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Abstract

The microinstability properties of discharges with negative (reversed) magnetic

shear in the Tokamak Fusion Test Reactor (TFTR) and DIII-D experiments with

and without confinement transitions are investigated. A comprehensive kinetic lin-

ear eigenmode calculation employing the ballooning representation is employed with

experimentally measured profile data, and using the corresponding numerically com-

puted magnetohydrodynamic (MHD) equilibria. The instability considered is the

toroidal drift mode (trapped-electron- mode). A variety of physical effects associ-

ated with differing -profiles are explained. In addition, different negative magnetic

shear discharges at different times in the discharge for TFTR and DIII-D are ana-

lyzed. The effects of sheared toroidal rotation, using data from direct spectroscopic
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measurements for carbon, are analyzed using comparisons with results from a two-

dimensional calculation. Comparisons are also made for nonlinear stabilization as-

sociated with shear in . The relative importance of changes in different

profiles (density, temperature, , rotation, etc.) on the linear growth rates is consid-

ered.
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I. INTRODUCTION

The properties of drift-type microinstabilities are addressed for negative (reversed) magnetic

shear discharges in the Tokamak Fusion Test Reactor (TFTR) and DIII-D tokamak experi-

ments. In particular, application of a fully kinetic linear instability calculation is made to these

tokamaks. The instability studied is the electrostatic toroidal drift mode, which is destabilized

by the combined effects of trapped-electron magnetic-drift precession frequency resonances and

of ion temperature gradients. The theoretical tool employed here is the comprehensive kinetic

toroidal microinstability code, known as the “FULL” code, described in detail in Refs. 5 and 6,

which has been compared with alternative calculation methods for equivalent instability equations

in Ref. 7. An approach used here is to vary the minor radius and other parameters and observe the

resulting changes in the linear growth rates and real frequencies.

One question considered here is whether linear theory by itself is sufficient to account for the

relatively sudden confinement transitions observed in the negative magnetic shear discharges in

these two devices. This turns out not to be the case, since the linear growth rates for the instability,

and the resulting quasilinear transport, are determined by the equilibrium density, temperature, ,

and bulk plasma rotation profiles, along with the magnetohydrodynamic (MHD) equilibrium, all

of which change only on the slow, transport time scale. For the cases considered, the evolution of

the density and temperature profiles has more influence for the changes in the growth rate curves

than the evolution of the profile. Thus, some additional effect, which allows changes on a faster

time scale, has to be considered. One possibility is the nonlinear stabilization due to

shear, since can change on a faster time scale.

Changes in the q-profile associated with the introduction of negative magnetic shear affect this

instability in more than one way. In addition to the direct effect of changing the magnetic shear

parameter on the magnetic drifts, or “bad curvature”, pointed out originally by

Kadomtsev and Pogutse in Ref. 10, there can be additional effects of changing the local value of

itself on the mode, associated with changes in the ion Landau damping, in the Shafranov shift,

and in the size of the ion sound term and therefore in the strength of the ion temperature gradient
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destabilization mechanism. The overall effect combines all of these things.

In order to roughly assess the effects of rotation on these instabilities, several different ap-

proaches are compared. An approximate toroidal rotation model derived in Refs. 11 and 12 is em-

ployed. This rotation model has associated destabilizing and stabilizing effects which are mainly

due to changes in the total particle drifts resulting from the toroidal rotation and the associated

centrifugal force, with the corresponding self-consistent radial electric field. In addition, stabiliz-

ing effects due to radial shearing of the eigenfunction were also observed in the two-dimensional

calculation of Refs. 11 and 12, and these additional rotational effects are modeled here by means of

the ballooning parameter, . Finally, the linear growth rates can be compared with the nonlin-

ear decorrelation frequency

discussed in Refs. 8 and 9. It has been suggested in Ref. 8 that when

, nonlinear stabilization may be sufficient to completely suppress this linearly unstable

mode.

