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Abstract

Energetic particle physics is the study of the e�ects of energetic parti-

cles on \collective" electromagnetic (EM) instabilities and energetic particle

transport in plasmas. Anomalously large energetic particle transport is of-

ten caused by low frequency MHD instabilities, which are driven by these

energetic particles in the presence of a much denser background of thermal

particles. The theory of collective energetic particle phenomena studies com-

plex wave-particle interactions in which particle kinetic physics involving small

spatial and fast temporal scales can strongly a�ect the MHD structure and

long-time behavior of plasmas. The di�culty of modeling kinetic-MHD mul-

tiscale coupling processes stems from the disparate scales which are tradition-

ally analyzed separately: the macroscale MHD phenomena are studied using

the 
uid MHD framework, while microscale kinetic phenomena are best de-

scribed by complicated kinetic theories. We have developed a kinetic-MHD

model that properly incorporates major particle kinetic e�ects into the MHD


uid description. For tokamak plasmas a nonvariational kinetic-MHD stabil-

ity code, the NOVA-K code, has been successfully developed and applied to

study problems such as the excitation of �shbone and Toroidal Alfv�en Eigen-

modes (TAE) and the sawtooth stabilization by energetic ions in tokamaks.
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In space plasmas we have employed the kinetic-MHD model to study the en-

ergetic particle e�ects on the ballooning-mirror instability which explains the

multisatellite obervation of the stability and �eld-aligned structure of com-

pressional Pc 5 waves in the magnetospheric ring current plasma.

I. INTRODUCTION

In fusion plasma physics, energetic particle physics was developed to understand the

behavior of fast ions in tokamaks, particularly on their con�nement, global MHD stability,

and plasma heating e�ects. The main goal was to insure that superthermal ions (such as

3:5 MeV alpha particles created by Deuterium-Tritium reactions, MeV ion cyclotron wave

heated ions, and few hundred keV neutral beam injected ions) were con�ned well enough

to transfer their energy to the thermal plasma, and did not create new plasma instabili-

ties. Major energetic particle physics theories discovered and experiments included Toroidal

Alfv�en Eigenmodes (TAE) [1,2] and its destabilization [3{6] by energetic particles, sawtooth

(internal kink mode) stabilization [4, 6, 7] and �shbone mode destabilization [4, 6, 8] by en-

ergetic trapped particles. These phenomena involve low frequency multiscale kinetic-MHD

phenomena in which kinetic physics involving small spatial and fast temporal scales can

strongly a�ect the global structure and long time behavior of plasmas. Coupling between

multiple spatial and temporal scales is an inherently di�cult process to model. The di�-

culty stems from the disparate scales which traditionally are analyzed separately. Long time

global-scale phenomena are generally studied using the single 
uid MHD framework, while

short time microscale phenomena are best described with kinetic theories. We have estab-

lished kinetic-MHD models [4, 6, 9, 10] to study energetic particle dynamics and multiscale

kinetic-MHD phenomena.

Dominant magnetospheric dynamic behaviors such as magnetospheric substorms, re-

coonection and plasma transport processes at the magnetopause, and storm timeMHD waves

and plasma transport in the ring current region all involve complex multiscale kinetic-MHD
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coupling processes. We have also applied our kinetic-MHD models to study magnetospheric

multiscale coupling processes such as kinetic e�ects on MHD waves in the magnetosphere

and magnetopause and associated plasma transport. In particular, we have developed the

theory of ballooning-mirror instability [11{13] that explains the multisatellite observation

of �eld-aligned structure of compressional Pc 5 waves and their stability criteria in the ring

current region. We have developed a kinetic-MHD theory of nonuniform drift-mirror modes

to explain the mirror mode observation in the magnetosheath [14, 15]. We have also de-

veloped a theory of the mode conversion of compressional MHD waves into kinetic Alfv�en

waves and associated plasma transport processes at the magnetopause [16]. These works

involve particle kinetic e�ects on MHD phenomena and are all based on the kinetic-MHD

formulation that is the theoretical foundation of our energetic particle physics.

To understand particle kinetic e�ects on MHD phenomena, we need to �rst understand

the limitation of the MHD model. The single 
uid MHD model treats the plasma as a

conducting 
uid and its major advantage is that the governing equations are much simpler

than the kinetic equations and properly describe the global geometrical e�ects. The basic

assumption of the ideal MHD model is that the plasma is frozen in the �eld line and moves

with the ~E � ~B drift, and the parallel electric �eld is zero. In the resistive MHD limit the

parallel electric �eld is proportional to the parallel current density through plasma resistivity.

The plasma pressure follows the adiabatic pressure law through plasma convection as well as

compression. The fundamental shortcomings of the MHD model are that (a) the magnetic

drift velocity is assumed to be small in comparison with the ~E � ~B drift velocity and (b)

kinetic e�ects such as �nite particle Larmor radius, wave-particle resonances and particle

trapping in a nonuniform magnetic �eld are ignored. Therefore, the basic assumptions of the

MHD model can become invalid when particle kinetic e�ects are important. For example,

energetic particles can signi�cantly a�ect the MHD stability because their kinetic e�ects

are vitally important due to high energy. For low frequency MHD modes with ! � !d,

where !d is the particle magnetic drift frequency and is proportional to the particle energy,

the energetic particle dynamics are no longer governed by the ~E � ~B drift, but rather
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by the magnetic (rB and curvature) drift because the particle magnetic drift velocity is

proportional to the particle energy. For MHD shear Alfv�en waves with ! = !b + !d (!b is

the energetic trapped particle bounce frequency), they can be driven unstable by energetic

particles resonating with the background waves because !b is proportional to the particle

velocity.

To take advantage of the simplicity of the MHD model and to properly take into account

major kinetic e�ects of energetic particles, we have previously developed a kinetic-MHD

model [4,6,9]. The plasma can be considered to consist of two components: (1) a low energy

core component which has the major density fraction and (2) an energetic component which

has low density, high energy and high �, and does not satisfy the MHD description. Each

component can consist of more than one particle species. Instead of employing a full kinetic

approach for all particle species, the kinetic-MHD model treats the low energy core plasma

by the ideal MHD description and energetic particles by a kinetic approach such as the

gyrokinetic equation [17] or Vlasov equation. The coupling between the dynamics of these

two components of plasmas is through the plasma pressure in the momentum equation.

Because the plasma resistivity and kinetic e�ects of the core component are neglected, the

parallel electric �eld vanishes. The kinetic-MHD model optimizes both the physics content

and the theoretical (analytical as well as numerical) e�ort, and properly accounts for the

dynamics of high-� plasma with pressure anisotropy in general magnetic �eld geometries.

