e. that the corresponding

integral from 0 to 1 diverges at lower limit. Then, since the second term is �nite, the

whole �I(") is positive, and so �V<(R;	) is of the order (�	)1�n and positive. But as

we showed above, �V>(R;	) > 0. Thus, the total change in volume per ux, �V (	) =

�V<(R;	)+�V>(R;	) will have to be positive, and it will be of order (�	)1�n. Actually,
under the assumption that �I(") diverges, �V>(R;	) converges as R ! 0, so, to lowest

order in (�	), �V (	) = �V>(0;	) > 0. However, from Eq. (44) we know that the

total �V (	) must be negative. Thus, we obtain a contradiction, and we therefore have to

conclude that, in order to get a negative correction of order (�	)1�n to volume per ux, the

coe�cients  and n must be such that the integral
R 1
0 x

�[1=
p
1� x1�n � 1] dx converges.

This convergence condition can be written as

 + n < 2 ) � >
4

3
+ � (55)

Assuming that condition (55) is satis�ed, we can write:

�I(") = G(; n)� 1

 � 1
� "2��n

2(2 �  � n)
; (56)

where

G(; n) =
Z 1

0
x�

"
1p

1� x1�n
� 1

#
dx (57)

Going back to �V>(R;	) we notice that, for r � R � L we can estimate B(r; 0) =

Br(r; 0) � r��1��, and dl � dr. Then
R
R

dr
B3
r
(r;0)

� R
R

r�3(��1��)dr, and taking into account

condition (55), we see that the main contribution to this integral comes from the lower limit

r = R� L. Isolating this contribution, we can write:

�V>(R;	) =
D(�	)1�n

1� n

RmaxZ
R

dr

B3
r (r; 0)

=

=
D(�	)1�n

1� n

 
K

f 0(1)

!3
R4�3(���)

4 � 3(� � �)
+ const � (�	)1�n (58)
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Because of (55), the �rst term becomes much larger than the independent of R second term

as R! 0. Because f 0(1) < 0, the whole expression is then positive.

One can easily see that the �rst term in (58) is exactly equal to the last term in (56)

with the opposite sign, so these two terms cancel each other in the expression for total

�V (R;	). This means that the dependent on R part of the contribution to �V of order

(�	)1�n vanishes, as it should. Thus, we can write the expression for the deviation of the

volume per ux from its value on the separatrix up to terms of lower than linear order in 	

as:

�V (	) = V (	)� V (0) = �V<(R;	) +�V>(R;	) =

=
K

�

s
1� n

�
f
�1=�
0 (�	)�1

"
G(; n)� 1

 � 1

#
+O((�	)1�n) (59)

This expression includes terms of order (�	)�1, originating from �V<(R;	), and also

terms of order (�	)1�n (note that because of (55), (�	)1�n � (�	)�1). The terms

proportional to (�	)1�n are due to the second (�nite) term in Eq. (58), and also due to the

higher order terms in the expansions (22) for j(	), (24) for �s(r), (25) for 	(r; �), which

we have neglected so far. (For example, a contribution to �V<(R;	) of order (�	)1�n can

be obtained by adding a term of order (�	)+2n�2 � (�	)�n to j(	).) These higher order
terms can not be determined without the knowledge of the whole global equilibrium. Their

role here is to produce the correction to the volume per ux of order (�	)1�n, which would

be in agreement with (44).

From Eq. (44), the lowest order term in �V (	) should be of order (�	)1�n. Since

� 1 < 1� n, this can be true only if the dominant term in Eq. (59) vanishes, that is if the

following relationship between  and n is satis�ed:

G(; n) =
Z 1

0
x�

"
1p

1� x1�n
� 1

#
dx =

1

 � 1
(60)

De�ning � = �n
1�n , 1 < � < 2, equation (60) can be written as

1

� � 1
= ~G(�) =

Z 1

0
t��

"
1p
1� t

� 1

#
dt (61)
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The solution of this equation is � = 3=2. This solution is unique, because the LHS mono-

tonically decreases with �, and the RHS monotonically increases with �. Recalling the

de�nition of �, and that of , we can express all the power exponents in terms of �:

 =
3� n

2
) � = � +

3

2
) n = 1� 1

�
= 1 � 1

� + 3
2

(62)

We see that inequalities (28), (51), and (55) are satis�ed, and that from the condition � > 0

it follows that n > 1=3.

