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Abstract

A new method for the analysis of tokamak discharges in which the plasma current is

driven by the combination of high-power rf waves and a dc electric field is presented.  In such

regimes, which are the most usual in rf current drive experiments, it is generally difficult to

separate the different components of the plasma current, i.e., purely Ohmic, purely non-

inductive and cross terms.  If the bilinear (in wave power and electric field) cross term is the

dominant one, an explicit relation between the loop voltage drop and the injected power can be

found.  This relation involves two parameters, the purely rf current drive efficiency and the hot

(power dependent) electrical conductivity.  These can be simultaneously determined from a

simple two-parameter fit, if the loop voltage drop is measured at several rf power levels.  An

application to lower hybrid current drive experiments in the PBX-M tokamak is presented.  It is

shown that the method also allows the independent evaluation of the average power absorption

fraction and n|| upshift.
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1 . Introduction

Radiofrequency waves have proved the capability of driving the current necessary for the

stability of tokamak plasmas, without any contribution from the dc electric fields [1].

However, the most customary use of rf current drive in tokamaks is in conjunction with

Ohmically driven currents.  Recently, the importance of current profile tayloring for the access

to improved confinement regimes has been recognized, both theoretically [2] and

experimentally [3].  Active real-time control of the current density profile in tokamaks is more

easily obtained when the bulk of the plasma current is provided by the dc electric field induced

by the Ohmic transformer, but a significant fraction is driven by rf waves at a given location

determined by wave resonance, accessibility, and/or absorption conditions.  A substantial

contribution to the total current from the bootstrap effect [4] would make such a scheme

attractive for reactor applications.  The non-inductive current drive effect is due to the

asymmetric decrease of the electron collision rate caused by resonant absorption of rf power.

The same decrease also implies an enhancement of the electrical conductivity [5].  This effect is

related to the creation of a superthermal electron tail, and must not be confused with the well-

known enhancement of the Spitzer conductivity [6] σsp ∝  Te3/2, resulting from any electron

heating process (where Te is the electron temperature).  That the driven current is larger than the

sum of an inductively driven part, evaluated from σsp, and a purely non-inductive one,

evaluated from the Fisch-Boozer formula [7], is a routine experimental observation [e.g., 8-

11].  What is more difficult [12] is to separate the different components of the driven current, in

order to investigate the properties of the rf-enhanced (also called hot) electrical conductivity.  In

this paper, a method is proposed to determine the purely non-inductive current drive efficiency

η0 and the hot conductivity σhot simultaneously, based on an rf power scan.  The method is

described in Sec. 2.  An application to Lower-Hybrid (LH) current drive experiments in the

PBX-M tokamak [13] is also performed, as a proof of principle, and presented in Sec. 3.  It is

also shown that knowledge of both η0 and σhot may help in determine quantities such as the
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average absorbed wave power fraction and parallel refractive index, which adds valuable

information on the process of LH wave absorption.  The conclusions are drawn in Sec. 4.

2. Description of the method

Following Ref. [5], the plasma current Ip in the presence of both an inductive loop

voltage V and an externally injected rf power Pin is written as

Ip = Iohm + Irf + Ihot +... (1)

where Iohm = V/Rsp is the purely Ohmic part, Rsp is the Spitzer resistance (or, more generally,

the neo-classical one), Irf = η0Pin/neR0 is the purely non-inductive part that would be driven in

the same plasma conditions but V = 0, ne is the electron density, and R0 is the tokamak major

radius.  Ihot = V/Rhot is the first cross term, proportional to both loop voltage and rf power,

Rhot is the hot resistance, inversely proportional to ∫σhotdS, i.e., the cross-section integrated

σhot.  The neglected terms in Eq. (1) are the higher-order cross-terms, proportional to PV2,

VP2, P2V2, and so on.  The general theoretical expression of the hot conductivity is found in

Ref. [5].  In the particular case (pertinent to LH current drive)  of wave-particle interaction by

diffusion in v|| (parallel velocity) and a peaked wave spectrum, resonant at a given v|| and zero

perpendicular velocity, σhot is given by

σhot = e2ne

mνe







2

3 + Z

v||

vth







4
pabs

neνeTe

(2)

where e and m are the electron charge and mass, respectively, νe is the bulk electron collision

frequency, Z is the effective ion charge number, vth = (Te/m)1/2, and pabs is the absorbed rf

power density.