It is convenient for studying low frequency MHD type instabilities, wave propagation, and

associated energetic particle transport.

In Sec. II we will review kinetic-MHD properties of plasma equilibria and present a

dynamical kinetic-MHD model that incorporates particle kinetic e�ects. In Sec. III we

present an application of the kinetic model to study the excitation of TAE instabilities by

energetic ions in tokamaks. Then, in Sec. IV we demonstrate that the kinetic-MHD model

can be successfully applied to study ballooning-mirror instabilities to understand the �eld-

aligned structure and instability threshold of compressional Pc 5 waves in the ring current

region. Finally a summary and discussion is given in Sec. V.
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II. A KINETIC-MHD MODEL INCORPORATING PARTICLE KINETIC

EFFECTS

To incorporate particle kinetic e�ects into MHD formulation we have developed a hy-

brid kinetic-MHD model [4, 6, 9] for describing low-frequency MHD phenomena in high �

(� ' O(1)) anisotropic plasmas, which can be considered to consist of two components:

a low-energy core (c) background component and an hot (h) component with low density

so that nh � nc, and Th � Tc. The particle kinetic e�ects are mainly included in the

plasma pressure through the momentum equation. The kinetic-MHD model is applicable to

magnetized collisionless plasma systems where the parallel electric �eld e�ects are negligibly

small.

A. Kinetic-MHD Equilibrium

To study particle kinetic e�ects on MHD phenomena, it is necessary to know the plasma

equilibrium structure. If the plasma convection is small, the plasma equilibrium can be

approximated by a static MHD equilibrium with anisotropic pressure, which is described

by ~J � ~B = r � P = rP? �r � [(P? � Pk)b̂b̂], r� ~B = ~J, and r � ~B = 0, where b̂ is a

unit vector along an equilibrium magnetic �eld line, and ~J , ~B, and P are the equilibrium

current, magnetic �eld, and pressure tensor, respectively. In this paper the equations will

be expressed in the rationalized MKS unit system.

Considering a general three-dimensional equilibrium with nested 
ux surfaces, the mag-

netic �eld can be expressed as ~B = r � r�, where  is chosen as the magnetic 
ux

function. Both  and � are constant along magnetic �eld lines. The lines where surfaces of

constant y and a intersect represent magnetic �eld lines. Note that  must be a periodic

function of toroidal angle � in cylindrical (R;�;Z) coordinate to ensure periodicity con-

straint. In terms of a 
ux coordinate system ( ;�;  ) with � being the generalized poloidal

angle varying between 0 and 2�, � can be expressed as � = �� q( )���( ;�; �) without
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loss of generality, where �( ;�; �) is periodic in both � and �. For tokamaks q( ) is the

safety factor. For a collisionless plasma the particle energy (E = v2=2) and the adiabatic

invariants, magnetic moment (� = v2?=2B) and the longitudinal invariant (Jk =
R
dsvk),

are constant during the drift motions, where vk and v? are the components of the velocity

parallel and perpendicular to ~B, respectively. The guiding-center equilibrium particle dis-

tribution function must have the form F = F (E; �; Jk). In general, Jk = Jk(E; �;  ; �) and

F = F (E; �;  ; �). If all particles on each �eld line share the same drift surface, where  

labels the drift surface, then Jk = Jk(E; �;  ) and F = F (E; �;  ). The guiding-center parti-

cle distributions F = F (E; �;  ) can be either prescribed by an analytical form or obtained

from the satellite measurements of the particle 
ux.

The equilibrium parallel and perpendicular pressures are given by

0
BB@ Pk

P?

1
CCA =

X
j;�k

2�Mj

Z 1

0
dE
Z E=B

0
d�
BFj

jvkj

0
BB@ 2(E � �B)

�B

1
CCA ; (1)

where the summation is over the particle species j and �k which represents the direction of

particle velocity parallel to ~B, and Mj is the particle mass. The parallel velocity vk has the

form vk = �k

q
2(E � �B). By inspection, P? and Pk are functions of  and B only.

It is convenient to introduce the functions

� � 1�
1

B

 
@Pk

@B

!
 

; (2)

� � 1 +
1

B

 
@P?

@B

!
 

: (3)

If � > 0 and � > 0 are satis�ed everywhere in the plasma, the plasma is stable to the

well-known MHD "�rehose" and "mirror" instabilities, respectively [18]. The momentum

balance equation parallel to the equilibrium magnetic �eld is given by

~B � rPk = (Pk � P?)b̂ � rB: (4)

Making use of (2) - (4), the momentumbalance equation perpendicular to the magnetic �eld

is given by
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�r?(B
2=2) + ~r?P? = ~��B2; (5)

where ~r = r� rB(@=@B) , and ~� = b̂ � rb̂ is the magnetic �eld curvature. Note that

the parallel momentum balance equation (Eq. (4)), is automatically satis�ed if the particle

distribution F (E; �;  ) is used to compute P? and Pk. From Eq. (4), � can be simpli�ed as

� = 1 + (P? � Pk)=B
2.

In general, the equilibrium solutions can only be obtained by numerical solutions of

Eqs. (4) and (5). However, to achieve analytical understanding of particle kinetic e�ects on

MHD phenomena, simpli�ed equilibrium solutions are usually employed.

B. Kinetic-MHD Model

Because the plasma usually has anisotropic pressure in both the space environment and

large magnetic fusion devices, we consider the momentumequation with anisotropic pressure

�
d

dt
~V = �r �P+ ~J � ~B; (6)

where (d=dt) = (@=@t) + ~V � r is the total time derivative, ~V is the 
uid velocity, ~B is

the magnetic �eld, P is the pressure tensor due to all particle species, and � is the total

plasma mass density. The total plasma pressure tensor can be expressed as P = P?I+(Pk�

P?) ~B ~B=B2, where Pk and P? are the parallel and perpendicular pressures, respectively, and

contain both the core and hot plasma pressures. The mass density continuity equation is

given by

d

dt
� + �r � ~V = 0: (7)

The Maxwell's equations hold: the Faraday's law, @ ~B=@t = �r� ~E, where ~E is the electric

�eld; the Ampere's law, ~J = r� ~B; and r � ~B = 0.

To close the above equations we need to prescribe the relation between the electric �eld

and the 
uid velocity as well as the dynamics of plasma pressure. If the core plasma �nite

Larmor radius (FLR) e�ect can be ignored, the Ohm's law,
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~E + ~V � ~B = 0; (8)

is usually employed so that the perpendicular 
uid motion is mainly determined by the

~E � ~B motion. If the wave-particle resonances from core particle species can be ignored,

the low energy core component can be reasonably well treated by the MHD description.