The power exponent � can not be determined from the local analysis of the downstream

region only. In order to determine it, we need to match the downstream solution to the

upstream solution. One important observation, however, can be made at this point: from

Eqs. (37) and (62) we see that the dependence of the radial magnetic �eld on the separatrix

on r is independent of � and can be written as

Brs(r) = �
1

K
f 0(1) r1=2 (63)

III.E Solution in the Upstream Region.

Now let us turn to the upstream region. We want to get the additional relationship

between � and � from the condition of pressure balance across the separatrix.

Just as in region II, the magnetic �eld in region I is determined from the Poisson equation

(18). This region is also in the state of magnetostatic equilibrium, so j = j(	). What type

of behavior can this function possess? Can it be singular at 	 = 0, or is it just a �nite

function? We show that the latter case must be true.

Indeed, in this region, consider a ux surface 	 > 0, close to the separatrix 	 = 0, and

compare the volume per ux V (	) on this surface with that on the separatrix, V (0). Our

analysis here is analogous to that in the beginning of the previous section. In the upstream

region, the magnetic �eld on the separatrix Bs(l) = B(l; 0) is �nite everywhere along the

separatrix. The same is true for B(l;	), the magnetic �eld on the given ux surface. The

magnetic �eld line 	 is essentially parallel to the separatrix, so we can estimate B(l;	) as
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B(l;	) ' B(l; 0)� 4�
c

R	
0 j(	0) d	0

B(l;	0)
. Since 	 is small, we can approximate B(l;	0) in the

second term by B(l; 0), which gives B(l;	) ' B(l; 0)� 4�
cB(l;0)

R	
0 j(	0)d	0.

Now if we assume that j(	) has a power-law singularity at 	 = 0: j(	) =

�(cD0=4�)	�m; 0 < m < 1, then,

B(l;	) = B(l; 0) +
D0

B(l; 0)

	1�m

1�m
(64)

Then, just as we did in section III-D, we can use pressure balance to �nd �P (	), the

adiabatic law to �nd ��(	), and the mass conservation to �nally write

�V (	) = V (	)� V (0) = V (0)
D0

4�0P (0)

	1�m

1 �m
> 0 (65)

On the other hand, we can estimate V (	) up to terms of order 	1�m � 	 directly using

Eq. (64):

V (	) = V (0) � D0

1�m
	1�m

Z L1

�L

dl

B3(l; 0)
(66)

The integrand is a regular positive �nite function, and therefore, the integral
R L1
�L

dl
B3(l;0)

is just a �nite positive constant, independent of 	. This means that we get a negative

correction to V (	) of order 	1�m � 	, in contradiction with Eq. (65). Therefore, we

conclude that j(	) can not be singular at 	 = 0 in the upstream region I.

Thus, to the lowest order in 	 we have j(	) ' j(0) = const. The correction to the

volume per ux due to this current density will be linear in 	.

In this case, the magnetic �eld structure in region I in the vicinity of the endpoint is

determined by the Poisson equation

r2	 = C = const; (67)

where C = �4�
c
j(0), with the boundary conditions

	 = 0 at � = � and at � = �s = Kr� (68)

The source term on the RHS of this equation turns out to be unimportant, and we can

consider Laplace's equation instead.
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First, let us discuss the analysis of the upstream solution given by Vekstein and Priest

[7]. As we shall see, this will lead to a contradiction in our case. We write the solution of

Laplace's equation as

	 = B0r sin�+B1r
p sin[p(�� �)]; p > 1; B0 > 0 (69)

The boundary condition 	(� = �) = 0 is satis�ed automatically. In order to satisfy the

boundary condition on the separatrix � = Kr� to the lowest order in r we demand

p = � + 1 (70)

and

B1 sin�� = �B0K < 0 (71)

The radial component of the magnetic �eld is

Br =
1

r

@	

@�
' B0 cos�+ pB1r

� cos[p(�� �)] (72)

On the separatrix we have: B2
sI ' B2

rsI ' B2
0 � 2(1 + �)B1B0r

� cos ��. On the other

hand, in region II, B2
rsII ' 1

K2 [f
0(1)]2r2(����1). Then the pressure balance, B2

sI � B2
sII =

B2
0 = const, gives

� = 1 +
3

2
� (73)

and

B1 cos �� = � 1

2(1 + �)B0

 
f 0(1)

K

!2
< 0 (74)

The two inequalities (71) and (74) can only be satis�ed if tan�� > 0, i.e. if

0 < � <
1

2
; or 1 < � <

3

2
; etc: (75)

Now one can easily see that this solution is incompatible with our solution for region II.