The FULL code is employed for calculating the linear eigenfrequencies and eigenfunctions of

high- (toroidal mode number) toroidal instabilities, using the ballooning representation. These

calculations focus on the lowest order in ballooning representation solutions, for which the

analysis is local to a single, chosen magnetic surface, though the “ ” correction term is calcu-

lated for one case to verify that it is small. The calculation includes transit frequency resonances

for untrapped particles of each species, bounce frequency and magnetic drift precession frequency

resonances for trapped particles of each species, finite Larmor radius effects to all orders, and finite

banana orbital dynamics. Collisions are included by means of a Krook collision operator that has

been adjusted to give growth rate results close to those which would be obtained with a Lorentz

operator, as described in Ref. 7. Using these eigenfrequencies and eigenfunctions, the FULL code

can also calculate the corresponding quasilinear fluxes of particles and energy for each plasma

species in terms of an externally-specified nonlinear saturation level.

The calculation is interfaced with realistic, numerically calculated MHD equilibria. In gen-

eral, we use finite plasma pressure/toroidal magnetic pressure ( ) numerical MHD equilibria, but

employ the electrostatic version of the instability calculation for the toroidal drift branch. This
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is done because we know from prior results that the dominant finite- effect on the eigenfre-

quency comes through the MHD equilibrium, and the direct coupling effects of the perturbed

electrostatic potential to the perturbed magnetic vector potential are much smaller for the present

range of values. Also, in these calculations, the equilibrium velocity distribution function is

usually taken to be a Maxwellian for all species, including the hot beam ion species and the car-

bon impurity species. However, a slowing-down distribution is also sometimes employed for the

hot beam species. It turns out numerically to make little difference whether a Maxwellian or a

slowing-down distribution is used for the beam species in these cases.

In Sec. II, the various physical effects associated with changes in the -profile are explained. In

Sec. III, calculation results for TFTR and DIII-D negative magnetic shear discharges are presented

in the absence of plasma rotation. In Sec. IV, several different ways of including rotational effects

are presented, and results are shown for several TFTR cases. Conclusions are given in Sec. V.

II. PHYSICAL EFFECTS OF -PROFILE CHANGE

The toroidal drift mode can be destabilized either by the trapped-electron time-average toroidal

magnetic precession drift resonance mechanism (collisionless trapped-electron mode mechanism)

or by the ion temperature gradient (ITG or ) nonresonant mechanism. Accordingly, the toroidal

drift mode can be stabilized completely only if both of these driving mechanisms are suppressed

simultaneously. Changes in the -profile, for instance from an ordinary positive magnetic shear

profile (with ) to a negative magnetic shear profile (with ) can affect the instability in

more than one way. The direct effect of changing on the trapped-particle orbit-average magnetic

drift frequency for species , , was originally pointed out by Kadomtsev and Pogutse in Ref. 10.

We denote the pitch-angle dependent part of as , where ,

and is a pitch-angle variable that goes from zero for the most deeply-trapped particles to one

at the trapped-passing boundary. is shown in Fig. 1 for two identical DIII-D cases, except

that one case has a monotonically increasing -profile ( ) and the other has negative

magnetic shear ( ) at this minor radius. Positive corresponds to destabilizing,
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FIG. 1. Pitch-angle dependence of trapped-particle orbit-average magnetic drift frequency, for DIII-D

discharge 84736 at s and , with numerically-calculated MHD equilibrium.

or “bad”, curvature of the magnetic field lines, and negative corresponds to stabilizing, or

“good”, curvature. It can be seen in Fig. 1 that going from positive to negative lowers the

curve for all . Also, for positive , is negative only for a small fraction of barely trapped

particles, while for negative , becomes negative for almost half of the trapped particles; this

change for these particles is referred to as “drift reversal”.

The effect of this change on the linear growth rate of the toroidal drift mode is shown for a

TFTR case in Fig. 2. For purposes of illustration, we temporarily employ the – model MHD

equilibrium, because it allows us to vary while keeping all of the other equilibrium parameters

fixed, including . Here, is the radially-local growth rate at lowest-order in in the ballooning

6



FIG. 2. Linear growth rate versus magnetic shear parameter , for electrostatic toroidal

drift mode with parameters of TFTR discharge 84011 at s and with carbon and

Maxwellian beam, with and , for – model MHD equilibrium.

representation. It is seen that decreases strongly as decreases, due mainly to the reduction in

the strength of the collisionless trapped-electron mode destabilization mechanism.