The different components of the driven current are illustrated in Fig. 1, obtained by

means of a 3-D Fokker-Planck code [14], run for typical parameters of the PBX-M tokamak

(minor radius a = 0.3 m, R0 = 1.65, magnetic field B = 1.5 T, LH wave power P = 540 kW,

launched parallel refractive index spectrum peaked at n|| ≈ 1.5) and a homogeneous plasma with
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ne =  2 × 1019 m-3, Te = 1 keV, Z = 3.  The total current is made up of a part (Irf) indipendent

of V, an Ohmic part (Iohm) linear in V, Ihot which is also linear in V, but with a different slope,

and an additional part, well fitted by a V2 curve, corresponding to the neglected terms in Eq.

(1), and becoming non-negligible at high values of V.  Now, most rf current drive experiments

(and in particular on PBX-M) are performed at constant plasma current, and to each mechanism

responsible for current generation corresponds a relative drop in the loop voltage.  The total

loop-voltage drop is defined as

− ∆V

Vohm
≡ Vohm − V

Vohm
=

Ip − Iohm

Ip
(3)

where Vohm is the loop voltage in the Ohmic phase.  The loop-voltage drop is also computed

with the Fokker-Planck code and the same parameters, but a constant current Ip = 250 kA and

various power levels.  -∆V/Vohm is represented in Fig. 2 (squares) as a function of the wave

power normalized to neIpR0: this is just the inverse of an efficiency parameter, represented on

the upper scale.  For simplicity, the electron temperature is assumed constant: this is

approximately true if the wave power is comparable to the Ohmic power (as it is the case in the

PBX-M experiment).  If there were no conductivity enhancement, the non-inductively driven

current would replace the Ohmic current, and the loop voltage drop would grow linearly with

power from zero to one (dashed line).  The hot conductivity is responsible for the curvature of -

∆V/Vohm vs P, owing to the fact that the current drive process is more and more efficient for

increasing loop voltage.  The contribution of the hot conductivity to the loop voltage drop

vanishes for P → 0 and for V → 0 (i.e. for -∆V/Vohm → 1) and is maximum in between (thick

solid curve).  It is possible to separate the two contributions when the slope of the dashed line

(i.e. the equivalent current drive efficiency for V = 0) is known, but this requires the

knowledge of the wave power for which -∆V/Vohm = 1, namely to realize a full non-inductive

current drive experiment for the same plasma parameters, which is often impossible and always

difficult.

A simple, though approximate, solution to this problem is the following.  Combining

Eqs. (1) and (3), as well as the definitions of the various current components, yields
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− ∆V

Vohm
= 1 −

1 − η0
Pin

neIpR0

1 +
Rsp

Rhot

(4)

Upon defining: x = Pin/neIpR0, and η1 = Rsp/(xRhot), Eq. (4) becomes

− ∆V

Vohm
=

η0 + η1( )x

1 + η1x
(5)

Note that, since σhot is proportional to Pin, η1 is independent of power.  If data at several

power levels and similar global plasma parameters are available, Eq. (5) can be used to

determine η0 and η1 simultaneously, by means of a simple two-parameter least-squares fit,

even if data at -∆V/Vohm = 1 are missing.  A first example of the accuracy of such a procedure

is given by the curve connecting the squares on Fig. 2, which has been computed in this way.

The values obtained for η0 and η1 (in units of 1019AW-1m-2) are: η0 = 1.552 ± 0.008, η1 =

0.889 ± 0.026, with a linear correlation coefficient of the fit R = 0.99994 (R = 1 corresponding

to a perfect fit).  Note that the value found for η0 corresponds precisely (within an error of

0.3%) to the inverse abscissa η = 1/x of the point -∆V/Vohm = 1, i.e., the current drive

efficiency for V = 0.  Such a good agreement also proves that, in this range of parameters,

higher order cross terms are negligible.

