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Abstract

The suppression of turbulence by the E � B shear is studied in systems with quasi-

symmetry using the nonlinear analysis of eddy decorrelation previously utilized in �nite

aspect ratio tokamak plasmas [Phys. Plasmas 2, 1648 (1995)]. The analytically derived

E � B shearing rate which contains the relevant geometric dependence can be used for

quantitative assessment of the uctuation suppression in stellarators with quasi-symmetry.

1PACS numbers: 52.35.Ra,52.55.Hc,52.35.Qz, 52.25.Gj
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I. Introduction

Understanding and reducing anomalous transport is one of the major goals of magnetic

con�nement physics. Since the high(H)-mode has �rst been discovered in the Axisymmetric

Divertor Experiment (ASDEX),1 there has been considerable experimental and theoretical

progress in physics of enhanced con�nement regimes. There is accumulating evidence that

transport reduction in various forms of the enhanced con�nement regimes is due to uctua-

tion suppression caused by the shear in the radial electric �eld.2{9

Most signi�cant results are the enhanced reversed shear (ERS) plasmas7 in the Tokamak

Fusion Test Reactor (TFTR)10 and the negative central shear (NCS) plasmas8 in DIII-D.11

Their transport barriers in the plasma core are characterized by a very sharp radial gradient

of Er. In both machines, plasma density uctuations after the transition to either ERS or

NCS phase are suppressed to a level well below that of typical Super Shot or L-mode.4,6

Using the E�B shearing rate in general toroidal geometry12 is essential in quantitative

assessment of the E�B shear suppression of turbulence at core including very high (VH)-

mode,3 ERS,4,5 NCS, and weak negative shear (WNS) plasmas,6,13 since the radial variation

of B� is often as important as that of Er in determining the E � B shearing parameter

@(Er=RB�)=@ p.
14,15 Here R, B� and  p are the major radius, poloidal magnetic �eld, and

the poloidal ux respectively. The importance of Er in various plasma con�nement devices

has been speculated16 for sometime, and the previous theory in cylindrical geometry17,18 has

been useful in the progress of H-mode physics.

The H-mode has been also obtained in stellarators19{22 and the E�B shear suppression of

turbulence has been considered as the leading candidate for the L-H transition in stellarator

too.19,20 The central role of the E �B shear assigned in the nonlinear theories12,17,18,23 are

further supported by the Heliotron-E high ion temperature mode results which indicate

the spatial correlation of the transport reduction at core and the E �B shear, not the U�

(poloidal ow) shear.24 However, more quantitative assessment of the E�B shear e�ect on

uctuation and transport is desirable. In particular, potentially important geometric e�ect

on the E �B shearing rate12 which has been exhibited through tokamak experiments9 has

not been utilized for stellarator con�nement research.
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In this work, we derive the E�B shearing rate in arbitrary shape quasi-symmetric �nite

aspect ratio plasma in which the magnetic �eld strength approximately depends on only

one angular coordinate, instead of two, within the constant magnetic surfaces. Speci�cally,

B � jBj ' B( ;�), with � � ��N� a helical coordinate. Here, N = 0 corresponds to quasi-

toroidal symmetry25 and a positive integer N correspons to quasi-helical symmetry.26We use

the ux coordinates ( ; �; �) in which the magnetic �eld lines are straight.27 Here,  is the

toroidal magnetic ux, � and � are the generalized poloidal angle and the generalized toroidal

angle respectively. While deriving the corresponding E � B shearing rate in general three

dimensional system without apparent quasi-symmetry is beyond the scope of this paper, this

work provides a useful quantitative guidance.