However, other physical effects on the toroidal drift mode depend on the local value of , rather

than on its radial derivative. First, the strength of the local ion Landau damping depends on in

the following manner. When increases, , which can be estimated as for the ions

where , decreases. In the usual analytic limit where , this implies that

the ion Landau damping will decrease, so that the linear growth rate will increase. This effect

is illustrated in the upper curve in Fig. 3 for the same – model MHD equilibrium case as in
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FIG. 3. versus , for case of Fig. 2, without ( ) and with ( ) Shafranov shift effect, for fixed

.

Fig. 2, but with set to zero, so that the Shafranov shift effect is not included. Here, is seen to

increase monotonically with .

Then, when nonzero values of are included, increasing implies increasing

values of , and thus of the Shafranov shift, so that the amount of “bad curvature” decreases and

thus decreases. This effect is illustrated in the lower curve in Fig. 3, where, above a certain value

of , increasing corresponds to decreasing .

Finally, changing can affect the strength of the ion temperature gradient destabilization mech-

anism directly. For increasing in the limit , this mechanism depends on the ion sound

term, which is proportional to , so that the term decreases, thereby decreasing the
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strength of the mechanism and decreasing the growth rate. The overall effect of changing the

-profile will be some combination of all of these effects.

III. RESULTS WITHOUT ROTATION

In both the TFTR and DIII-D experiments, confinement transitions associated with negative

magnetic shear in the interior region of the plasma have been observed. These transitions take

the form of relatively sudden decreases in the amount of anomalous transport in one or more of

the channels (particle transport, electron energy transport, ion energy transport) to substantially

below their ordinary anomalous levels. These regions can thus be referred to as “internal transport

barriers”. For TFTR, these are referred to as “enhanced reversed shear” (ERS) transitions, as dis-

tinguished from the “reversed shear” (RS) state with the normal anomalous transport. These ERS

transitions are further classified for TFTR as “Type-I” transitions, where mainly the confinement

of improves, and “Type-II” transitions, where the confinement of and improves, along with

that for . For DIII-D, they are referred to as “negative central shear” (NCS) transitions, or as

the more gradual “weak or slightly negative magnetic shear” (WNS) transitions.

An example of a TFTR Type-I ERS transition occurred in TFTR discharge 84011, over a time

scale of 30 ms or so, from s to s. Changes over a longer, “transport” time scale

are seen after 300 ms at s. The corresponding experimentally-derived profiles of , ,

, and are shown in Fig. 4 versus . The resulting profile for

is also shown in Fig. 4. Results from the FULL code for the electrostatic toroidal drift mode are

shown in Fig. 5. The linear growth rates for this instability, maximized over or , are

shown in Fig. 5(a) versus , from a calculation including a carbon impurity species and a hot

deuterium beam species with a slowing-down equilibrium distribution function. This instability

normally has a stable region adjacent to the magnetic axis, but the width of this stable region can

change from case to case and with time. For this TFTR discharge at s and s,

the stable region extends out to , while for s, it has widened to ,

mainly due to the decrease in in this region caused by the increase in and in .
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FIG. 4. Experimental profiles for TFTR Type-I ERS discharge 84011 versus , at s, 2.73 s,

and 3.00 s, for (a) , (b) , (c) , (d) , and (e) .
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FIG. 5. Results from FULL code for electrostatic toroidal drift mode with carbon and slowing-down

beam, with maximized over or , for cases of Fig. 4, for (a) and , (b)

real frequency , and (c) , versus , and (d) versus at selected radii
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However, for , increases from s to s, due to the increase of

the ion temperature gradient in this region, as seen in Fig. 4(a). The corresponding curves for the

nonlinear decorrelation frequency at the three times are also shown in Fig. 4(a). only

out to for s and s, while out to for

s. Thus, this nonlinear stabilization may cause some moderate additional widening of the stable

regions.