Because the hot plasma density is much smaller than the core plasma density we employ

the double-adiabatic pressure laws to relate the core plasma pressure to the plasma density;

d

dt
(
PkcP

2
?c

�5
) = 0; (9)

and

d

dt
(
P?c

�B
) = 0: (10)

If the kinetic e�ect of wave-particle resonances from all particle species is important, we

shall obtain the parallel and perpendicular pressures from the particle distribution function

f given by

Pk =
X
j

Mj

Z
d3v v2kfj

P? =
X
j

Mj

2

Z
d3v v2?fj (11)

where the summation in j is over all particle species, M is the particle mass, and vk and v?

are the particle velocity parallel and perpendicular to the magnetic �eld ~B, respectively.

If the plasma equilibrium scale length is much larger the particle gyroradii and the

perturbation scale lengths, the low-frequency gyrokinetic formulation can be employed to

describe the dynamics of all particle species for MHD phenomena. We consider waves with

! � !ci, k? > kk and assume a WKB eikonal representation for perturbed quantities, i.e.,

�f(~x;~v; t) = �f(s;~k?; ~v; t) exp
�
i
R
d~x? � ~k?

�
, where s is the distance along the equilibrium

magnetic �eld. The perturbed particle distribution function for a given species is written as

�f =
qe

M

@F

@E
� +

qe

MB

@F

@�
(�� vkAk) + [g0 �

qe

MB

@F

@�
h�Li]eiL0; (12)
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where F is the equilibrium particle distribution function, h�Li = (�� vkAk)J0 (k?v?=!c) +

(v?�Bk=k?)J1 (k?v?=!c), L0 = (~k? � ~v? � ~B)=!cB, E = v2=2, � = v2?=2B, qe is the particle

charge, !c = qeB=Mc, and �, Ak, and �Bk are the electrostatic potential, vector potential

and perturbed magnetic �eld parallel to the equilibrium magnetic �eld ~B, respectively. J0

and J1 are the Bessel functions of order 0 and 1, respectively. The nonadiabatic particle

distribution g0 is governed by the nonlinear gyrokinetic equation [17]

"
@

@t
+ (~vk + ~vd � r

#
g0 = �

2
4 qe
M

@F

@E

@

@t
�
~B �r(F + g0)

B2
� r

3
5 h�Li; (13)

where ~vd = ( ~B=B!c) � [r(�B) + ~�v2k] is the particle magnetic drift velocity. In the limit

k?�i � 1, Eqs. (12) and (13) reduce to the guiding center limit with L0 = 0 and h�Li =

(�� vkAk) + (Mc��Bk=qe). Note that the resultant guiding center drift kinetic equation is

valid even without the WKB eikonal representation of perturbed quantities.

Equations (6)-(13) form the basis of the gyrokinetic-MHD model that includes dominant

particle kinetic e�ects. When a more accurate solution of �f is required, such as in the

magnetotail region where the particle Larmor radius is comparable to the equilibrium scale

length, the Vlasov equation must be employed to solve �f in order to couple to the MHD


uid equations.

In tokamak research, the kinetic-MHDmodel has been applied to study energetic particle

physics such as the destabilization of TAE by energetic ions, and sawtooth (internal kink

mode) stabilization and �shbone mode destabilization by energetic trapped ions. In par-

ticular, the TAE instability and the associated energetic transport is at present considered

to be the most important energetic particle physics issue in the tokamak fusion research.

In the magnetospheric physics research we have also applied our kinetic-MHD models to

study magnetospheric multiscale coupling processes such as kinetic e�ects on MHD waves

in the magnetosphere and magnetopause and associated plasma transport. In particular,

we have successfully carried out a theory of ballooning-mirror instability destabilized by

energetic protons to account for the structure and stability threshold of compressional Pc

5 waves in the ring current region obtained from the multi-satellite observation. In the fol-
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lowing we shall present kinetic-MHD theories for the TAE instability in tokamaks and for

the ballooning-mirror instability in the magnetospheric ring current region.

III. ENERGETIC PARTCILE EXCITATION OF TAE IN TOKAMAKS

The study of energetic particle transport and kinetic e�ects on MHD modes is important

for fusion reactor design and operation. Energetic ions, such as alpha particles produced in

DT fusion reactions and energetic ions produced by auxiliary ICRF and N-NBI heating, are

employed to heat the core thermal plasmas. Therefore, the behavior of energetic ions should

be well understood. Any unanticipated loss of energetic/alpha particle power could result

in reduction of plasma beta, serious wall damage, impurity in
ux, major operational control

problems, or even a failure to sustain ignition. Recent NBI and ICRF experiments in large

tokamaks [19{21] have shown that the TAE [1, 2] can be strongly unstable and cause the

loss of up to half of the fast beam ions. This level of loss would be unacceptable in fusion

reactors.

The TAE mode frequency is roughly given by ! ' !A=2, where !A = VA=qR, q is the

safety factor, R is the major radius, and VA is the Alfv�en speed. The TAE can be driven

unstable by energetic/alpha particles through wave-particle resonances by taping the free

energy associated with the energetic particle pressure gradient. This mechanism can be

understood by considering the linear power transfer from energetic particles to the TAE

mode which is given by

P0 =
Z
d3vd3xq2e

 
!�F

!
+ T

@F

@E

!
(vkEk + ~vd � ~E?)

2�(! � kkvk � ~k? � ~vd); (14)

where !� is the diamagnetic drift frequency, F is the particle distribution, T is the par-

ticle temperature, E is the particle energy, ~vd is the particle magnetic drift velocity, kk is

the parallel wave vector, and Ek and ~E? are the parallel and perpendicular components of

perturbed electric �eld, respectively. Physically, the @F=@E term gives the velocity space

Landau damping, and the !� term is associated with the destabilizing pressure gradient.
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To destabilize the TAE mode, the instability drive associated with the energetic particle

pressure gradient must overcome damping e�ects due to the continuum damping (if it ex-

ists), trapped electron collisional damping, and the velocity space Landau damping from all

particle species. The TAE mode growth rate is typically on the order of 10�2!A.