Principal results of this paper include the following. Our results indicate that uctuation

suppression occurs when the E�B shearing rate !E given below, exceeds the decorrelation

rate of the ambient turbulence �!T :

!E ==
k?

k 

jr jjB�r j

B2

����(��N)
@

@ 

�
1

��N

@

@ 
�0( )

�����:

Therefore, not only the radial variation of Er but also that of � � N determine the E �

B shearing rate, especially for high magnetic shear operation of a stellarator with quasi-

toroidal symmetry (N = 0) or with small N . Furthermore, with an assumption of weak

variation of k?
k 

within the constant ux surface, the E�B shearing rate has a strong helical-

angle-dependence through a geometric factor jr jjB�r j

B2 . This fact may o�er a new insight

into search for a stellarator con�guration which is favorable for uctuation suppression.

Finally, we show that the previous result for axisymmetric tokamak12 can be understood

in the context of the extended work in this paper via the isomorphism which relates the

neoclassical transport properties common to a variety of quasi-symmetric systems.28 This

work, therefore, suggests a strong possibility of utilizing the knowledge accumulated through

tokamak research in turbulence suppression for stellarator design.

The remainder of this paper is organized as follows. In Sec. II, the two-point correlation

function evolution equation in quasi-symmetric system is derived and analyzed. In Sec. III,

the general criterion for ow shear suppression of uctuation is presented in a form useful
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for comparison to experimental data.

II. E�B Shear Induced Decorrelation of Turbulence

In the ux coordinate system f ; �; �g in which the �eld lines are straight, magnetic �eld

is given by27

B = r �r� + �( )r��r = r �r�+ (�( )�N)r��r : (1)

where �( ) is the rotational transform. Following the previous work,12,17,18,23 we start from a

one-�eld uid model in which the uctuating �eld �H is convected by the equilibriumE�B

ow uE, and the uctuating E�B ow ~uE,

(@=@t+ uE � r+ ~uE � r)�H = S; (2)

where uE = B�r�0=B
2, ~uE = B�r��=B2, and S is the driving source of the turbulence.

Linear dissipation and subdominant nonlinearities other than E�B nonlinearity are ignored

for simplicity.

For a rigorous derivation of the E � B shearing rate in realistic geometry, it is crucial

to use a representation in which the spatial variation of k as well as that of uE is clearly

captured.12,23 This is accomplished by using a vector identity,

B2rB�r = BB�(rB�r ) + (B � r)BB�r 

which projects the direction of constant B (along rB�r ) into the parallel direction and

the perdicular direction with respect to the magnetic �eld. Since the kk correction to the

shearing rate12 is of the order (kk=k?)
2, and therefore negligible for most cases, we can write

the second term of Eq. (2) in the following form.

uE�r�H =
@�0( )

@ 

B

B2
�r �r�H '

@�0( )

@ 

rB�r 

(B � r)B
� r�H: (3)

For B = B( ;�), we have

rB�r �r�

(B � r)B
=
r��r �r�

(B � r)�
=

1

N � �
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, where � and � are the helical angle and the angle in the direction of constant B (quasi-

symmetry) respectively. Therefore,

uE�r�H =

�
@�0( )

@ 

rB�r 

(B � r)B

�
�r�H =

�
1

N � �

@�0( )

@ 

�
@

@�
�H: (4)

In this work, �0 is assumed to be a ux function for simplicity, although this constaint

can be relaxed.30 The expression for the E �B nonlinear term in ux coordinate is given

by Frieman and Chen.31 The two-point correlation evolution equation is then derived follow-

ing the standard procedure32 of symmetrization with respect to ( 1; �1; �1) and ( 2; �2; �2)

followed by ensemble average,

�
@

@t
+  �
E

@

@��
�De�

�

@2

@�2�

�
< �H(1)�H(2) >= S2: (5)

Here, the radial shear of the angular rotation frequency associated with E�B ow is given

by


E �
@

@ 

�
1

N � �

@�0( )

@ 

�
: (6)

In Eq. (5), S2 is the source term for the two-point correlation function and the E�B non-

linearity is approximated as a turbulent di�usion along the direction of constant B following

nonlinear theories in axisymmetric tokamak.33,23,12 At small separation, the relative di�usion

De�
� has the following asymptotic form,

De�
� = 2De�

��
 �

� 0

�2

+

�
��

��

�2

+

�
��

��

�2�
; (7)

where De� = �!T��
2=4 is proportional to the di�usion coe�cient at large separation. The

decorrelation dynamics due to the coupling of the ow shear and turbulent di�usion can be

studied by taking various moments of the left hand side (lhs) of Eq. (5).