The corresponding real frequencies for the instability are shown in Fig. 5(b). At

s and s, the real frequency is mainly in the ion diamagnetic direction due to the large

value of . However, for , is in the electron diamagnetic direction because

there. The toroidal drift mode can be destabilized by the ion temperature gradient

mechanism only for , while it can be destabilized by the trapped-electron toroidal

precession resonance mechanism for any value of ; can be roughly estimated as being

around 1.5, though it depends on other parameters. At the later time, s, has decreased

by a factor of two for and has correspondingly moved into the electron

diamagnetic direction there.

The values of that maximize , , are shown in Fig. 5(c). depends

on many parameters, but generally it tends to increase when decreases, and vice-versa. Here,

is of order 0.8 to 1.0 for smaller radii, where is smaller, and of order 0.3 to 0.4 for

larger radii, where is larger. The dependence of on is shown in Fig. 5(d) for a selected

radius at each time.

The “ ” correction term in the ballooning representation is calculated from the formula

, where is the lowest order mode frequency.

Here, the derivatives are evaluated at and ballooning parameter , the values which

maximize . For or , and , as expected for an up-down

symmetric equilibrium. At this radius, . Evaluating the derivatives numerically gives

s , compared to s , so that

. Thus, omitting the “1/n” correction term even in this case where is small still

gives an acceptably small error, and it will be omitted in the other cases in this work as well.
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FIG. 6. (a) Experimental and (b) quasilinear ratios versus for cases of Figs. 4 and 5.
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Using these results for the eigenfrequencies and the associated eigenfunctions, the FULL code

calculates the particle flux and the total energy flux for each species for this value of or

. From these fluxes we construct the thermal diffusivities and

, where the summation is over all thermal ion species,

which are the background deuterium ions and the carbon impurity ions for the present case. These

definitions are chosen to match those used in the “TRANSP” experimental data analysis code.

While the quasilinear and individually depend on the nonlinear saturation level, the ratio

is independent of the saturation level, and can be compared to the corresponding exper-

imental ratio computed from the TRANSP code results. The experimental ratios are shown in

Fig. 6(a) and the quasilinear ratios are shown in Fig. 6(b) for the three times. Concentrating on the

radial region , the experimental ratio has a noticeable decrease from s

to s, and then drop to a level consistent with zero at s. The quasilinear ratio,

however, can only respond substantially on a transport time scale because it is determined by the

profile input data, which changes on that time scale. Thus, the quasilinear ratio is generally the

same in this radial region for s and s, but then decreases to a value that is small

but nonzero by s. This is mainly due to the decrease in in this region, from being

larger than for s and s to being slightly less than at

s. It is known from previous results that is normally the dominant transport coefficient for

, while is normally the dominant transport coefficient for . Thus, the

change in the quasilinear ratio for the present case is in the expected direction. Also, the electron-

ion energy exchange term implemented in the TRANSP code is approximate, so the experimental

ratio is correspondingly uncertain. Over the transport time scale, the quasilinear ratio reproduces

most of the change seen in the experimental ratio in this radial region where the internal trans-

port barrier has formed. However, the quasilinear ratio change can not account properly for the

experimental change on the faster 30 ms time scale.

A useful comparison can be made of “matched” TFTR discharges which start out being almost

identical, but one discharge (88299) exhibits a Type-I ERS confinement transition, while the other

(88298) does not. These two discharges are compared from an experimental point of view in
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FIG. 7. Results for and versus for TFTR (a) Type-I ERS discharge 88299 and (b) non-ERS

discharge 88298, at s, with for electrostatic toroidal drift mode with carbon and Maxwellian

beam, (maximized over at solid points).
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Ref. 19, including results of fluctuation measurements in the two discharges, showing a very low

level of fluctuations over a larger radial distance from the magnetic axis in the ERS discharge

than in the non-ERS discharge. Results have been obtained from the corresponding FULL code

calculations for the electrostatic toroidal drift mode, including a carbon impurity species and a hot

deuterium beam species with a Maxwellian distribution function, with maximized over or

. For (just after the ERS transition time in the ERS discharge), is shown in Fig. 7(a)

for the discharge that did have the ERS transition, and in Fig. 7(b) for the discharge that did not

have the transition. is actually larger in the ERS shot, but is also larger, and tracks along

with out to , while for the non-ERS discharge, only out to , and

further out becomes much smaller than . This presumably wider stabilized region for the ERS

discharge correlates with the wider experimentally-observed region of low fluctuation level.