A. Properties of TAE mode

The TAE frequencies are located inside the shear Alfv�en continuum gaps created due to

the toroidal coupling of di�erent poloidal harmonics [1, 2]. If the toroidicity is neglected,

the shear Alfv�en continuous spectrum can be described in its cylindrical form !2 = [(m�

nq)VA=qR]2, where n and m are the toroidal and poloidal mode numbers, respectively. The

spectrum is continuous because the safety factor and the Alfv�en velocity are functions of

the minor radius. For example, the continuous spectra of the (n;m) and (n;m+ 1) modes

cross at radial location r0, where q(r0) = (m + 1=2)=n. The degeneracy is broken by the

toroidal coupling e�ect to form a gap at r0. The continuum gap structure can be computed

by a variational principle with a Lagrangian functional [2]. For a large aspect ratio, low-�

tokamak equilibrium with circular outermost 
ux surface, the continuum gap boundary at

r0 is given to the �rst order in inverse aspect ratio (�0 = r0=R) by

!2
� = !2

0 [1 � 2(r0=R +�0(r0))] ; (15)

and the center of the continuum gap at r = r0 is given to O(�20) by

!2
0 = (VA=2qR)

2

"
1 +

3

2
(
r0

R
+�0)2 + 4

�

R
+
r0

R

2

� 2
r�0

R
+ 2g(2)

#
; (16)

where �(r) > 0 is the Shafranov shift of the non-concentric circular 
ux surfaces with

�0 = d�=dr > 0, and g(2) = �P=B2+
R a
r dr(2�rq

0=q)r=q2R2 is the plasma beta and magnetic

shear correction to the toroidal magnetic �eld. Therefore, !2
0 will shift upward more than

the widening of the gap as plasma beta increases. For TFTR supershot operations the

Shafranov shift can be large with �=a ' 0:2, and �0 can be as large as 0:3. Thus, the �nite

pressure and aspect ratio e�ects on the continuum gap structure can be quite signi�cant.
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The TAE modes had been shown [1, 2] to exist with discrete frequencies inside the con-

tinuum gap. For small (large) magnetic shear the TAE mode frequency is near the lower

(upper) continuum gap boundary. Typically, for the n = 1 TAE mode the m = 1 and

2 poloidal harmonics are dominant components and peak near the q = 1:5 surface. For

the n = 2 TAE mode the m = 2 and 3 poloidal harmonics are dominant components and

peak near the q = 1:25 surface. The existence of TAE modes depends on plasma shap-

ing, wall boundary condition, as well as the values and pro�les of safety factor q, plasma

beta �, and mass density �. For some equilibria, more than one TAE modes with di�erent

dominant poloidal components and radial structures can exist for each toroidal mode num-

ber. As the plasma beta increases or the magnetic shear decreases, the TAE frequency will

move downward into the lower continuum and the TAE mode will experience continuum

damping [22]. The beta limit above which TAE modes experience continuum damping will

be lower for higher n modes. For high-n modes, the beta threshold is roughly given by

2q2R(dP=dr)=B2 = ŝ2=(1+ ŝ) in the limit of small magnetic shear ŝ = rq0=q. The ellipticity

and triangularity of the plasma shaping will in general increase the critical beta as is the

case for the beta limit of high-n ballooning modes. The vacuum energy will increase the

TAE frequency and the presence of wall reduces the critical beta.

B. TAE Stability

In large tokamals, the energetic ion energy typically ranges from about 100 keV for NBI

ions to a few MeV for fusion product ions (3:5 MeV for alpha particles). The tokamak mag-

netic �eld is usually around 5 T. The thermal plasma density is on the order of 1014 cm�3,

and the thermal plasma temperature is on the order of 10 keV so that the thermal plasma

� is about a few percent. The energetic ion density is usually on the order of 10�2 of the

thermal plasma density, and thus the hot particle � is on the same order as (but usually

less than) the thermal plasma �. Thus, the tokamak plasma basically consists of two com-

ponents: a core thermal component and a hot component with nh << nc and Th >> Tc so
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that �h < �c. Our kinetic-MHD model is therefore ideal for studying TAE modes and the

associated energetic ion transport in tokamaks.

The linearized kinetic-MHD eigenmode equations for studying TAE stability can be

treated in the limit of zero parallel electric �eld. Considering that perturbed quantities

have a temporal dependence of exp(�i!t), and @~V =@t = �i!~�, where ~� is the plasma

displacement vector, the linearized momentum equation is given by

�!2~� = r�Pc +r � �Ph + � ~B � (r� ~B) + ~B � (r� � ~B); (17)

where � ~B is the perturbed magnetic �eld, �Pc is the perturbed core plasma pressure, and �Ph

is the perturbed hot plasma pressure tensor. The Ohm's law and the Maxwell's equations

become

� ~B = r�
�
~� � ~B

�
; (18)

and

~E = i!~� � ~B: (19)

Because the kinetic e�ect due to all particle species is important in determining the

stability of TAE modes, we shall not make use of the adiabatic pressure law and instead

compute all particle pressure responses from particle kinetic equations. By further assuming

that the perpendicular wavelength is shorter than the parallel wavelength, which is in turn

shorter than the equilibrium scale length (k? � kk � 1=L), and the particle gyroradius

is small compared to the perpendicular wavelength (k?�L � 1) for all particle species,

the perturbed particle distribution �f is determined from the guiding-center drift kinetic

equation. Then Eq. (12) can be written as

�f = ~�? � rF �
�

B2

@F

@�
~B � � ~B + ĝ: (20)

The perturbed pressures for all particle species can be written as0
BB@ �pk

�p?

1
CCA = ~�? � ~r

0
BB@ Pk

P?

1
CCA +

~B � � ~B

B

 
@

@B

!
 

0
BB@ Pk

P?

1
CCA+

0
BB@ �p̂k

�p̂?

1
CCA ; (21)
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where ~r = r�rB(@=@B) , and the particle kinetic e�ect is included in the nonadiabatic

perturbed pressures �p̂? and �p̂k, which are given by

0
BB@ �p̂k

�p̂?

1
CCA =

X
j

M

Z
d3vĝ

0
BB@ 2(E � �B)

�B

1
CCA : (22)

In the right-hand side of Eq. (21) the �rst term represents the convective derivative of

plasma pressure, and the second term represents the compressional �eld e�ect associated

with pressure nonuniformity along the �eld line. In the absence of parallel electric �eld

the drift kinetic equation for the linearized nonadiabatic particle distribution function ĝ,

Eq. (13), becomes

"
@

@t
+ (~vk + ~vd) � r

#
ĝ =

2
4 qe
M

@F

@E

@

@t
�
~B �rF

B2
� r

3
5Y; (23)

where Y = �(i~vd � ~E=! + M��Bk=qe). In terms of a Fourier series representation the

linearized nonadiabatic particle distribution function ĝ has been derived for tokamaks [4{6]

and will not be repeated here.

