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Abstract

Large amplitude compressional type waves, with frequencies ranging from

10-500 mHz, are nearly always found in the magnetosheath near the magne-

topause where there are large gradients in density, pressure and magnetic �eld.

As compressional waves propagate to the magnetopause, these gradients e�-

ciently couple them with shear/kinetic Alfv�en waves near the Alfv�en �eld-line

resonance location (! = kkvA). We present a solution of the kinetic-MHD

wave equations for this process using a realistic equilibrium pro�le includ-

ing full ion Larmor radius e�ects and wave-particle resonance interactions

for electrons and ions to model the dissipation. For northward IMF a KAW

propagates backward to the magnetosheath. For southward IMF the wave

remains in the magnetopause but can propagate through the kk = 0 location.

The quasi-linear theory predicts that KAWs produce plasma transport with

a di�usion coe�cient D? � 109 m2=s and plasma convection on the order of

1 km/s. However, for southward IMF additional transport can occur because

magnetic islands form at the kk = 0 location. Due to the broadband nature of

the observed waves these islands can overlap leading to stochastic transport

which is much larger than that due to quasilinear e�ects.

I. INTRODUCTION

Wave observations in the magnetosheath and magnetopause indicated that ultra low-

frequency (ULF) waves with frequency less than 1 Hz are the dominant 
uctuations. How-
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ever, the origin of these ULF waves at the magnetopause remains an ongoing issue. In the

magnetosheath substantial ULF compressional wave activity exists nearly all of the time,

and under most conditions the power level of wave activity is usually 10{100 times larger

than the wave activity in the solar wind or the magnetosphere [1]. Speci�c magnetopause

crossings have been studied for both northward [2, 3] and southward [4, 5] IMF conditions.

Interestingly enough, ULF wave activity in the magnetopause exhibits strikingly di�erent

characteristics than waves observed at the magnetosheath: magnetosheath waves are pri-

marily compressional while waves at the same frequency range at the magnetopause are

transverse and often have larger amplitude. For southward IMF the 
uctuation level of the

transverse waves at the magnetopause are typically enhanced by a factor of 10 over the level

of the compressional waves in the magnetosheath [4]. These observations led [6] to suggest

that coupling between the compressional waves and the Alfv�en resonance based on ideal

MHD theory was responsible for the observed wave signatures. However, until now there

has been no satisfactory theory for these wave observations. In this paper we present the

theory of mode conversion of compressional waves into kinetic Alfv�en waves (KAWs) at the

magnetopause to explain these observed wave features at the magnetopause.

Presently, it seems to be generally accepted that the various high frequency (larger than

ion cyclotron frequency) waves cannot provide the necessary transport [7, 8] to explain the

amount of solar wind plasma that enters the magnetosphere because the high frequency

power spectrum near the magnetopause is weak and obeys a power law which falls o�

rapidly. An exception is the recent theory of [9] which indicated that the current convective

instability with frequency in the lower-hybrid wave frequency range (700 Hz{1 kHz) can

lead to signi�cant transport in the magnetopause current layer. On the other hand, there

is a general conjecture that resistive MHD type magnetic reconnection (or merging) is the

dominant plasma transport mechanism at the magnetopause, although no comprehensive

theoretical study has been performed. However, ULF transverse waves are commonly ob-

served with dominant wave power at the magnetopause [2, 10{12], and plasma transport

resulting from ULF waves has not been studied. It is well known [13] that in laboratory
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plasmas MHD waves are a leading cause of plasma transport, and the hybrid simulations

of [14] indicated that low frequency drift-like waves with frequency below the ion cyclotron

frequency can give rise to a di�usion coe�cient comparable to the Bohm rate (� 109 m2=s)

at the magnetopause. In this paper, we will also address transport which results from the

observed ULF waves which have dominant wave power at the magnetopause.

Our proposed scenario for magnetopause wave activity is that compressional MHD waves

in the magnetosheath propagate to the magnetopause and couple with transverse KAWs at

the magnetopause. The coupling occurs where the compressional wave frequency, !, matches

the local shear Alfv�en frequency, kkvA. The KAW exhibits two properties in contrast to the

incoming compressional wave: its polarization is primarily transverse and its wave amplitude

is strongly enhanced (by a factor of 10) over the level of the compressional waves in the

magnetosheath.