Indeed, in previous section we derived from the volume per ux arguments the relationship

between � and �: � = �+ 3
2
. Combinedwith equation (73) this equation uniquely determines

� = 1 and � = 5=2, which is in contradiction with inequalities (75).
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Therefore, solution (69) presented by Vekstein and Priest is not suitable for our case of

reconnection of two cylindrical plasmas.

There are two ways out of this situation. The �rst one applies for a range in � > 1, and

the second one is a special case with � = 1=2.

First, let us consider � > 1. In the Vekstein and Priest solution, the correction term

B1r
p sin[p(���)] in (69) has to serve two functions: it must make 	 = 0 at � = �s to lowest

order in r, and it also must provide the variation of the magnetic �eld on the separatrix

needed for the pressure balance. Now, if � > 1; p > 2, we can add the term B2r
2 sin 2�,

which will give a bigger contribution to the magnetic �eld on the separatrix, and at the same

time, it's contribution to 	(�s) will be negligible. Thus, we can have a family of solutions

with � > 1:

	 = B0 r sin �+B1 r
p sin[p(�� �)] +B2 r

2 sin 2� (76)

and p = 1 + � > 2, B1 sin�� = �B0K, and B0B2 =
�
f 0(1)
2K

�2
> 0.

The magnetic �eld up to the �rst order in r is given by

B2 = B2
0 + 4B0B2 r cos � (77)

Although at �rst glance this solution appears satisfactory, a more careful look at this ex-

pression reveals a potential problem with this solution: the absolute value of the magnetic

�eld along the separatrix increases monotonically as we pass the endpoint from left to the

right, i.e. the magnetic �eld does not have minimum at the endpoint. It seems to be dif-

�cult to incorporate such magnetic �eld into the usual picture of reconnection, where the

outside magnetic �eld is strongest at the middle of the reconnection layer. However, this

solution may explain the origin of the O-point con�guration which is observed in the MRX

experiment in the co-helicity merging [1].

The second case, which we believe is more physical and seems to satisfy all the physical

conditions we can impose, is the particular case, � = 1=2.

Then, the solution satisfying 	(�s) = 0 can be written as

	 = B0 r sin��B0K r3=2 cos
3

2
�+B2 r

2 sin 2� (78)
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The last term gives negligible contribution to 	(�s), however, its contribution to the mag-

netic �eld on the separatrix is of the same order as that of the second term:

B2
s (r) = B2

0

�
1 +

�
15

4
K2 + 4

B2

B0

�
r

�
> B2

0 (79)

(compare with the equilibrium solution by Morozov and Solov'ev for a vacuum magnetic

�eld outside a cusp containing plasma without magnetic �eld [14].)

The pressure balance across the separatrix gives us the expression for [f 0(1)]2 in terms

of B0; B2 and K:

[f 0(1)]2 =
15

4
K4B2

0 + 4K2B0B2 (80)

The magnetic �eld along the reconnection layer, � = � is also increasing with r:

B2
r (� = �; r) = B2

0(1 + 3Kr1=2) > B0 (81)

Thus the cusp-point (0,0) is really the point of minimum of the upstream magnetic �eld.

It is interesting that a change of the entire solution induced by changing the constant K is

e�ectively the same as adding the Syrovatskii solution Eq. (8), which is also proportional

to
p
r near the endpoint, to the solution in the upstream region.

Now, even though we managed to determine the power exponents, we are still left with

uncertainty regarding the value of B2. We think that B2 is determined by the entire global

equilibrium. The only condition we can impose on B2 is that the RHS of (80) must be

positive.

III.F The Magnetic Field Structure and the Velocity Field in the Downstream

Region for � = 1=2.