By taking an inner product of Eq. (17) with ~�? and integrating over the plasma volume

with the assumption of a �xed conducting plasma boundary, we obtain a quadratic form

given by

D(!) = �Wf + �Wk � �K = 0; (24)

where the inertial energy is given by

�K = !2

Z
d3x�j~�j2; (25)

the total 
uid potential energy due to both the core and hot components is

�Wf =
Z
d3x

n
j� ~B?j

2 + jr � ~�? + 2~� � ~�?j
2B2

+( ~J � ~B=B2)� ~B � ~B � ~�?? � 2(~� � ~�??)( ~J � ~B) � ~�?
o
; (26)

and the particle kinetic potential energy is
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�Wk = �
Z
d3x

2
4�p̂?r � ~�? +

�
�p̂? � �p̂k

�0@~� � ~�?? � ~B

B
� r�?k

1
A
3
5 : (27)

In deriving Eqs. (24)-(27), we have neglected the pressure anisotropy contribution from hot

particles.

The TAE growth (or damping) rate is mainly determined by the wave-particle resonance

contribution in �Wk. Because the TAE growth rate is very small in comparison with the real

frequency, typically j
=!rj ' 10�3�10�2, where ! = !r+ i
, we can perform a perturbative

analysis on the quadratic form, Eq. (24), to obtain the TAE mode frequency and growth

rate:

!2
r = f�Wf + Prin [�Wk]g =�K; (28)

and


 = Res [�Wk] =2!r�K; (29)

where [�Wk] = Prin [�Wk] + iRes [�Wk] contains the principal part and the resonance con-

tribution. The wave-particle resonances due to all particle species must be included in

Res [�Wk]. The core electron and ion distributions are taken as Maxwellians. In the nu-

merical computation of Res [�Wk] we have summed up many transit and bounce resonance

terms to ensure its convergence. In reactors one would expect the �-particle density to be

n� / P 7=2. Thus the �-particle pressure is usually quite localized around the magnetic axis

with a typical scale length being roughly 10 � 40% of the minor radius.

A global non-variational stability kinetic-MHD stability code, the NOVA-K code [6,23],

has been developed to calculate the stability of the TAE modes based on the perturbative

approach. The NOVA-K code calculates the destabilizing resonance contribution of energetic

ions (fusion alphas, ICRF heated minority ions, and NBI ions) as well as the stabilizing

e�ects of thermal particles by following the particle orbit in numerical tokamak equilibria.

The collisional damping e�ect due to trapped electron is obtained by solving the bounce-

averaged drift kinetic equation including the pitch angle scattering collisional operator, and
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no assumption on the ordering of �e=! is made, where �e is the electron collisional frequency.

Numerical results are typically given in terms of the volume averaged energetic particle beta,

< �h >, and (vh=VA) parameters. If the TAE mode does not su�er continuum damping,

the < �h > threshold for TAE instability is typically about 10�4 � 10�3 for (vh=VA) '

1. The TAE stability depends sensitively on actual tokamak equilibrium pro�les and has

been calculated for tokamak equilibria such as TFTR, JT-60U, JET, DIII-D, and ITER

[5,6,21,23{26].

One way to reduce or even stabilize the TAE instability is to control the plasma density

and q pro�les so that the radial gap structure does not line up across the minor radius, and

the TAE mode will experience continuum damping. The continuum damping e�ect on the

TAE modes has been studied numerically with the NOVA-R resistive MHD code [27], and

is typically less than 0:1% of the real frequency for resonance surface near the plasma edge.

IV. COMPRESSIONAL PC 5 WAVES AND BALLOONING-MIRROR

INSTABILITIES IN THE RING CURRENT

The kinetic-MHD model has also been successfully applied to study linear MHD insta-

bilities in the ring current region of the magnetosphere. In particular, the ballooning-mirror

instabilities have been identi�ed to be responsible for the internally driven compressional

Pc 5 waves [11{13] with wave period in the range of 150�600sec. Internally driven compres-

sional Pc 5 waves usually have large azimuthal (east-west) mode numbers (typically 50-100)

and are usually observed around the Earth's magnetic equator in the ring current region by

satellites [28] during periods of enhanced ring current intensity and are associated with high-

�, anisotropic pressure plasmas with P? > Pk. Multisatellite (SCATHA, GOES 2, GOES 3,

and GEOS 2) observations of a long lasting compressional Pc 5 wave event during Novem-

ber 14-15, 1979 [28{30] have revealed that the �eld-aligned structure of the compressional

magnetic �eld �Bk to be antisymmetric with respect to the Earth's magnetic equator with

a full latitudinal range of about 20� as shown in Fig. 1. The smaller transverse magnetic
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components, radial component �B and azimuthal component �B�, have a symmetric parity

and their polarization varies with the magnetic latitude. The wave frequencies are about one

order of magnitude smaller than the shear Alfv�en frequency estimated from the measured

plasma density and �eld-aligned wave structure near geosynchronous orbit. The internally

driven transverse waves usually have low frequency and dominant radial polarization, and

they are believed to have similar (but more extended) �eld-aligned wave structure as the

compressional Pc 5 waves [31]. The antisymmetric �Bk wave structure is now understood

due to energetic trapped particle e�ects.

A. Kinetic-MHD Eigenmode Equations

To understand the internally driven compressional Pc 5 waves we have applied the kinetic-

MHD model to study the ballooning-mirror instabilities [9, 11, 12] in the magnetospheric

ring current region, where the plasma pressure is anisotropic and is mainly contributed by

energetic ions with energy larger than 1 keV. The plasma mass density (on the order of

1 cm�3) is mainly due to core (cold) ions with energy much less than 1 keV. Near the

geosynchronous orbit, the magnetic �eld intensity is typically on the order of 100 nT, the

hot ion (mainly proton) density is typically in the range of 10�2 � 10�1 cm�3, and the hot

ion energy is typically in the range of 10�102 keV. Thus, the energetic ion � is on the order

of unity, and the core plasma � is usually much smaller than unity and can be ignored.

Because k? >> kk for internally driven compressional Pc 5 waves, we shall consider

a WKB waveform perpendicular to the ambient magnetic �eld so that r? operates only

on the perturbed quantities and r? = i~k?. We will also assume that the parallel electric

�eld vanishes so that the perturbed transverse magnetic �eld is related to the electrostatic

potential � by � ~B? � r � [ ~B( ~B � r�=!B2)]. The �eld-aligned kinetic-MHD eigenmode

equations for �̂(= �=!) and �Bk can be obtained with large azimuthal mode numbers from

Eqs. (40), (41), and (45) in the paper by Cheng [9]. The compressional magnetic �eld

equation is given by
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~B � r

�
�

B2
~B � r�Bk

�
+
�!2

B2
�Bk � k2?

2
4��Bk �

~B �r
�
P? � ~k?

B3
�̂ +

�p̂?

B

3
5 = 0; (30)

where �̂(= �=!), and r
�

= r� rB(@=@B) , and the subscript  represents the poloidal

magnetic 
ux of a L-shell magnetic surface. Equation (30) indicates that the mirror mode

can be destabilized by the combined e�ect of plasma � and pressure anisotropy with P? > Pk.