Equation (5) is an approximation, in two respects mainly: i) in its derivation it is assumed

that the Spitzer resistance in the rf phase is the same as in the Ohmic phase, which is not

generally true; ii) quadratic terms have been neglected in Eq. (1), the most important one being

the PV2 term.  These limitations are easily removed, although the price to be paid is that Eq.

(5) becomes more complex.  For instance, if ρ is the ratio of the Spitzer conductivities in the rf

and in the Ohmic phase (generally, ρ ≥ 1), Eq. (5) becomes

− ∆V

Vohm
=

(ρ −1) + η0 + ρη1( )x

ρ 1 + η1x( ) (6)

Alternatively, Eq. (5) can still be used, but replacing ∆V with a new quantity ∆V*, defined as

− ∆V *
Vohm

= ρ − ∆V

Vohm







− − ∆V

Vohm





 P→0













= ρ − ∆V

Vohm







− 1 − 1
ρ



















(7)
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where the second term in the brackets denotes the limit for vanishing rf power.  The presence of

a fraction of bootstrap current φ = Ibs/Ip (φohm in the Ohmic phase) can also be included in Eq.

(6), which becomes

− ∆V

Vohm
=

ρ − 1 − φ
1 − φohm







+ η0

1 − φohm
+ ρη1







x

ρ 1 + η1x( ) (8)

The presence of an additional term in Eq. (1), e.g., a current Iq proportional to P and quadratic

in V, i.e. Iq = V/Rq, where the resistance Rq is proportional to 1/(PV), yields the following

generalization of Eq. (5):

− ∆V

Vohm
= 1 − 1 + η1x

η2x
1 + 2η2x

1 − η0x

1 + η1x( )2













1/2

−1











(9)

where η2 = (2IpRsp
2  )/(RqVx) is independent of P and V.  In the limit η2 → 0, Eq. (9) reduces

to Eq. (5).  The use of Eq. (9) is, of course, limited to the analysis of very good data, since it

implies a three-parameter fit.  Finally, note that the actual current drive efficiency in the

presence of a non-zero loop voltage is generally given by η = (-∆V/Vohm)/x.  Its expression as

a function of η0,1,2 can be immediately deduced, at the different levels of approximation

considered, from Eqs. (5), (6), (8), and (9).

Before using the above described method to analyze experimental data, some comments

are needed.  The method is general, in the sense that no assumption has been made concerning

the dependences of η0 and η1 on the various plasma and wave parameters.  However, using the

well known theoretical expressions for the current drive efficiency [7], hot [5], and Spitzer [6]

conductivities, it is found that

η0 ∝ 1
5 + Z

1

n||abs
2       ,         η1 ∝ Z

3 + Z

1

n||abs
4

Ip

neTe
3/2  

where n||abs is an average parallel refractive index at the location where the waves are effectively

absorbed, generally depending on several plasma parameters.  These relations show that the

fitting technique we propose should be applied to a rather homogeneous data set.  Fortunately,

the dependence in Z of both η0 and η1 are rather weak; the parametric dependence of η1
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suggests that keeping the parameter Ip/(neTe3/2) fixed is beneficial for the accuracy of the

determination of η1.  The most critical problem is the temperature dependence of n||abs, which is

the result of very complicated physics processes and is not always easy to predict [13].

Conditions in which the LH power input is comparable to the Ohmic input are particularly

suited to the application of the method in its simplest form, since the LH power progressively

replaces the Ohmic power, and the temperature variations are small.  This is the case for the

PBX-M data discussed in the next section.

3 . Experimental results

We now apply Eq. (5) to experimental data, measured during LH current drive

experiments on the PBX-M tokamak [13].  The experiments were performed either in circular

or in indented (bean-shaped) plasma configurations.  Typical parameters were: Ip ≈ 100 - 200

kA,  ne0 ≈ 1 - 3 × 1019 m-3, B ≈ 1.4 - 1.7 T, Z ≈ 3, Te0 ≈ 0.6 - 1.4 keV, V = 0.3 -1.3 Volts.