@t <  2
� >= 0; (8)

@t < �2� >= 0; (9)

@t < �2� >= 4De�

(
< �2� >

��2
+
< �2� >

��2
+
<  2

� >

� 2
0

)
+ 2
E <  ��� >; (10)
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and

@t <  ��� >= 
E <  2
� > : (11)

Here,

< A(��; ��;  �) >�
Z
d�0�d�

0
�d 

0
�G(��; ��;  �j�

0
�; �

0
�;  

0
�)A(�

0
�; �

0
�;  

0
�);

and G is the two point Green's function for the lhs of Eq. (5). Integration of Eqs. (8) through

(11) yields a solution which has the following asymptotic form for �!T t > 1

< �2� > (t)

��2
=

�
 2
�

� 2
0

�
1 +

�

E

�!T

� 0

��

�2�
+

1

��2

�
�� +


E

�!T
 �

�2

+
�2�
��2

�
e�!T t: (12)

Equation (12) yields the eddy lifetime and is a function of the initial separation between two

nearby points,

�eddy ' �!�1T ln([� � �]�1); (13)

where [� � �] is the expression multiplying e�!T t on the right hand side (rhs) of Eq. (12). We

recall that Eq.(7) implies [� � �] < 1. The radial correlation length in ux unit � , is reduced

by the ow shear relative to its value � 0, determined by the ambient turbulence alone:

�
� 0

� 

�2

= 1 +

�

E

�!T

� 0

��

�2

: (14)

The reduction of radial correlation length due to E�B shear has been recently con�rmed

by the measurements at DIII-D edge.34 Therefore, we expect that uctuation suppression

occurs when the decorrelation rate of the ambient turbulence �!T is exceeded by the E�B

shearing rate, !E :

!E �

����
E� 0

��

����: (15)
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III. Geometric Dependence of the E �B Shearing Rate

The experimental results from TFTR and DIII-D show that,14,9 not only the radial varia-

tion of B�, but also Shafranov shift and appropriate shaping can enhance the E�B shearing

rate in general toroidal geometry.12 In this section, we discuss the explicit geometric depen-

dence of the E�B shearing rate derived in the previous section,

!E =

����� 0

��

@

@ 

�
1

��N

@

@ 
�0( )

�����: (16)

Since the spatial characteristics of turbulence are often discussed in terms of k-spectra, we

express � 0 and �� in terms of k and k?; the components of the k vector of uctuation in

the radial (e ) and nonradial perpendicular (b� e ) directions. From Eqs. (3)-(4), we have

k? =
B2

j(��N)B�r j

1

��
: (17)

With Eq. (17) and k � jr j=� , we can write Eq. (16) in a form similar to the one widely

used for tokamak applications,35,9

!E =
k?

k 

jr jjB�r j

B2

����(��N)
@

@ 

�
1

��N

@

@ 
�0( )

����� (18)

Here, (� � N) @

@ 

�
1

��N
@

@ 
�0( )

�
is a function of the toroidal ux ( ) only, jr jjB�r j

B2 is the

helical-angle (�) dependent form factor, and the �rst factor describes dependence on the

eddy shape. While k spectrum measurements on stellarators are scarce, density uctuation

measurements on TFTR tokamak36 indicate that k?
k 

' 1. Then, !E in Eq. (18) can be

expressed in terms of the equilibrium quantities only.