In the ideal MHD limit, mirror modes are unstable for � < 0. The transverse magnetic �eld

equation

~B � r

 
�k2?
B2

~B � r�̂

!
+
�k2?!

2

B2
�̂ +

~B � ~� � ~k?

B2

2
4 ~B �r

�
Pk � ~k?

B2
�̂ + �B�Bk� �p̂k

3
5 = 0: (31)

In the ideal MHD limit, the necessary condition is ~� �rP > 0 for unstable ballooning modes

and is � < 0 for the �rehose instability. Note that kinetic e�ects due to hot trapped particles

are included in the nonadiabatic perturbed pressures �p̂? and �p̂k. Equation (31) describes

the ballooning mode which can be destabilized by the combined e�ect of the magnetic

�eld curvature and the plasma pressure gradient. The coupling between the compressional

and transverse magnetic �eld components, which determines the stability of the ballooning-

mirror instabilities, is due to �nite perpendicular pressure gradient and the perturbed kinetic

particle pressures.

B. Quadratic Form

A quadratic form can be derived from Eqs. (30) and (31) and provides signi�cant insights

to the stability properties. We assume that the perturbed quantities vanish at the end points

of the �eld line, which means a perfectly re
ecting boundary condition at the magnetosphere-

ionosphere boundary. We �rst multiply Eq. (31) with �̂� and Eq. (30) with �Bk
�=k2?, and

then sum up these two equations. After integrating along the �eld line with ds=B, where s is

the distance along the �eld line, and performing integration by parts, we obtain a quadratic

form

D(!) = �K � �Wf � �Wk = 0; (32)
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where the inertia energy is given by

�K = !2

Z
ds

B

�

B2

"
k2?j�̂j

2 +
j�Bkj

2

k2?

#
: (33)

The 
uid potential energy is given by

�Wf =
Z
ds

B

(
�

B2
k2?j

~B � r�̂j2 +
�

B2k2?
j ~B � r�Bkj

2

+�

�������Bk �
~k? � ~B

�B3
� ~rP?�̂

������
2

� ~�p

�����k?�̂L
�����
2
9>=
>; ; (34)

with

~�p =

0
@~k? � ~B � ~�

k?B

1
A ~k? � ~B

k?B3
�

��
�

�

�
~rP? + ~rPk

�
L2; (35)

and L is the L-shell distance in the equatorial plane. The kinetic potential energy due to

all species is

�Wk =
Z
ds

B

8<
:
2
4�Bk +

~k? � ~B �r(B2=2)

B3
�̂

3
5
�

�p̂?

B
+
~k? � ~B � ~�

B2
�̂��p̂k

9=
; : (36)

In deriving the quadratic form we have made use of the equilibrium relation (Eq. (5)). In

obtaining Eqs. (34) and (36) we have also ignored the contribution of the �rst two terms in

Eq. (30). Thus the quadratic form is correct only in the limit that (�!2=B2 � k2k) � �k2?.

Usually, � is an increasing function as one moves along the �eld line from the equator

toward the ionosphere. If � is negative at the equator, it will be zero at some point along

the �eld line, and the quadratic form will be incorrect. However, within the validity limit

the quadratic form is useful in understanding the physics. In particular, �Wf displays the

various 
uid free energy sources. If � > 0 (i.e., 1 + (P? � Pk)=B
2 > 0) and � > 0 (i.e.,

1 + (1=B)(@P?=@B) > 0) are satis�ed everywhere in the plasma, the magnetosphere is

stable to the well-known MHD "�rehose" and "mirror" instabilities, respectively [18]. The

third term in Eq. (34) drives ballooning modes by pressure gradient in the bad curvature

region where ~�p > 0.
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The quadratic form (Eq. (32)), is not Hermitian, and there is no energy principle. How-

ever, if �Wk is small compared with �Wf and can be neglected, then Eq. (32) is an energy

principle and the variational technique can be applied to obtain eigenvalue and eigenfunc-

tion. In the magnetospheric ring current region it had been shown [11] that �Wk is small

compared with �Wf for �̂ and �Bk with antisymmetric structure along the north-south

symmetric equilibrium magnetic �eld lines in the low frequency limit with (! � !d) � !b,

where !d =<~k? �~vd> is the bounce-averaged magnetic drift frequency and !b is the bounce

frequency. In this limit, �Wk is of the order of ((! � !d)=!b) smaller than �Wf since the

contributions from the (!�!d) = 0 magnetic drift-bounce resonance vanishes. Therefore, if

�Wk can be neglected, two parameters, ~�p and � , will determine the MHD stability. In the

limit that the transverse and compressional magnetic �eld components decouple, it is possi-

ble that the ballooning instability can occur with perturbation localized around the region

where ~�p > 0, and the mirror mode can be unstable with perturbation localized around the

region where � < 0. In general, the transverse and compressional perturbed magnetic �eld

components couple, and the stability properties will be modi�ed.

In the limit (! � !d) � !b the drift-bounce resonance can contribute to �Wk, it was

proposed that the drift Alfv�en ballooning-mirror instability can be destabilized by hot par-

ticle pressure gradient via the magnetic drift-bounce resonance in the form of compressional

magnetic �eld with antisymmetric �eld-aligned structure [32]. The relationship between the

ballooning-mirror mode and the drift Alfv�en ballooning-mirror mode is still not yet resolved.

It is conjectured that the drift Alfv�en ballooning mirror instability may have a slightly lower-

pressure anisotropy threshold than the mirror instability. However, wave resonance with all

particle species must be included in the calculation before a de�nite answer on the stability

threshold can be concluded.
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C. Energetic Trapped Particle Stabilization of Symmetric Ballooning-Mirror Modes

Kinetic e�ects in �p̂k and �p̂? are associated with energetic trapped particles and play

an essential role in determining the stability and structure of the ballooning-mirror mode.

Without the hot particle kinetic e�ects MHD modes with symmetric structure of parallel

perturbed magnetic �eld, �Bk, and electrostatic potential, �, along the north-south ambient

magnetic �eld would be more unstable than the antisymmetric mode. However, if energetic

trapped particle kinetic e�ects are included, the symmetric ballooning-mirror mode can be

completely stabilized. This process can be understood by considering the particle dynamics

in a MHD perturbation. If the ballooning-mirror instability frequency is smaller than the

energetic trapped particle magnetic drift frequency (which is much smaller than the bounce

frequency) energetic trapped particles experience a �nite bounce-averaged wave structure

and their kinetic pressure response from �p̂k and �p̂? cancels with their 
uid pressure re-

sponse so that the symmetric mode is stabilized. Physically, the energetic trapped particles

precess rapidly across the magnetic �eld, and their motion becomes rigid with respect to

low frequency symmetric MHD perturbations.

