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Abstract

Stability and transport properties of an intense ion beam propagating through

an alternating-gradient focusing lattice with initial Kapchinskij-Vladimirskij

(KV) distribution are studied using newly-developed perturbative (�f) par-

ticle simulation techniques. Stability properties are investigated over a wide

range of beam current and focusing �eld strength. In the unstable region,

large-amplitude density perturbations with low azimuthal harmonic numbers,

concentrated near the beam surface, are observed. Their nonlinear conse-

quences are discussed.
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Understanding the nonlinear dynamics of an intense ion beam propagating in an

alternating-gradient focusing lattice is a critical scienti�c problem in heavy ion fusion, which

relies on high-brightness and high-current heavy ion beams to deliver high power to the

target.1{4 Extensive theoretical5{10 and experimental11;12 e�orts have been devoted to the

investigation of the stability and transport properties of intense beams over the past two

decades. For an ideal beam focusing system, a primary source of instability is the collec-

tive space-charge force due to the un-neutralized beam current and charge. It has been

shown in earlier studies1;6 utilizing the linearization approximation that, under certain con-

ditions, the Kapchinskij-Vladimirskij (KV) beam distribution5, the only known collisionless

beam equilibrium for periodically focused intense ion beams, exhibits space-charge-induced

instabilities, resulting in emittance growth and possible beam particle losses.

In this paper, a new particle simulation method based upon the perturbative (�f) scheme

is developed to study the detailed stability properties of the KV beam equilibrium, or other

choices of initial distribution function, and identify the parameter regime for optimal beam

transport. The �f simulation scheme was initially developed for tokamak plasma simula-

tions13;14 and is extended here for application to intense charged particle beams. In the

�f -scheme, the particle distribution function f is separated into a background part f0 and a

perturbed part �f according to f = f0+�f . Here, the dynamics of the background particles

associated with the distribution f0 is assumed to be known, and the linear and nonlinear

evolution of �f is computed numerically from the dynamics of a collection of simulation

particles. The �f -scheme completely removes statistical noise associated with the represen-

tation of f0 by a �nite number of discrete particles, which is the merit of the �f -scheme in

comparison with conventional particle-in-cell (PIC) simulations.

In this Letter, the �f simulation scheme is used both to con�rm qualitatively the results

from previous studies that the KV beam equilibrium is unstable in some parameter regimes,

and to reveal, for the �rst time, the detailed mode structure in the plane transverse to the

beam propagation direction. The linear growth rate of the instability is determined, as well

as the nonlinear saturation properties. Preliminary results from this �f simulation scheme
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are reported in this Letter, and a more detailed description will be provided in a future

publication.

We consider an intense ion beam propagating in the z-direction through an alternating-

gradient quadrupole magnetic �eld described by Bq(x; y; s) = B0

q(s)(yex + xey) and B0

q(s+

S) = B0

q(s). The dynamics of the beam particles in the transverse phase space (x; y; x0; y0)

can be described by the collisionless Vlasov equation

df

ds
�

@f

@s
+
dx

ds
�
@f

@x
+
dx0

ds
�
@f

@x0

= 0; (1)

where s = �bct is the axial coordinate,

dx=ds = x
0 = x0ex + y0ey (2)

is the velocity in the transverse direction, and the combined forces of the external focusing

magnetic �eld and defocusing space-charge �eld yield the transverse accelerations

dx0

ds
= ��q(s)x�

q

3b�
2
bmc2

@

@x
�(x; y; s); (3)

Here, � � (�1; 1) in the (x; y) directions, respectively, �q(s) � qB0

q(s)=b�bmc2 = �q(s+ S)

is a periodic function describing the quadrupole focusing �eld, �(x; y; s) and �b�(x; y; s)ez

are the scalar and vector potentials associated with the space charge and current of the

beam, q and m are the ion charge and rest mass, respectively, c is the speed of light in

vacuo, �bc is the average axial beam velocity, and b = (1 � �2b )
�1=2 is the relativistic mass

factor.

We de�ne the weight function w � �f=f = (f � f0)=f , and obtain from Eq. (1)

dw

ds
= �(1� w)

1

f0

df0

ds
: (4)

Equation (4) is the governing equation for the �f simulation scheme, and can be further

simpli�ed, provided the background distribution function f0 is an equilibrium solution to

Eq. (1). For present purposes, f0 is chosen to be the KV distribution,1;6

f0(x; y; x
0; y0; s) =

N

�2"x0"y0
�(W � 1); (5)
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where, N =
R
f0dxdydx

0dy0 is the number of particles per unit length, "x0 and "y0 are the

unnormalized emittances, and the variable W is de�ned by

W �
x2

a2
+

1

"2x0
(ax0 � xa0)2 +

y2

b2
+

1

"2y0
(by0 � yb0)2: (6)

Here, a(s) and b(s) are the matched-beam envelope functions for the KV beam equilibrium,10

and a0 = da(s)=ds and b0 = db(s)=ds. Denoting �(x; y; s) = �0(x; y; s) + ��(x; y; s), where