The KAW has important implications for plasma transport. When the perpendicular

wavelength is on the order of the gyroradius, ion motion decouples from the electron motion

due to polarization drift e�ects leading to charge separation. Typically ve > !=kk > vi so

that electrons can maintain charge quasi-neutrality which provides a �nite parallel electric

�eld. Decoupling of the resonant ions from the magnetic �eld causes transport and these

ions move across the magnetopause in only a few wave periods. The electrons follow due to

ambipolar e�ects.

These wave and transport processes depend on the IMF direction. For northward IMF,

the Alfv�en frequency (!A = kkvA) monotonically increases and �eld-line resonance occurs

near the ! = !A location. The wave amplitudes are largest near the resonance location

and the KAW radiates back into the magnetosheath. Assuming random phase nature of

the broadband KAWs, transport due to KAWs will scale with the quasilinear theory result.

For southward IMF, magnetic shear in the current layer gives rise to kk = 0 locations as

illustrated in Figure 1 where KAWs form magnetic islands. Because the wave spectrum

is broadband, it is likely that many such islands form at di�erent locations and overlap.

Overlapping of particle phase space islands leads to interlinking particle 
ux which yields
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FIG. 1. Alfv�en frequency for a typical magnetopause crossing from the magnetosheath to the

magnetosphere for southward IMF. The position is shown scaled to �i, and the magnetopause

scale length is 10 �i. The Alfv�en velocity is enhanced by a factor of 10 across the magnetopause.

Compressional type waves (CW) with frequency ! propagate to the �eld line resonance location

(! = kkvA at x = 5�i) and mode convert to backward propagating kinetic Alfv�en waves. Because

of the magnetic drift e�ects, KAWs can propagate to the kk = 0 location (x = 0) and drive

time-dependent (patchy) magnetic reconnection.

massive transport well above the quasilinear level and causes local 
attening of plasma

pro�les.

II. MODEL FOR WAVE ACTIVITY AT THE MAGNETOPAUSE

General magnetopause features of the background magnetic �eld, density, 
ow, and

temperature have been cataloged by the surveys of [15] for both high and low magnetic

shear. In both cases background gradients are large and the Alfv�en velocity can increase

across the magnetopause by about a factor of 10. For a typical parallel wavelength of 1
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RE and 400km=s < vA < 4000km=s at the magnetopause, the Alfv�en �eld line resonance

frequency forms a continuous spectrum and spans the range 60 mHz< f < 600 mHz which

overlaps with the frequency band with maximum wave power in the magnetosheath. Near

the resonance location, the compressional wave couples strongly with the shear Alfv�en wave

which has a logarithmic singularity in transverse wave power according to the MHD theory.

However, [16] showed that this resonance singularity may be resolved by retaining the ion

gyroradius e�ects.

We investigate the above scenario using the kinetic-MHD model [17]. This model incor-

porates kinetic e�ects into the MHD equations using Ohm's law and momentum equation

obtained from the gyrokinetic equation. The essential approximations required by this model

are that ! � 
i, k?L? � 1, kkLk � 1, and �i � L?, where �i = vi=
i, v
2

i = Ti=mi, 
i

is the ion cyclotron frequency, and L?;k are the magnetopause perpendicular and parallel

equilibrium scale lengths, respectively. At the magnetopause, �i � 50 km, L? � 10 �i and

Lk � 10 RE so that the approximation is typically quite good.

This model is appropriate for studying this problem because it: (a) includes full Larmor

radius e�ects for ions, (b) includes diamagnetic, rB, and curvature drifts, (c) is valid in a

high � plasma, and (d) includes wave-particle resonance. The ion Larmor radius e�ects are

essential in describing mode conversion of MHD waves into KAWs. Because k?�i � 1, full

ion Larmor radius e�ects must be included. Diamagnetic and magnetic drift frequencies can

be on the order of the Alfv�en frequency and their e�ects must be included in the region of

large plasma and magnetic �eld gradient. Wave particle resonance is very important for two

reasons. First, the quasi-linear transport occurs due to the waves results from wave particle

resonance, and second, electron Landau damping can be quite large when the wave phase

velocity becomes on the order of the electron thermal velocity and will occur as kk ! 0 for

southward IMF. The magnetic drift contributes to the resonance process and can shift the

electron Landau damping location so that the KAW propagates to the kk = 0 location.