For the special case � = 1=2 we can obtain exact analytical expressions for the magnetic

ux function in region II. Using Eqs. (62) and (30), we get:

� =
1

2
� = 2 n =

1

2
(82)

Then, using (35) and (36), we �nd f0 =
�
3
8

�4=3
(2�)2=3, and f 0(1) = �

�
3
8

�1=3
(2�)2=3.
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The integral on the LHS of Eq. (34) can be calculated exactly resulting in a cubic

equation for u = �f 0(�)=(p2� f
1=4
0 ) =

r
1 �

q
f=f0: u

3 � 3u + 2� = 0, where � = �=K
p
r.

The solution of this equation is u = 2 sin
�
1
3
arcsin �

�
, so that

f(�) = f0

�
1� 4 sin2

�
1

3
arcsin �

��2
; (83)

and the components of the magnetic �eld are given by Eqs. (26-27):

Br = 4
p
Drf

1=4
0 sin

�
1

3
arcsin �

�

B� = 2rf(�) +
q
2�f

1=4
0 r� sin

�
1

3
arcsin �

�

Now we can �nd the plasma velocity in the vicinity of the cusp point. In order to �nd

the velocity �eld for a steady state ideal MHD ow in a given magnetic �eld con�guration,

we make use of mass conservation and also of the fact that the density is constant along each

�eld line. Now, consider a certain tiny uid element. At any given moment, the position

of this uid element can be described by two variables (r;	). The motion of this element

in the downstream region can be speci�ed by the integral of motion, the mass per ux

�(	)V<(r;	). Using expression (48) for V<(R;	) and Eq. (43) for �(	), we have

�(	(t))V<(r(t);	(t)) = �(0)
2Kp
2�f0

 
1 +

D

4�0P (0)

(�	)1�n
1� n

! q
f
1=2
0 r � (�	)1=2 = const

(84)

The correction in the parentheses due to the variation of the density with 	 can be

neglected for small (�	). For the steady state situation, the motion of a given �eld line is

described by a simple relationship: 	(t) = �cEt, where E is the magnitude of the constant,

uniform electric �eld. Then, the radial position of the given uid element as a function of

time is

r(t) =
1

f0

�p
cEt+ C

�
; (85)

where C =
�
(2�)2=3

�
3
8

�3=8
V<=2K

�2
= const. The radial velocity is obtained by simple

di�erentiation:

vr = _r =
cE

2
p
f0

(�	)�1=2 = cE

2rf0

"
1 � 4 sin2

 
1

3
arcsin

�

Kr1=2

!#�1
(86)
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An interesting feature of this formula is that the radial velocity is constant along the �eld

line, and decreases away from the separatrix as (�	)�1=2, in the same way as the current

density does.

III.G The Incompressible Case.

In this section we show that our results are also valid for incompressible plasma, although

some of the arguments di�er from those used in the compressible case.

For ideal plasma the incompressibility condition can be expressed in terms of the global

condition of the volume per ux conservation:

V (	) =
Z
dl

B
= const(t) (87)

In each of regions I and II the volume per ux is conserved, because plasma is essentially

ideal. But we can make even stronger statement that, despite the tiny slippage of plasma

across magnetic �eld which occurs at the instant of reconnection of a given ux surface,

the volume per ux on this surface virtually does not change, i.e. VI (	) ' VII(	). This

is because the amount of plasma that is transferred from the given ux surface to the next

surface is the same (in leading order) as the amount of plasma that is transferred from the

previous surface to the given surface. Thus, at any moment of time the function V (	) is

the same as it was initially. In general, we expect V (	) to be a regular smooth function,

which can be Taylor-expanded at any value of 	. In particular, if we again set 	 = 0 on

the separatrix ux surface (undergoing reconnection at this particular moment), then for

su�ciently close ux surfaces (on both sides of the separatrix) we can write:

V (	) = V (0) + V 0(0)	 (88)

This equation means that any deviation of V (	) from V (0) of the lower than linear order

in 	 is not possible.