Another type of ERS confinement transition which takes place in TFTR is the Type-II tran-

sition, where not just , but also and , start increasing strongly near the plasma center at

or after the ERS transition time, as seen in TFTR discharge 91222. Results were obtained from

the FULL code for the electrostatic toroidal drift mode including a carbon impurity species and a

Maxwellian hot beam species for s, the ERS transition time. Results for , , and , for

maximized over , are shown in Fig. 8(a) and for and in Fig. 8(b). These results

show a strongly unstable region for , whose width is not appreciably affected by

. Thus, for this Type-II transition, the combination of and does not appear to be sufficient

to account for this transition. This suggests that the mechanism for TFTR Type-II transitions may

be different in some qualitative sense from that for Type-I transitions.

Confinement transitions of a somewhat different type are seen in DIII-D. After the NCS tran-

sition for DIII-D discharge 84736, the confinement of has a large increase, along with some

change in the shape of the profile, while and only have much smaller increases. In partic-

ular, before the transition at s, decreases strongly with radius from the magnetic axis,

while after the transition at s, has a flat region next to the magnetic axis and decreases

strongly further out. Results from the FULL code for the electrostatic toroidal drift mode with a

carbon impurity species and a Maxwellian hot beam species are shown in Fig. 9(a) for ,
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FIG. 8. (a) Results for and versus for TFTR Type-II ERS discharge 91222 and (b) corre-

sponding values of and , at s, with for electrostatic toroidal drift mode with carbon

and Maxwellian beam, with maximized over .
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FIG. 9. FIG. 9. (a) Results for versus for DIII-D NCS discharge 84736 and (b) corresponding

values of and , at s and 1.2 s, with for electrostatic toroidal drift mode with carbon and

Maxwellian beam, with .
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FIG. 10. (a) Results for versus for case of Fig. 9 at s, and for same case but with artificial

monotonic profile. (b) corresponding profiles.
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the value which maximizes for . Fig. 9(b) shows the corresponding profiles of

and . Due to the change in the profile, the maximum in moves outward, and the value of

decreases for . The linear growth rate decreases for , mainly due to the

changes in the density and temperature profiles. The profile changes very little over this 200

ms interval, and thus contributes very little to the change in the growth rate curve. However, the

moderately negative magnetic shear for is somewhat stabilizing, as can be seen from

Fig. 10, where results for an artificial case for s with a monotonically increasing -profile

are compared with results for the actual negative central shear profile. The stable region adjacent

to the magnetic axis is slightly wider for the negative central shear case. This DIII-D discharge is

discussed in an experimental context in Ref. 16. As shown in Fig. 5 of Ref. 16, additional width

of the stabilized region, due to the increase in with time, is needed to explain the increase in

width of the region in which the experimental total thermal conductivity is reduced.

Another type of discharge obtained in DIII-D is the WNS discharge, which is also discussed

from an experimental point of view in Ref. 16. For WNS discharge 84713 at s, results

have been obtained from the FULL code for the electrostatic toroidal drift mode with a carbon

impurity species and a Maxwellian hot beam species for , the value which maximizes

at . The , , and profiles are shown in Fig. 11(a) and the corresponding

and profiles in Fig. 11(b). The H-mode-like density profile is almost flat for ; in this

region is extremely large and is correspondingly in the ion diamagnetic direction. In the

edge region, , the density gradient becomes large, is small, and the real frequency

is correspondingly in the electron diamagnetic direction. The central stable region for this case

extends out from the magnetic axis to . Note that for all radii, suggesting overall

stabilization of this instability. This is consistent with the experimental finding (cf. Fig. 11 of