For simplicity, we take a one-dimensional model with variation along the radial direction

x from the magnetosheath to the magnetopause. We employ the Pad�e approximation,
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I0(b)e
�b � (1 + b)�1 where b = k2?�

2

i , so that our analysis is a good approximation for

studying full ion Larmor radius e�ects. Given these approximations, the wave equation

which couples the KAW with the compressional wave may be obtained from [17] and is

given by

k2kv
2

A(1 + �)�2i
d4�

dx4
+

d

dx
(~!2 � k2kv2A)

d�

dx
+

(~!2 � k2kv
2

A)(~!
2 � k2yv

2

A � k2kv2A)�=v2A = 0 (1)

where ~!2 = !(! �!?i) where !?i = k �b�r lnPi=
i is the ion diamagnetic drift frequency

� =
Te(1 � !?i=!)
TiWe + TeWi

; (2)

We;i =
T

n

Z
d3v

@F

@E
(! � !?T )kkvkJ

2

0
(k?v?=
)

!(! � kkvk � !d)
; (3)

where !?T = k � b � rF=(
@F=@E)], and !d = k � (b=
) � [(v2?=2)r lnB + v2k�] is the

magnetic drift frequency. Note that in obtaining numerical values of W , we have neglected

the secondary e�ects due to particle curvature drift and Larmor radius e�ects.

We solve Eq. (1) using asymptotic analysis. When far away from the resonance, there

are two spatial scales which characterize the solution, an MHD scale which is the balance of

the second and third terms of Eq. (1),

v2A
d

dx
(~!2 � k2kv2A)

d�

dx
+

(~!2 � k2kv2A)(~!2 � k2yv
2

A � k2kv
2

A)� = 0; (4)

and a kinetic scale which is the balance of the �rst and second terms of Eq. (1)

�2i (1 + �)
d2�

dx2
+ (~!2=k2kv

2

A � 1)� = 0: (5)

In this regime, the solution consists of a linear superposition of four independent solutions

(two for each of the above equations). Near the Alfv�en resonance (at x0) an inner equation

can be found by linearizing ~!2 � k2kv
2

A � �~!2

0
(�x=LB)(1 + O(�x=LB)

2) where �x = (x � x0).
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The di�erential equation in terms of X = �x=� with �3 = �2iLB(1+�), is the inhomogeneous

Airy equation,

d2

dX2

d�

dX
�X

d�

dX
= E0x

 
LB

�i

!2=3

(6)

where E0x is amplitude of the MHD wave, and has the well known solution [18]

�Ex = �E0x

 
LB

�i

!2=3 �
c1Ai(

�x

�
) + c2Bi(

�x

�
) + Gi(

�x

�
)

�
(7)

where Ai, Bi, and Gi are Airy functions de�ned in [19], c1 and c2 are determined by the

matching to the outer WKB solutions. Note that there is a good overlap region for matching

the inner solution, valid for x < LB, with the outer solutions, valid for x > (�2iLB=4)
1=3

(10 >> j�x=�ij >> 1 for typical magnetopause parameters). We solve Eqs. (4) and (5)

numerically and constrain the outer solution (which is a superposition of these two solutions)

to have only an incoming MHD wave and no incoming KAW. The numerical match to the

inner solution determines the coe�cients, c1 and c2. It is to be noted that the relative

amplitudes of the two outer solutions is (�EKAW =�EMS)out �
p
�(LB=�i)

2=3� � 10 where

� = O(1) is a complex numerical coe�cient determined from the matching conditions.