To show the energetic particle stabilization of symmetric ballooning-mirror modes, we

consider modes near marginal stability. By assuming that j�k2kj � j�k2�j, and from Eq. (30),

we have �Bk � �( ~B � ~rP? � r�̂=B2 + �p̂?)=�B. Then Eq. (31) reduces to

~B � r

 
�k2?
B2

~B � r�̂

!
+
�k2?
B2

�̂ +
~B � ~� � ~k?

B22
4
0
@ ~B � ~rPk

B2
+
� ~B � ~rP?

�B2

1
A � ~k?�̂ + �p̂k +

��p̂?

�

3
5 = 0: (37)

In the limit of small particle gyroradius and small wave and magnetic precessional drift

frequencies, we can neglect contributions that are of the order of ((! � !d)=!b), where !b

is the particle bounce frequency, and the nonadiabatic energetic trapped particle pressure

perturbations are then given by [11]0
BB@ �p̂k

�p̂?

1
CCA =

X
j

Z
d3v

(�!@F=@E � !�F=E

!� < !d >
< Z > �

0
BB@ 2(E � �B)

�B

1
CCA+O(!=!b); (38)
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where Z = qe!d�̂ +M��Bk, the trapped particle bounce average of Z is given by <Z >=

H
dsZ=jvkj=

H
ds=jvkj with the integration along the trapped particle trajectory in one bounce

period, !� =ME0( ~B �r lnF � ~k?)=qeB2, and ME0 is a typical particle energy.

We consider low-frequency MHD modes with symmetric �̂ and �Bk structures. To carry

out the velocity integration in Eq. (38), we further assume ! � !�, <!d >, and <Z >�

qe < !d > �̂ so that in the fast bounce timescale trapped particles experience the local

wave structure. These approximations are reasonably good because the �Bk term is small

in comparison with the potential term in Z, and the average wave perturbation that deeply

trapped particles experience in a fast bounce period is not very much di�erent from the local

values for symmetric �̂ and �Bk waves. Equation (38) can be integrated to give

0
@ ~B � ~rPk

B2
+
� ~B � ~rP?

�B2

1
A � ~k?�̂ + �p̂k +

�

�
�p̂? � 0; (39)

which shows that the 
uid magnetic �eld curvature-pressure gradient driven term in the

ballooning mode equation (Eq. (37)), is canceled by the nonadiabatic hot trapped particle

pressure response. Therefore symmetric �̂ and �Bk eigenmodes are stable. Physically, the

hot trapped ion stabilization of ultra low frequency (! � !�; < !d >) MHD modes with

symmetric �̂ and �Bk structure is due to the fact that the hot trapped ion dynamic is no

longer governed by the ~E� ~B drift, but rather by the magneticrB and curvature drifts. To

perturb the hot trapped ion pressure, the hot ion precession orbit must be perturbed through

the perturbed electric and magnetic �elds. Since the hot trapped ions precess very rapidly

across the ~B �eld, their motion becomes very rigid with respect to the ULF symmetric

MHD perturbation. Equation (39) indicates that the nonadiabatic hot trapped ion pressure

changes through the perturbed perpendicular magnetic �eld (through electrostatic potential

�) so that their total pressure perturbation due to both the 
uid and kinetic responses is

zero (see Eq. (21) in the limit of small �Bk).
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FIG. 1. A comparison of the �eld-aligned structure of the perturbed magnetic �eld between a

theoretical solution of an antisymmetric ballooning-mirror mode and the multi-satellite (SCATHA,

GOES 2, GOES 3, GEOS 2) observation of a long lasting compressional Pc 5 wave event during

November 14-15, 1979.
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D. Antisymmetric Ballooning-Mirror Instabilities

On the other hand, from Eq. (38) the nonadiabatic perturbed hot trapped ion pressures

responding to low frequency antisymmetric �̂ and �Bk perturbations are vanishingly small

because the trapped ion bounce orbit average of antisymmetric waves vanishes on the faster

bounce timescale. This is due to the fact that the hot trapped ions bounce very rapidly

along the north-south symmetric �eld line and the nonadiabatic (kinetic) hot trapped ion

pressure response from antisymmetric �̂ and �Bk perturbations in the northern hemisphere

cancels that from the southern hemisphere. From Eq. (37) the hot ion 
uid pressure response

survives and determines the ballooning-mirror mode stability. Therefore, the antisymmetric

ballooning-mirror modes have the lowest critical � threshold for instability, and we expect

that the ULF waves observed in the ring current region should have antisymmetric �̂ and

�Bk �eld-aligned structures. The conclusion was also previously pointed out [9,11,12].

However, for antisymmetric modes the energetic trapped particle kinetic pressure re-

sponse from the northern hemisphere cancels with that from the southern hemisphere in

a bounce period so that both �p̂k and �p̂? vanish, and the instability � threshold is deter-

mined by the energetic particle 
uid free energy. For (P?=Pk) � (1+1=�?), the �eld-aligned

structure of the antisymmetric ballooning-mirror instability agrees with the multi-satellite

observation of compressional Pc 5 wave structure [28{30]. In Fig. 1 we present a comparison

of the �eld-aligned structure of the perturbed magnetic �eld between a theoretical solution of

an antisymmetric ballooning-mirror mode and the multi-satellite (SCATHA,GOES 2, GOES

3, GEOS 2) observation of a long lasting compressional Pc 5 wave event during November

14-15, 1979 [29, 30]. The numerical solution was obtained for bi-Maxwellian plasmas in a

dipole magnetic �eld with the equatorial parameters: P?=Pk = 2, �k = 0:575(� = �0:149),

@ lnP=@ lnL = �5, and L = 6:6. The agreement between the observation and our the-

ory strongly suggests that this particular multi-satellite observation is related to marginally

unstable ballooning-mirror modes with � value close to zero, where � = 1+ �?(1� P?=Pk).

Figure 2 shows the theoretical stability boundaries of the antisymmetric ballooning-

24



α 

τ

p

−1 0 1
1

10

10

10
2

3



FIG. 2. A comparison of the theoretical stability boundaries of the antisymmetric balloon-

ing-mirror modes for di�erent @ lnP=@ lnL values in the equatorial (�; �p) space against \observed"

values computed from the AMPTE/CCE particle data acquired with the ion charge-energy-mass

spectrometer (CHEM) for 10 Pc 4-5 compressional and transverse wave events.

mirror modes for di�erent @ lnP=@ lnL values in the equatorial (�; �p) space, where �p

represents the ballooning instability parameter and is given by

�p =
k2�

k2?
(�cL)

"
�

�

P?