�0(x; y; s) is the equilibrium electrostatic potential corresponding to f0, it follows that

@f0

@s
+
dx

ds
�
@f0

@x
+

dx0

ds

�
�
�
�
�
0

�
@f0

@x0

= 0; (7)

where dx0=dsj0 and dy0=dsj0 are the equilibrium accelerations of the beam particles, which

can be determined from Eq. (3) by replacing �(x; y; s) by �0(x; y; s). Using Eqs. (1) and (7)

to evaluate df0=ds, and substituting into Eq. (4) gives

dw

ds
= (1� w)

q

3b�
2
bmc2

r�� �
1

f0

@f0

@x0

: (8)

Here, �0 and �� are determined self-consistently from Poisson's equations

r
2�0 = �4�qn0; r

2�� = �4�q�n: (9)

In Eq. (9), �n(x; y; s) =
R
�fdx0dy0 =

R
wfdx0dy0 is the perturbed density about the equilib-

rium pro�le n0(x; y; s) =
R
f0dx

0dy0. For the KV distribution in Eq. (5), n0 is uniform (equal

to n̂0 = N=�ab) and �0 = �2qN(x2=a+y2=b)=(a+ b)+ const: within the elliptical boundary

x2=a2 + y2=b2 = 1. Equations (2), (3), (8) and (9) are the set of fully nonlinear equations

used in the nonlinear �f -scheme. For a linear stability analysis, the linear �f -scheme also

consists of solving Eqs. (2), (3), (8) and (9), except that � is replaced by �0 in Eq. (3), and

(1� w) is replaced by unity in Eq. (8).

In the simulations presented here, the periodic focusing channel has a step-function

lattice with �lling factor � = 1=2, axial periodicity length S = 66 cm, and vacuum phase

advance �v = 85�. A KV beam distribution is loaded at s = 0 with transverse emittance

"x0 = "y0 = "0 = 5:72 � 10�2cm � rad, and di�erent values of beam current Ib as measured
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by the perveance K = 2qIb=mc3�3b
3
b . The beam propagates through a perfectly conducting

rectangular pipe with square cross section, and transverse dimension about four times the

average matched-beam radius �a, centered on the beam axis at (x; y) = (0; 0). Also, �� = 0 is

imposed at the conducting wall. A typical simulation run with a 64�64 grid in the transverse

direction and 100,000 simulation particles takes about 1000 seconds on the NERSC Cray

Y/MP computer to propagate 50 lattice periods (50 � 96 steps). Simulations have been

carried out for cases where the number of particles is varied from 10; 000 to 200; 000, and it

is found that simulations with 50; 000 particles provide more than adequate accuracy.

For small-amplitude perturbations, it is well known from analytical studies1;6 that the

KV beam equilibrium is linearly stable at su�ciently low beam current, but can exhibit

strong collective instability at high beam current where the self �elds due to the beam

space charge are more intense. As an example of beam propagation when the equilibrium

is linearly stable, we have used the nonlinear �f -scheme with 50; 000 simulation particles,

to follow the beam propagation for 500 lattice periods from s = 0 to s = 500S. For system

parameters corresponding to �v = 30�, and space-charge-depressed phase advance � =

"0
R s0+S
s0

ds=a2(s) = 11:58�, which is consistent with normalized beam current KS="0 = 1:15,

the initial noise level is (�n)s=0=n̂0 <
� 0:886 � 10�7, and the beam propagates quiescently

with (�n)s=500S=n̂0 <� 2:4� 10�7 at 500 lattice periods. As a second example of stable beam

propagation, we have considered the choice of system parameters �v = 85�, � = 71:76�

and KS="0 = 0:5, corresponding to a stronger quadrupole �eld. In this case, the beam

propagates stably with the noise associated with the density perturbations �n=n̂0 increasing

from 0:52�10�7to 0:875�10�6 over 500 lattice periods. Standard particle-in-cell simulations

of intense beam propagation exhibit signi�cant noise and accuracy problems after one or

two hundred lattice periods. Therefore, the �f -scheme used in the present simulations o�ers

substantial advantages.

At su�ciently high beam current, the KV beam equilibrium exhibits strong collective

instability.1;6 Typical numerical results obtained with the nonlinear �f -scheme, using 50; 000

simulation particles, are illustrated in Fig. 1 for beam propagation in the unstable regime,
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for the choice of system parameters �v = 85�, � = 20:1�, and KS="0 = 5:77. Figure 1

shows three-dimensional plots in the transverse (x; y) plane of the normalized perturbed

density �n=n̂0 at s = 0 [Fig. 1(a)] and s = 30S [Fig. 1(b)], and the self-consistent perturbed

electrostatic potential �� at s = 30S [Fig. 1(c)]. Initially, at s = 0, it is evident that the noise

level satis�es (�n)s=0=n̂0 <� 1:0�10�7. By 30 lattice periods (s = 30S), however, we note that

the maximum density perturbation has grown by 3 orders-of-magnitude to (�n)max=n̂0 '

2:77 � 10�4, concentrating near the outer edge of the beam where density gradients are

largest. From Figs. 1(b) and 1(c), it is also evident that the density perturbation and

corresponding self-consistent electrostatic potential have developed a strong coherent mode

structure with azimuthal mode number m = 1. After about 50 lattice periods (s = 50S),

the instability saturates nonlinearly in the simulation (see Fig. 3), but the coherent m = 1

mode structure persists in the nonlinear regime as the beam propagates further.