Wave power up to 500 kW, at 4.6 GHz, was delivered to the plasma through two fully-phased

arrays of 32 waveguides each [15].  Data were taken injecting 5 values of parallel refractive

index n||in, with the peaks between 1.45 and 2.75.  The coupled wave power was, at best,

sufficient to induce a loop voltage drop of 80%.  In Ref. [13], the data have been analyzed

using the so-called Karney-Fisch method [16,17], originally developed to analize current ramp-

up experiments and subsequently extended to steady-state regimes [10].  Basically, this

consists in plotting the quantity Pel/Pabs (where Pabs is the total absorbed wave power and Pel =

VIp(-∆V/Vohm)) versus u = vph/vD, where vph is the dominant wave phase velocity of the

wave-particle interaction and vD is the Dreicer velocity.  Now, vph = c/n||abs, where c is the

speed of light and n||abs is related to the injected index n||in through an unknown upshift factor β

= n||abs/n||in.  The absorbed wave power as well is related to the injected wave power through a

constant of proportionality α  = Pabs/Pin.  Comparison of the experimental curve with a

theoretical expression [17] containing as basic ingredients the factors α  and β allows the
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determination of the equivalent current drive efficiency η0 and of n||abs.  However, in this

method, the combination of values of α  and β reproducing the experimental results is not

unique, and additional assumptions are required: for instance, in Refs. [10,13,16] a single

constant value of α ≈ 0.65 has been, somewhat arbitrarily, used.

We now analyze the data in a different way: for each injected wave phasing, we plot -

∆V/Vohm versus x and use a least-squares fit to determine η0 and η1.  The theory in its simple

form (Eq. (5)) is used, after correction of the data for modest changes in the Spitzer

conductivity between the Ohmic and the rf phases, which is equivalent to using Eq. (7).

Moreover, the bootstrap current is negligible in this regime, and neoclassical corrections to the

Spitzer conductivity have also been neglected, on the basis of previous studies of the PBX data

[18].  The data and the fits for both circular and bean-shaped plasmas and n||in = 2.08 are

shown in Fig. 3.  The variations of x are mainly associated with a power scan (50 - 500 kW).

The magnetic field was constant (1.4 T and 1.7 T for circular and bean-shaped plasmas,

respectively)  The standard deviations of the other plasma parameters over the data set are the

following: ∆ne ~ 35 %, ∆Ip ~ 20 %, ∆Te ~ 12 % and 15 % (for circular and bean-shaped

plasmas, respectively), ∆[Ip/(neTe3/2)] ~ 35 %. This qualifies the data set as moderately suited

for this type of analysis, thus representing a good test. The main difference between the circular

and bean-shaped plasmas is the temperature, which is 50 to 100 % higher in the bean-shaped

configuration; this implies differences in n||abs as well.  The best-fit parameters are: η0 = 0.33 ±

0.03, η1 = 0.36 ± 0.07, R = 0.97 (circular); η0 = 0.72 ± 0.11, η1 = 0.74 ± 0.23, R = 0.96

(bean).  This is a satisfactory fit, taking into account the fact that data at (moderately) different

densities, currents and temperatures were used.  Moreover, the values of η0 are in close

agreement with those obtained in Ref. [13] by means of the Karney-Fisch method (0.37 and

0.64, respectively).  Once η0 and η1 are known, the different components of the plasma current

can be separated.  An example is shown in Fig. 4, where the inductive part of the plasma

current Ip - Irf = Iohm + Ihot is shown versus the applied loop voltage, for a circular plasma and

two sets of experimental points, taken from those of Fig. 3 (at nearly constant ne).  Both sets
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are characterized by the same total plasma current (Ip ≈ 120 kA), but two different values of the

injected wave power and therefore also of the plasma temperature (Pin ≈ 300 kW, Te0 ≈ 0.8

keV for the group of points at low V; Pin ≈ 150 kW, Te0 ≈ 0.65 keV for the group of points at

high V).  Comparison with the purely Ohmic current Iohm (open circles) shows that the change

in the slopes of the linear fits (straight lines) due to the decreased plasma resistance is large for

high wave power, and that the hot conductivity effect can be responsible for a significant

fraction of the total plasma current.