This formula suggests a variety of methods by which !E can be enhanced. The most

obvious one is the Er pro�le control by producing and sustaining plasma rotation. One has

much greater chance in quasi-symmetric systems such as the Modular Helias-like Heliac 2

(MHH2)25 and Helically Symmetric eXperiment (HSX)38,39 since the rotation is undamped

only in the direction of constant B37 (quasi-symmetry). Much experience from tokamaks9,14

can be most easily utilized in devices with quasi-toroidal symmetry such as MHH2.25 The

second way is through the favorable B� pro�les as evidenced by the reversed magnetic shear

experiments on tokamaks.14,9,40{43 While many stellarators operate with low magnetic shear,
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it will be useful to examine whether the core con�nement improvement observed in Wen-

delstein VII-AS (WII-AS) with high magnetic shear operation44 could be related to the

B�-pro�le dependence of the E�B shearing rate. Finally, the plasma shaping can produce

a strong helical angle dependence of the E � B shearing rate. It will be helpful to know

whether one can �nd a con�guration in which the E �B shearing rate can be made larger

in the region where the micro-turbulence is expected to be strong. For this, the calcula-

tion of local magnetic shear45,46 can be easily accompanied by the calculation of jr jjB�r j

B2 .

Note that there is some evidence of larger E�B shearing rate at the bad curvature side of

tokamaks.9,30

We can also write the E�B shearing rate in terms of the poloidal ux d p � �d and

the magnetic safety factor q � 1=�,

!E =

����� p0��

@

@ p

�
1

1�Nq

@

@ p
�0

����� = k?

k 

jr pjjB�r pj

B2

����(1�Nq)
@

@ p

�
1

1 �Nq

@

@ p
�0

�����:
(19)

For a quasi-toroidally symmetric stellarator such as MHH225 with N = 0 and �� = ��.

!E =

����� p0��

@2

@ 2
p

�0

���� = k?

k 

jr pjjB�r pj

B2

���� @
2

@ 2
p

�0

����: (20)

Here, it is important to note that � is the generalized toroidal angle which is di�erent from

the cylindrical angle �c in general.28 Therefore, � = constant surfaces are not necessarily

planar. For an axisymmetric tokamak, we recover the result of Ref. 12 with � � �c.

!E =

����� p0��c

@2

@ 2
p

�0

���� = k?

k 

(RB�)
2

B

���� @@ p (
Er

RB�

)

����: (21)

Another limiting case is a poloidally symmetric system such as mirrors. By takingN >> �

limit of Eq. (18), we obtain,

!E =
k?

k 

jr jjB�r j

B2

���� @
2

@ 2
�0( )

���� = k�

k 

rB�

B

���� @@r (
Er

rB�

)

���� (22)

This agrees with the previous results in cylindrical geometry.17,18

Mathematically, the most fundamental (although not readily useful for application) form

of the E�B shearing rate can be gotten by introducing the \helical ux",

 H �  p �N :
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Then, we have

B = r �r�+r��r H

and the E�B shearing rate can be written as,

!E =

����� H0

��

@2

@ 2
H

�0( )

���� (23)

Now it is apparent from Eqs. (18)-(23) that the E � B shearing rate in various systems

with di�erent manifestation of the same class of quasi-symmetries can be written by using

an appropriate set of an angle in the direction of symmetry and a ux function which

conjugates to the other angle which B depends on.

Deriving the corresponding E � B shearing rate in general three dimensional system is

beyond the scope of this paper. However, the fact that the relation presented in Eq.(4) can be

derived without explicitly assuming the quasi-symmetry47 gives us some hope of rigorously

generalizing the method used in this paper to more complicated con�gurations. For short

term applications to stellarators, N should be considered as the dominant component in

Fourier decomposition of B in Boozer coordinates.27

In conclusion, we have derived the E�B shearing rate in arbitrary shape quasi-symmetric

�nite aspect ratio plasmas. This formula can be used for quantitative assessment of the

E�B shear suppression of turbulence in stellarators. With accumulating evidence of various

enhanced con�nementmodes in stellarators,19{22 this work adds to knowledge for con�nement

optimization of stellarators.
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