Additional simulation results are presented in Fig. 2 for beam propagation in the unstable

regime. Here, the system parameters are identical to those in Fig. 1. Figure 2 shows a plot

of the logarithm of the maximum perturbed density, log(�n)max, versus axial distance s as

the beam propagates over 100 lattice periods. Numerical results from both the nonlinear

�f -scheme and the linear �f -scheme are presented. Figure 2 also shows the corresponding

unnormalized beam emittance in the x-direction, "x = 4 (hx2ihx02i � hxx0i2)
1=2

, obtained in

the nonlinear �f -scheme by averaging over the distribution of particles. Note from Fig. 2

that the growth during the linear phase is exponential, and (�n)max increases by 6 orders-

of-magnitude from the initial noise level. Moreover, the linear and nonlinear �f -schemes are

in excellent agreement during the linear growth phase. By s ' 50S, however, it is evident

from the curve in Fig. 2 (nonlinear �f -scheme) that the instability saturates nonlinearly

with (�n)max reaching a relatively steady large-amplitude level with (�n)max ' 0:5 n̂0.

Following s = 50S, the beam continues to evolve nonlinearly. While the coherent m = 1

structure persists during the nonlinear phase, at least through 100 lattice periods, the beam

quality deteriorates. Indeed, by 80 lattice periods (s = 80S), it is found that the transverse

dimension of the beam has increased by about 10% relative to the transverse dimension at
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s = 0. Correspondingly, from Fig. 2, there is a growth in transverse beam emittance, which

has increased about 42% during the same propagation interval(from s = 0 to s = 80S).

Finally, the linear (or nonlinear) �f -schemes can be used to calculate the linear growth

rate as a function of beam current over a wide range of system parameters. Typical numerical

results are presented in Fig. 3 for �v = 85�. Here, the growth rate (gain) � is de�ned

during the linear phase by �nmax = �n0 exp(�s=S), and the measured value of � is plotted

in Fig. 3 versus normalized beam current KS="0. For completeness, also shown are self-

consistent plots of the space-charge-depressed phase advance � versus KS="0 calculated for

a KV beam equilibrium and �v = 85�. As expected, at su�ciently low values of KS="0 and

high values of �, the KV beam equilibrium is linearly stable. However, as the beam current

is increased and the phase advance � is depressed to su�ciently low values, the system is

linearly unstable, and the growth rate � can be substantial.

In summary, a new simulation method utilizing the �f -scheme has been used to study the

transverse stability properties of an intense ion beam propagating through an alternating-

gradient focusing lattice. The �f -scheme is found to be highly e�ective in describing detailed

properties of beam stability and propagation over long distances. It has been shown that

the KV beam equilibrium is indeed unstable in certain parameter regimes, particularly at

su�ciently high beam current. Furthermore, the mode structure and linear and nonlinear

evolution of the instability have been explored over a wide range of system parameters.

The optimal parameter regime for stable beam propagation, and the determination of beam

propagation properties for other choices of injected distribution function f0 (e.g., uniform

charge density in the x � y cross-section, but Gaussian distribution in transverse x0 � y0

momentum) will be the subject of a future publication. We also intend to use the �f

simulation scheme to study issues such as emittance growth, halo formation, stochasticity,

charge homogenization, entropy production and collisionless dissipation.
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Fig. 1. Plots of perturbed density pro�les �n(x; y; s)=n̂0 in the transverse (x; y) plane

obtained in nonlinear �f -simulation with 50; 000 particles. Pro�les are shown at (a) s = 0,

and (b) s = 30S, and system parameters correspond to �v = 85�, � = 20:1�, and KS="0 =

5:77. Plot of perturbed electrostatic potential ��(x; y; s) at s = 30S is given in (c).

Fig. 2. Plots of normalized maximum density perturbation (�n)max=n̂0, and transverse

emittance "x="x0 versus s=S for simulation with 50; 000 particles using the linear and nonlin-

ear �f -schemes. System parameters correspond to �v = 85�, � = 20:1�, and KS="0 = 5:77.

Fig. 3. Plot of linear growth rate � versus normalized beam current KS="0 obtained

from linear �f -simulation with 50; 000 particles, for vacuum phase advance �v = 85�. Also

shown is self-consistent plot of space-charge-depressed phase advance � versus KS="0.
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