First we show that one has to have �nite surface current in the separatrix in the incom-

pressible case. Consider a ux layer �	 before and after reconnection. Before reconnection,

29



the length of the whole ux layer is L+ L1, after reconnection it is just L1. In the case of

incompressible plasma, the volume of the ux layer is conserved; thus, to compensate for

the shortening of the �eld lines, the thickness of the layer is increased by a factor 1 +L=L1:

�x0 = �x

�
1 +

L

L1

�

where �x is the average thickness before reconnection, and �x0 after reconnection.

If BI is some average magnetic �eld before reconnection, and BII - after reconnection,

then we have:

BII = BI

L1

L+ L1

(89)

The di�erence gives us the non-zero surface current density in the separatrix: �B = BI
L

L+L1
.

Then we can apply the argument described at the end of section III-A to see that in this

case we again get a cusp at the end of the reconnection layer.

All the analysis in sections III-B and III-C is independent of the compressibility assump-

tion and applies also for the incompressible case.

A consideration of the volume per ux similar to that in section III-D gives us again

relationship (62) between � and �. Indeed, just as in the compressible case, one can easily

see from Eqs. (46) and (53-54) that, if  + n > 2, the leading corrections to V<(R;	) and

to V>(R;	) will be of order (�	)1�n, and they will be positive. Thus, in this case, the

condition (88) that the volume per ux stay constant up to lower than linear orders in 	

can not be satis�ed. We therefore have to conclude that condition (55) has to be satis�ed

even for the incompressible case. Also we must require that, in order to preserve constant

volume per ux, the contribution to �V (	) of order (�	)�1 must vanish, which gives us

relationship (62). As for the terms of order (�	)1�n, the R-dependent parts of �V>(R;	)
(Eq. (58)) and �V<(R;	) (Eqs. (53),(56)) cancel each other, just as in the compressible

case, and the second (�nite) term in expression (58) for �V>(R;	) must be cancelled by

the previously neglected higher order corrections to �V<(R;	). Thus, � = 3=2 + � for the

incompressible plasma as well.
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The analysis of the upstream region in the incompressible case is also essentially the

same as for compressible plasma. The only di�erence is that, in order to show that j(	)

can not have a power-law singularity near the separatrix, one merely has to use equation

(66) for the volume per ux. This equation gives a correction of order (�	)1�m, which is

in contradiction with condition (88). In all other aspects, the solution in the incompressible

case is the same as in the compressible case, leading to the same power exponents (82), the

same function f(�) given by Eq. (83), and the same velocity Eq. (86).

III.H Comparison with the Results of Vekstein and Priest.

The analysis in sections III-A to III-E is very similar to the pioneering analysis of Vek-

stein and Priest [5{8], even though they considered a di�erent problem with di�erent con-

ditions to determine V (	). It turns out to be possible to evaluate the analogous quantity

V>(R;	) in their problem using the techniques of section III-D. This analysis shows again

that �V>(R;	) is of order (	)
1�n and positive. This sign is opposite to that required for the

total �V (	) (see Eqs. (17-18), (29) of Ref. 8). Therefore, there must be a larger negative

contribution to �V (	) from the neighborhood of the cusp point. This in turn means that

inequality (55), which is opposite to the inequality given after Eq. (30) in Ref. 8, must be

satis�ed. Then, just as in the case considered in the present paper, the dominant order term

in �V<(R;	) will be proportional to (�	)�1, and the condition that this term vanishes

again gives � = �+3=2. Higher order corrections to �V< together with �V> add up to the

correct sign and order of �V .

Thus, the downstream analysis of the problem considered by Vekstein and Priest should

be identical with our analysis, and similarly, their upstream analysis should include the

additional r2-term. In other words, even though the problem itself is di�erent, the solution

should be identical with ours.

IV. CONCLUSIONS
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In this paper we have studied the magnetic and velocity �elds in the neighborhood of

the endpoint of the reconnection layer. In particular we considered the 2-D MHD steady

state problem in the geometry of two merging cylindrical plasmas relevant to the Magnetic

Reconnection eXperiment (MRX).

The magnetic �eld structure near the endpoint strongly depends on the presence of other

current sheets attached to the reconnection current layer. In the case when there are no such

attached currents, we present an explicit expression for the surface current in the layer, which

forms a generalization of the well-known Syrovatskii solution. In general, the con�guration

is characterized by a 60o Y-point with the characteristic square-root dependence of the

magnetic �eld on the distance from the endpoint. In this case, universal expressions for

magnetic and velocity �elds are obtained.