The analysis has then been applied to different wave phasings in circular and bean-shaped

configurations: this way we could evaluate η0 and η1 for 8 different values of n||abs, and

compare their n|| dependencies to those expected from theory [5,7], i.e., η0 ∝  n
||
-2  and η1 ∝  n

||
-4

.  η0 and η1, determined by means of the new method, are plotted versus n||abs, obtained from

the Karney-Fisch method with constant α = 0.65, in Figs. 5 (a) and (b), respectively, and are

compared with a general power-law fit of the type y = pxq.  The expected n|| dependencies are

accurately reproduced, and the constants in front of the power-law are in fairly good agreement

with the theoretical ones, evaluated for average values of density and temperature.

Since the method proves satisfactory, it is attractive to fully exploit its potential.  Note that

η0 ∝  α/β2, and η1 ∝  α/β4 (see Eq. (2)), where α = Pabs/Pin and β = n||abs/n||in. Thus

β ∝ η0

η1
    ,            α ∝ η0

2

η1
(10)

the constants of proportionality being those of [5,7], i.e.,

β
η0 η1

= c

n||invth







5 + Z

2(3 + Z)

Ip

ne e vth

e2ne mνe( )
σspdS∫













1/2

α
η0

2 η1
= π

4
5 + Z( )2

3 + Z

Ip

ne e vth

e2ne mνe( )
σspdS∫

Teνe

ne e vth

(11)

where ∫σspdS is the cross-section integrated Spitzer conductivity.  Note that the use of Eqs.

(10,11) is subject to the same restrictions as that of the general method (i.e., modest variations

of the parameter Ip/(neTe3/2)), and that, over each of the data sets considered, the temperature

variations were not larger than 15 %.  From Eq. (10), both α  and β are determined, without
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any additional assumption, if the quantities appearing in Eqs. (11) are also measured.  An

example of this procedure is given by Figs. 6 and 7.  In Fig. 6, n||abs, obtained from Eq. (10),

is plotted versus n||in (open squares).  As extensively discussed in Ref. [13], for n||in < 2 the

plasma core is not accessible to the waves, and the rays need a larger upshift to be absorbed.

The n||abs evaluated from the Karney-Fisch method with the assumption α  = 0.65 (full

squares), substantially displays the same behaviour, with some small  quantitative differences.

The advantage of the new method is that now the fraction of absorbed power is also determined

for every injected phase, as shown in Fig. 7, where α  is plotted versus n||abs, both determined

from η0 and η1.  It appears that the average value of α is not far from 0.65, but α  is definitely

not constant, and it exhibits a nearly linear dependence on n||abs.  This trend is reasonable, since

higher-n|| waves resonate more in the bulk of the electron distribution and therefore are more

absorbed.  Conversely, that the complex physics involved in the ray propagation process, and

yielding large n|| upshifts, results into such a simple linear dependence should first be

confirmed on a wider data base and then be the subject of a more detailed analysis.  

An additional point that can be elucidated in a simple way is the effect of the antenna

directivity.  It is well known that generally the launched spectra have at least a secondary lobe,

usually at values of n|| that are higher in absolute value and opposite in sign.  The ratio ρ± of the

power launched in the main lobe to that in the secondary lobe is generally dependent on the

wave phasing, which could, in principle, change the results of Fig. 7.  Introducing two

fractions of absorbed power for the main and the secondary lobe, α+ and α−, respectively, and

two absorbed parallel refractive indices n+ and n−, and using the theoretical expressions for

current drive efficiency [7] and σhot [5], it is found that

η0 ∝ 1
1 + ρ±

α+
n+

2 − ρ±
α−
n−

2







      ,         η1 ∝ 1
1 + ρ±

α+
n+

4 + ρ±
α−
n−

4







 . (12)

Note that the contributions of the two lobes to the non-inductive current subtract, whereas those

to the hot conductivity add.  Since, generally, the injected n|| of the secondary lobe is

significantly larger than that of the main lobe, a good assumption is that the secondary lobe is
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fully absorbed without any significant upshift, thus n− is the same as the injected value, and α−

≈ 1.  With these assumptions, it is possible to evaluate α+ and n+ from Eqs. (12).  The result is

still a linear dependence of α+ from n+, with a slight upwards displacement of the straight line

α+(n+).  In conclusion, the linear behaviour of Fig. 7 is not substantially affected by antenna

directivity effects.