III. WAVE STRUCTURE AT THE MAGNETOPAUSE

For weak magnetic shear at the magnetopause (northward IMF cases), Eq. (7) shows

that a KAW will propagate backward towards the magnetosheath. The strong magnetic

shear case is more interesting, and we perform numerical solutions of Eq. (1) for a model

magnetopause equilibrium based on the observations of a southward IMF crossing by [10].

A typical pro�le for the Alfv�en velocity in this model is shown in Figure 1. We choose the

incoming compressional wave frequency satisfying the Alfv�en �eld line resonance condition

at x0 = 5 �i. We also choose kk = 0 to be at x = 0. The gradient scale length of the

magnetopause width is approximately 10 �i.

Figure 2 shows the numerical solutions of Eq. (1) in the outer region. The top two panels

show the outer MHD solution for the electric �eld, �Ex = �d�=dx which satis�es
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FIG. 2. The outer solutions of Eq. (1). The upper two panels show the same outer MHD

solution for �Ex which satis�es the boundary condition of an incoming compressional wave. The

interesting region is between x = 0 and x = 5 indicated by the dashed lines in all panels. The third

panel shows the kinetic Alfv�en wave outer solution without including diamagnetic and magnetic

drift e�ects. The dashed and dotted lines correspond to the real and imaginary parts of the solution.

Notice that the wave propagates from the Alfv�en resonance location (x = 5) toward the kk = 0

location (x = 0) but is absorbed before getting there. because of strong electron Landau damping.

The bottom panel shows the outer solution of KAW by including realistic magnetic drift e�ects

with a nominal value of k � vd=! � 1 evaluated near at the maximum of k � b � x̂. Notice that

appreciable amplitude is found near the kk = 0 location because magnetic drift e�ects shift the

electron Landau damping location beyond the kk = 0 location. The outer solutions are matched

to the inner analytic solution in the shaded region.



the boundary condition of an incoming compressional Alfv�en wave. The solution behaves as

1=x near the Alfv�en resonance location. In the third panel we plot the KAW outer solution

without including diamagnetic and rB e�ects. The dashed and dotted lines correspond to

the real and imaginary parts of the KAW solution. Notice that the wave propagates from

the Alfv�en resonance location (x = 5�i) toward the kk = 0 location (x = 0) but is absorbed

at the electron damping point where ! = kkve before getting there. We also note that the

peak KAW amplitude is about a factor of 40 larger than the outer MHD solution. In the

bottom panel we take realistic drift e�ects with a nominal value of k � vd=! � 1 evaluated

near at the maximum of k � b � x̂. Notice that appreciable amplitude is found near the

kk = 0 location. The KAW propagates to the kk = 0 location because the rB drift shifts

the resonance and reduces electron Landau damping.

When broadband compressional waves propagate from the magnetosheath to the magne-

topause, broadband transverse KAWs will be excited and distributed over the entire magne-

topause with enhanced amplitude. We emphasize that the above numerical wave solutions

are consistent with the observed wave features in the magnetosheath and magnetopause:

transverse waves at the magnetopause are broadband and are strongly enhanced (by a fac-

tor of 10) over the level of the compressional waves in the magnetosheath.

IV. TRANSPORT RESULTING FROM KINETIC Alfv�en WAVE ACTIVITY

Based on the quasilinear theory, KAWs can cause substantial transport for both north-

ward and southward IMF. From the gyrokinetic equation, we �nd that the density evolves

according to

@n

@t
+

@

@x
(Vcn) =

@

@x
D?

@n

@x
(8)

This quasilinear transport equation results from decoupling of the plasma from �eld lines

due to both the parallel electric �eld as well as the perpendicular electric �eld that couples

to the particle magnetic drift motion. For a Gaussian ion distribution function (assuming
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! > !d), the transport coe�cients are approximately

D? �
X
k

s
�

�
e�1=�(

vA

jkkj
)

2
42
 
ky�vd

kkvA

!
2

+

�
Te

Ti
k2x�

2

i

�235
������Bxk

Bo

�����
2

(9)

and

Vc � �
X
k

p
8���1e�1=��vd

 
kx�i

Tekx

Tijkkj

! ������Bxk

Bo

�����
2

: (10)

where �vd is the particle magnetic drift velocity evaluated with v2? = 2Ti=mi. In Eq. (9) the