Ref. 16) that is of the order of the standard neoclassical throughout the plasma interior.
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FIG. 11. Results for (a) , , and and (b) and , versus for DIII-D WNS discharge 84713

at s, for electrostatic toroidal drift mode with carbon and Maxwellian beam, for .
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IV. ROTATIONAL EFFECTS

The effects of sheared toroidal plasma rotation are estimated here by means of an approximate

toroidal rotation model derived in Refs. 11 and 12. In this model, the toroidal rotation causes

different centrifugal forces for the ions and electrons, which are balanced by an electric field. The

drift associated with this electric field gives additional terms which add on to the usual

magnetic curvature and gradient drift frequency terms, which are both linear and quadratic in the

toroidal rotation frequency, and which can be either stabilizing or destabilizing. The additional

drift terms include one proportional to the shear in the toroidal rotation frequency. Also, in the

resonant numerator, along with the density gradient and temperature gradient terms, an additional

(Kelvin-Helmholtz) term proportional to the toroidal rotation frequency shear appears.

This rotation model makes a number of significant approximations. First, in the usual radial

force balance expression, , this rotation model only accounts

for the first, toroidal rotation, term and effectively omits the poloidal rotation term (which is exper-

imentally observed to be small in the plasma interior) and the ion pressure gradient term. Second,

the rotation model assumes the same toroidal rotation frequency for all species. Third, the rotation

model assumes a model toroidal geometry with circular, concentric, large-aspect-ratio magnetic

surfaces, whereas all of the rest of the instability calculation allows general, numerically-calculated

magnetic surfaces of arbitrary cross-sectional shape and aspect ratio. These limitations are not ex-

pected to change the overall rotational effect in a qualitative sense. The numerically largest effect

of the toroidal rotation is a Doppler shift of the real frequency of the mode. It should be empha-

sized that this model is for the linear effects of sheared toroidal rotation of the bulk plasma, and is

distinct from the effects of the nonlinear decorrelation frequency

discussed in Refs. 8 and 9. Also, it has been pointed out previously that large plasma toroidal

rotation velocities invalidate the usual one-dimensional ballooning representation; however, for

sufficiently small toroidal rotation velocities, the ballooning representation is still usable, accord-

ing to Ref. 21.

This toroidal rotation model was first applied in the two-dimensional, low- calculation de-
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scribed in Refs. 11 and 12. Strong stabilization of electrostatic toroidal drift modes (trapped-ion

modes) was seen for moderate values of the Mach number on the magnetic axis,

, where is the local toroidal rotation velocity. For instance, Fig. 8 of Ref. 12

shows a factor of two reduction in the linear growth of the trapped-ion mode for normal

TFTR L-mode parameters for . Associated with this value of the rotation is a strong

“shearing” of the eigenfunction, as shown in Fig. 10 of Ref. 12. With increasing , the individ-

ual eddies of the eigenfunction around the magnetic field minimum at become increasingly

twisted and radially narrowed, corresponding to an increase in the local effective . On the other

hand, for positive (negative) , the local eddies at some negative (positive) values of are not

twisted or radially narrowed. Thus, the poloidal angle corresponding to the minimum effective

value of in the two-dimensional eigenfunction shifts to increasingly negative (positive) values

with increasing positive (negative) . This effect of the radial shearing of the eigenfunction is in

addition to the direct effect on the growth rate of the additional particle drifts.

This approximate toroidal rotation model has been implemented in the ballooning-

representation FULL code in two parts. First, the additional particle drifts and the other direct

effects of toroidal rotation, as described in Refs. 11 and 12, have been added. Several DIII-D

monotonic- cases have been treated with this form of the rotation model in Ref. 22. Second, the

effect of the radial shearing of the eigenfunction has been modeled by means of the parameter of

the ballooning representation called the “ballooning parameter”, . In the absence of rotation,

is set to the value which maximizes the growth rate, which for an up-down symmetric equi-

librium is normally . However, with toroidal rotation, can be used instead to model

the change seen in the two-dimensional results in the effective value of with changing toroidal

rotation, since, in the ballooning representation, . Thus, at , is proportional

to . In particular, we can make an explicit function of the local Mach number

by choosing an appropriate functional form and adjusting the constants to give a reasonably good

match to the two-dimensional growth rate results.