4 . Conclusions

A relatively simple method has been developed for the analysis of rf current drive

experiments in the presence of a residual loop voltage.  In these regimes, that are the most

currently studied in experiments, it is difficult to isolate the two most important transport

coefficients: the equivalent current drive efficiency at V = 0, and the hot electrical conductivity.

The analysis proposed here applies to regimes in which the bilinear (in wave power and electric

field) cross term is the dominant one, which excludes cases of abundant runaway generation. In

this limit, an explicit relation between the loop voltage drop and the injected wave power has

been established.  The new method consists in using this relation to determine space-averaged

values of the two relevant transport coefficients from global measurements of the loop-voltage

drop at various power levels.  The method is not related to a particular theory, but only to

definitions of basic quantities, and its application consists in a straightforward two-parameter

fit.  Of course, it has the basic limits of every zero-dimensional approach.  A proof of principle

has been given, applying the method to LH current drive experiments in PBX-M.  This has

revealed the potential of this analysis technique to provide a valuable insight into the specific

problem of LH wave propagation and absorption.  The main result of this analysis of the PBX-

M experiments is that the fraction of absorbed power is found to be a linear function of the

absorbed n||.  Note that α  and β are both determined from the current drive efficiency and the

hot conductivity, thus they have to be interpreted as average or representative values of power

absorption and upshift factors, related to the part of the spectrum that effectively drives
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currents.  In this approach, the power directly absorbed by the bulk of the electron distribution

or through collisional processes at the plasma edge is considered as lost.  Conversely, the

analysis can be easily extended to include wave spectra having lobes at both positive and

negative n||.
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Figure Captions

Fig. 1 Computed current vs loop voltage at fixed rf absorbed power P = 540 kW.  The

squares representing the total driven current Itot are connected by a parabolic fit.

The different current components are shown.

Fig. 2 Computed loop voltage drop vs x = P/neIpR0 (lower scale) and vs η = neIpR0/P

(upper scale), at fixed plasma current Ip = 250 kA.  The curve connecting the

squares is a fit of the type (η0+η1)x/(1+η1x).

Fig. 3 Measured loop voltage drop vs x = Pin/neIpR0 (lower scale) and vs η = neIpR0/Pin

(upper scale), for circular and bean-shaped plasmas, and n||in = 2.08.  The curves

connecting the circles are fits of the type (η0+η1)x/(1+η1x).  The best fit parameters

are: η0 = 0.33 ± 0.03, η1 = 0.36 ± 0.07, R = 0.97 (circular); η0 = 0.72 ± 0.11, η1

= 0.74 ± 0.23, R = 0.96 (bean).

Fig. 4 Inductive part of the plasma current Ip - Irf versus loop voltage, for the shots of Fig.

3 (circular plasma).  The set of points at low V corresponds to Pin ≈ 300 kW, Te0 ≈

0.8 keV; those at high V correspond to Pin ≈ 150 kW, Te0 ≈ 0.65 keV.

Fig. 5 η0 vs n||abs (a), and η1 vs n||abs (b), obtained by least squares fits of the type shown

in Fig. 3, for several values of the launched LH wave phase.   n||abs is evaluated by

the Karney-Fisch method.  The curves connecting the circles are general power-law

fits of the type y = pxq.  The p and q values obtained are displayed, as well as the

linear correlation coefficients of the fit R (R = 1 corresponds to a perfect fit).

Fig. 6 Average absorbed vs injected n||, computed by the new method and by the Karney-

Fisch method (with α = 0.65), for a circular plasma.

Fig. 7 α = Pabs/Pin vs n||abs, both determined from η0 and η1.
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