�rst term is due to magnetic drift velocity coupling to the perpendicular electric �eld. The

second term is due to parallel electric �eld and was previously derived by [20] and was used

in the previous work by [21]. Note that at the magnetopause the di�usion is dominated by

the �rst term associated with magnetic drift e�ect. Using typical magnetopause parameters,

Te=Ti � 0:2, k2x�
2

i � 0:25, �k � 1 RE, �Bx=Bo = 0:1, and vA = 500 km=s, and replacing

the summation over the perturbed magnetic �eld with an average value, we �nd that the

di�usion coe�cient is D? � 109 m2=s and the radial ion convection velocity is Vc � 1 km=s.

For southward B0, Vc is toward the magnetosphere, while for northward B0, Vc is toward

the magnetosheath. For southward IMF the convection would tend to sharpen the density

pro�le.

For southward IMF conditions, plasma transport can be further enhanced over the

quasilinear prediction by magnetic reconnection resulting from KAWs. Reconnection can

result from magnetic perturbations with �nite radial amplitude at the location where

k � Bo = kzBzo(x) + kyByo(x) = 0, k is the wave vector. For a radial magnetic �eld

perturbation with �Bx = � (x) cos(kyy + kzz � !t), a magnetic island appears in the x� s

plane with a width �x ' (Ls�Bx=kyBo)
1=2, where s = y + kzz=ky, Ls =j d ln(k �Bo)=dx j�1

is the magnetic shear scale length. Because there is a broadband spectrum of compressional

waves in the magnetosheath, KAWs are present at di�erent kk = 0 locations where magnetic

islands form. Particle orbit islands, corresponding to the magnetic islands, will form in the

particle phase space. When KAW 
uctuation level is above a threshold value, particle or-

bit islands overlap, and particle orbits are stochastic. Massive particle transport can occur
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leading to 
attening of plasma pro�les at the magnetopause. Thus it would be expected

that the character of the transport and thus the structure of the background magnetic �eld

and density pro�les for southward IMF cases would be strikingly di�erent from northward

IMF cases.

V. SUMMARY

In summary, we have presented a physical process of generating transverse Alfv�en waves

at the magnetopause: compressional waves propagating from the magnetosheath can mode

convert into transverse KAWs at the magnetopause with 
uctuation level enhanced over the

incoming compressional wave level. We have shown that the radial structure of KAWs de-

pends sensitively on the magnetic shear at the magnetopause. Moreover, quasi-linear theory

predicts that KAWs can cause plasma transport with a di�usion coe�cient D? � 109 m2=s

and a plasma convection on the order of 1 km/s. However, for southward IMF additional

transport can occur because KAWs form magnetic islands at kk = 0 locations. Due to the

broadband nature of KAWs these islands can overlap leading to stochastic transport which

is much larger than that due to quasilinear e�ects. Massive stochastic particle transport can

lead to local 
attening of the plasma density pro�le where islands overlap.

We emphasize that there are three particular features of wave observations in the magne-

tosheath and magnetopause that support the KAW scenario. First, most of the wavepower

in the magnetosheath and near the magnetopause is at low frequencies (10{500 mHz). Sec-

ondly, large gradients in the background plasma density, magnetic �eld, and pressure are

observed at the magnetopause so that the Alfv�en velocity can vary by up to a factor of 10.

Finally, large peaks in the �B? component are observed by the high resolution instrument

during magnetopause crossings while the analytical result predicts the KAW wave ampli-

tude to be enhanced by an order of magnitude. As a further extension of this work, we

plan to use the compressional wave frequency and wavenumber spectrum observed in the

magnetosheath near the magnetopause to obtain the radial solutions of KAWs at the mag-
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netopause by linear superposition of all KAWs corresponding to each frequency and wave

number which we can rigorously compare with satellite observations.

Finally, we conclude by pointing out that quantitative studies of plasma transport due

to KAWs are yet to be performed. In addition, plasma transport due to competing mech-

anisms such as resistive magnetic reconnection (or merging) has not been performed and

must also be addressed before a conclusion can be drawn on the transport processes at the

magnetopause.
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