However, the condition of magnetostatic equilibrium taken together with energy and

mass conservation (or volume per ux conservation for incompressible case) unavoidably

leads to �nite surface current along the separatrix. This surface current then leads to a

cusp-like con�guration near the endpoint.

To properly investigate the dynamics in the reconnection and separatrix layers, it is

necessary to determine the ow through this cusp region. For this it is necessary to �nd

the structure of the magnetic �eld in the neighborhood of the cusp. Surprisingly, because

of the global volume per ux constraints, arising from the constants of motion, such as

mass, entropy, and ux, we �nd that signi�cant contribution to �V (	) must come from

the cusp region itself. Together with the matching conditions with the upstream region,

this constraint turns out to be strong enough to determine the complete behavior of the

magnetic �eld near the cusp, up to a couple of constants, independent of the global behavior

of the equilibrium solution away from the cusp. This solution is given explicitly in section

III-F.

We �nd that an extension of the analysis pioneered by Vekstein and Priest [6{8] enables

us to carry out this program, and to arrive to an almost complete determination of these

�elds.
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APPENDIX: Singular behavior of j(	) near the Separatrix in region II.

The �rst question we need to ask is whether the source term in Eq. (18) is important.

If we neglect this term, thereby assuming that the current is concentrated only in the

reconnection layer and in the separatrix, and that the current density in regions I and II is

exactly zero, we will easily see that the solution in region II is in fact exponentially small

(	 � e�1=r), and the volume per ux on the separatrix diverges, which contradicts the

constraints given in section III-D. This means that the source term is in fact important in

the downstream region.

Now we need to �nd out, whether j(	) can be a smooth function of 	 as 	! 0. If this

were so, then close enough to the separatrix we could replace the source term in Eq. (18)

by its value at 	 = 0:

r2	 = C = const (A1)

Any solution of this equation can be written as the sum of a particular solution 	1 =

(Cr2=2) sin2 � of the Poisson Equation, and a solution 	0 of the corresponding Laplace's

equation. Taking into account that 	 must be even in �, we can write

	0 =
1X
i=1

Air
pi cos(pi�) (A2)

The boundary condition 	 = 	0 +	1 = 0 at � = �s gives:

A1 = �CK
2

2
; and p1 = 2(1 + �) > 2 (A3)

Then the magnetic �eld Bs on the separatrix to the lowest order in r is

Bs(r) = Brs(r) = CKr1+� (A4)

(the contribution from 	0 is negligible), and we immediately see that the volume per ux

on the separatrix diverges:

V (0) =
Z

dr

Brs(r)
�
Z

dr

r1+�
=1 (A5)
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Thus, it is impossible to construct a magnetostatic equilibrium in region II with j(	)

staying �nite as 	 ! 0 and with convergent volume per ux on the separatrix. We then

have to conclude that j(	) must have a singularity at 	 = 0.
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Reconnection 
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- reconnectedII
       flux
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y
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FIG. 1. The global two-dimensional geometry of the problem. Two reconnecting plasma cylin-

ders are shown when they are partially reconnected. Regions I are the unreconnected cylindrical

regions, and region II is the region of reconnected ux. The region between the two cylinders is

the reconnection layer, while the thin surface between regions I and II is the separatrix layer. The

region inside the dashed circle around one of the two endpoints of the reconnection layer is the

region of primary interest of this paper. Regions I and II are in near magnetostatic equilibrium,

while the ows in the thin layers are fast.
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FIG. 2. The region about the endpoint of the reconnection layer for the Syrovatskii case, where

there is no surface current in the separatrix. Polar coordinates (r; �) with the origin at the endpoint

are introduced to represent the local magnetic �eld.
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FIG. 3. The neighborhood of the endpoint when there is a surface current in the separatrix. The

magnetic �eld structure is characterized by the cusp geometry, with the shape of the separatrix

	 = 0 described in the polar coordinates by �s(r) = Kr�. Region I is the upstream region, and

region II is the downstream region. The point where the �eld line 	 crosses the midplane y = 0

is R1(	). The circle of radius R is the dividing line between the two contributions to the volume

per ux V (	) = V<(R;	)+ V>(R;	).
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