B2

@ lnP?
@ lnL

+
Pk

B2

@ lnPk
@ lnL

#
; (40)

where �c is the normal magnetic �eld curvature across the L-shell. Note that �p and � are

not linearly independent and for � < 0 the �p threshold is also negative, and we have plotted

absolute value of �p in Fig. 2 for � < 0. Above the marginal stability boundary curves the an-

tisymmetric ballooning-mirror modes are unstable. The marginal stability boundary curves

in the equatorial (�; �p) space are very close to each other even for 100 > @ lnP=@ lnL > 1.

This probably holds even for di�erent type of particle velocity distributions. This property
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is useful when we compare theoretical calculations with satellite observations where infor-

mation on @ lnP=@ lnL and particle velocity distribution either is unavailable or cannot

be obtained accurately. To test the theoretical antisymmetric ballooning-mirror instability

threshold against observations we have computed values of � and �p from the AMPTE/CCE

particle data acquired with the ion charge-energy-mass spectrometer (CHEM) for ten Pc 4-

5 wave events [13]. In Fig. 2 we also plotted the \observed" values of � and �p against

the theoretical stability threshold. The symbol \O" represents compressional wave events

and the symbol \+" represents transverse wave events. When there is no wave activity the

values of � and �p tend to be well below the antisymmetric ballooning-mirror instability

thresholds. The transverse and compressional wave events clearly occupy di�erent domains

in the (�; �p) space. For compressional wave events the values of � and �p are either near

or above the theoretical stability boundary curves of the antisymmetric ballooning-mirror

modes with � � 0:6 and O(10) � �p � O(103). The transverse waves tend to occur when

� is close to unity and 1 � �p � O(10), which are at least one order of magnetitude below

the theoretical antisymmetric ballooning-mirror instability threshold.

Therefore, we have demonstrated that internally driven compressional Pc 5 waves are

caused by antisymmetric ballooning-mirror modes and can be successfully studied by our

kinetic-MHD model [9, 12]. They represent genuine multiscale kinetic-MHD phenomena;

fast time scale trapped particle motion strongly couples to slow time scale MHD modes. We

emphasize that the ideal MHD theory predicts an opposite result from our kinetic-MHD

theory which is in close agreement with the observations.

V. SUMMARY AND DISCUSSION

In this paper we have presented a kinetic-MHD model for studying low frequency mul-

tiscale phenomena in a two component plasma (a low-energy core component and a high-

energy low-density component) by taking into account the simplicity of the single 
uid MHD

model and major particle kinetic e�ects. If we can ignore the �nite Larmor radius (FLR)
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e�ect of the low-energy core plasma, the Ohm's law is used to relate the core plasma 
uid

velocity with the electric �eld. If the wave-particle resonance e�ects of the low-energy core

plasma can be ignored, the pressure of the low-energy core plasma can be described by the

double-adiabatic pressure law. If the wave-particle resonance e�ect of the low-energy core

plasma is important, a drift kinetic equation can be employed to describe the core plasma

dynamics. For energetic particles a kinetic approach such as the gyrokinetic equation must

be employed to describe the particle dynamics. The coupling between the kinetic particle

dynamics and the MHD 
uid is through the plasma pressure in the momentum equation.

The major advantage of the kinetic-MHD model is that important kinetic e�ects can be

accurately described with a minimum modi�cation to the single 
uid MHD equations. We

note that important particle kinetic e�ects such as FLR e�ects of energetic particles and

resonant wave-particle interactions of all particle species are included.

Based on the kinetic-MHD model we have successfully studied the energetic particle

excitation of TAEs in tokamak plasmas. By employing a perturbative approach we have

developed a global non-variational kinetic-MHD stability code, the NOVA-K code, which

includes wave-particle resonance e�ects for all particle species to determine the TAE stability.

The numerical results were able to explain TAE activities observed in major tokamaks such

as TFTR, JT-60U, DIII-D, and JET. The NOVA-K code has also been used for studying

the TAE stability issue in ITER.

The kinetic-MHD model has also been successfully applied to study ballooning-mirror

instabilities to understand the �eld-aligned structure and instability threshold of compres-

sional Pc 5 waves in the ring current region. For ballooning-mirror instabilities in the ring

current region, the plasma pressure is mainly contributed by hot ions and the core ion kinetic

e�ects can be neglected. The hot trapped particle e�ects stabilize ballooning-mirror modes

with symmetric �eld-aligned �Bk structure because hot ions precess very rapidly across the

magnetic �eld and their motion becomes rigid with respect to symmetric ballooning-mirror

modes. On the other hand, the bounce motion of hot trapped ions is very rapid and their

kinetic e�ects average out in a bounce period for antisymmetric ballooning-mirror modes.
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Thus, the threshold of antisymmetric ballooning-mirror instabilities is determined by the

MHD 
uid free energy. The ballooning-mirror instability represents a genuine example of

multiscale kinetic-MHD phenomena; fast time scale trapped particle motion strongly cou-

ples to slow time scale MHD modes. We emphasize that the MHD theory would predict an

opposite result from our kinetic-MHD theory which is in close agreement with the observa-

tions.

Finally, it is worthwhile to point out that we have recently extended the kinetic-MHD

model presented in this paper by developing a generalized single 
uid MHD model that

treats core plasma FLR e�ects [10]. The major advantage of the new kinetic-MHD model

is that important kinetic e�ects can be accurately described with minimum modi�cation to

the single 
uid MHD equations. The generalized MHD model for the core plasma includes

the parallel electric �eld, modi�ed perpendicular velocity and gyroviscosity tensor due to

core ion FLR e�ects, which are neglected in the single 
uid MHD description. The per-

turbed core plasma density, velocity and pressure tensor (consisting of the diagonal pressure

and gyroviscosity) are determined from approximate solutions of the gyro-kinetic equation.

From the quasineutrality condition, we obtain the parallel electric �eld, which arises from

the ion polarization drift and parallel electron inertia e�ects. The generalized Ohm's law

contains core ion FLR e�ects on the parallel electric �eld and the perpendicular 
uid veloc-

ity. The kinetic-MHD model is closed by generalized pressure laws, which contain kinetic

e�ects from both the core and energetic plasma components. We note that the generalized

MHD equtions properly retain important MHD e�ects such as background density, temper-

ature and magnetic �eld gradients; magnetic �eld curvature; large plasma �; and pressure

anisotropy. We also note that important energetic particle kinetic e�ects such as FLR; res-

onant wave-particle interactions; and bounce resonance are added. These kinetic e�ects are

essential when describing multiscale coupling processes.
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