This has been done for the trapped-ion mode case with TFTR L-mode parameters

described in Refs. 11 and 12, resulting in the functional form
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FIG. 12. Linear growth rates versus local Mach number at for elec-

trostatic trapped-ion mode for TFTR L-mode discharge 49982 at s with electrons and background

ions only, from 2D results , and from 1D (ballooning-representation) FULL code without [ ] and

with [ ] eigenfunction radial shearing effect, at , for (a) and (b)

.
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. The two-dimensional (2D) results (averaged over positive and negative Mach num-

bers) from Refs. 11 and 12 are plotted here in Fig. 12(a), along with the corresponding one-

dimensional (1D) ballooning-formalism results from the FULL code using the same model MHD

equilibrium for , for and . The 1D curve for corresponds

to the toroidal rotation model without the additional effect of eigenfunction radial shearing, and

shows very little effect on the growth rate for . On the other hand, the

1D curve, which models the additional effect of eigenfunction radial shearing, ap-

proximates the 2D curve well, and both show substantial stabilization of this mode at moderate

Mach numbers. The extension of these 1D curves to larger Mach numbers is shown in Fig. 12(b).

Without the eigenfunction shearing effect ( ), increasing local Mach number is initially

somewhat destabilizing, but then becomes strongly stabilizing; the mode is completely stabilized

only for . With the eigenfunction radial shearing effect [ ], increasing local

Mach number is immediately strongly stabilizing; the mode is completely stabilized for .

Thus, in at least some cases this eigenfunction radial shearing effect can make a large difference

in the critical amount of toroidal rotation for complete stabilization.

This approximate toroidal rotation model, without and with the additional eigenfunction radial

shearing effect, can be applied to the same TFTR ERS case for discharge 84011 at s

(just before the ERS transition time) considered in Sec. III, for . Here, the FULL code

results are obtained for the electrostatic toroidal drift mode including a carbon impurity species

and a slowing-down hot beam species, and using the numerically-calculated MHD equilibrium for

the other parts of the instability calculation. Varying artificially, and maximizing over (for

) separately for each value of , the results shown in Fig. 13 are obtained. For ,

and the associated decrease slowly with increasing . On the other hand, for ,

decreases quickly for , and then decreases slowly for ; the associated values

of can also be substantially lower than for . For the experimentally measured value of

(measured spectroscopically for carbon), is reduced by a factor of about three and by

a factor of about two by the eigenfunction radial shearing effect. Thus, in this case, substantial but
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FIG. 13. FIG. 13. Results from FULL code for versus for TFTR ERS discharge 84011 at

s and , for electrostatic toroidal drift mode with carbon and slowing-down beam, with maxi-

mized over or .

not complete stabilization is caused by toroidal rotation due to the eigenfunction radial shearing

effect, according to the present model.

The overall stabilizing effects due to toroidal rotation can also be investigated for this TFTR

ERS case as a function of time. We choose the radius where the toroidal rotation

frequency is a maximum at s, from the carbon spectroscopic experimental

measurements; and are shown as functions of time at this radius in Fig. 14(a). The FULL

code results, calculated as before with , for versus with the associated values of

, are shown in Fig. 14(b). There is an initial decrease in from s, when the neutral

beams turn on, to s, with a corresponding decrease in , as increases. But then from

s to s, stays almost constant. Only after the ERS transition around s does

decrease strongly again. This decrease is an effect, and not a cause, of the ERS confinement

transition, as was discussed in Sec. III. Thus, sheared toroidal rotation of the bulk plasma does

not seem to be sufficient by itself to account for the ERS transition, as might be the case if it
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FIG. 14. FIG. 14. (a) and and (b) versus for TFTR ERS discharge 84011 at

. Results for from FULL code for toroidal drift mode with carbon and slowing down

beam, maximized over or , including toroidal rotation model with eigenfunction radial shearing

effect [ ].
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completely stabilized the mode and thereby eliminated its associated anomalous transport. Also,

would presumably be having no direct effect locally at the ERS transition time, since it is going

through zero then, as seen in Fig. 14(a). However, nonlocal nonlinear effects of the sorts discussed

qualitatively in Ref. 23 could still be responsible for the observed transition.

V. CONCLUSIONS

A number of TFTR and DIII-D plasmas with negative or reversed central magnetic shear have

been analysed using the FULL code for high- electrostatic toroidal drift modes. Realistic exper-

imental profile data and numerically-calculated MHD equilibria were used to examine a variety

of cases. Physically, changing the -profile can affect the linear growth rates through at least four

distinguishable mechanisms: (1) reduction of “bad curvature”, (2) ion Landau damping, (3) ion

sound term and ion temperature gradient mechanism strength, and (4) Shafranov shift. The overall

effect on the instability is a combination of these things. For all of the TFTR and DIII-D negative

central shear discharges examined here, and for several others, the direct changes with time in the

width of the central stable region adjacent to the magnetic axis are governed more by changes in

the density and temperature profiles than by changes in the -profile, in the absence of rotation.

The growth rate profiles change only gradually with time, on the transport time scale, as the den-

sity and temperature profiles change. In this sense, the changes seen here for the linear growth

rates are an effect, not a cause, of the confinement transition. Thus, the “trigger” for the con-

finement transitions remains to be found. One possibility is the nonlinear decorrelation frequency

. For instance, comparing similar ERS and non-ERS discharges

in TFTR, the linearly stable regions out from the magnetic axis are of almost the same width,

but the larger values of in the ERS discharge would be expected to give a wider nonlinearly

stabilized region, consistent with the experimental measurements of a wider region of very low

fluctuation level.

The linear effects of sheared toroidal rotation have been included here very approximately

by means of a particular toroidal rotation model. The stabilizing effect due to radial shearing

28



of the eigenfunction previously seen in a two-dimensional calculation can be modelled in a one-

dimensional, ballooning formalism calculation by means of a suitably chosen functional form

for . With the form of used here, complete stabilization of the low- trapped-ion

mode for parameters of a TFTR L-mode discharge occurs for much lower values of than for

, that is, in the absence of the eigenfunction radial shearing. In TFTR ERS discharge

84011, this model for the eigenfunction radial shearing can cause substantial reduction of the

linear growth rates and corresponding lowering of . However, at one radius in the region

where the experimental confinement transition is observed, progressive stabilization of the mode

with time is seen, but no complete stabilization by the ERS transition time.

From these results, it is clear that linear theory by itself is insufficient to explain the relatively

fast confinement transitions seen in TFTR and DIII-D, since linear growth rates, which depend on

the equilibrium profiles and the MHD equilibrium, can only change on the transport time scale.

Some additional nonlinear effect such as the stabilization is needed to give a faster transition.

This in turn could require that make a fast, perhaps driven, transition, for instance between two

roots of a bifurcated state that results from a feedback loop. A conceptual framework for this

kind of bifurcation model in a feedback situation is described in Ref. 23. It is hoped that the present

sorts of linear and quasilinear calculations can be coupled into this more general framework.

In future work, it is clear that an improved rotational model would be desirable. In particular,

a rotation model is needed which also includes the pressure gradient and poloidal rotation contri-

butions to the radial electric field, not just the toroidal rotation contribution, and which includes

general geometry for the magnetic surfaces. Also, if possible, a rotation model which unifies

the treatment of bulk plasma rotation and of the nonlinear decorrelation frequency would be

desirable. Such a rotation model has been proposed in general terms in Ref. 24, and it will be

investigated in future work. In addition, exploration of kinetic electromagnetic modes, such as the

kinetically-calculated MHD ballooning mode, for instance in high- (large ) regimes, would be

desirable.
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