
TF Ripple Loss of Alpha Particles from the

ITER Interim Design: Simulation and Theory

M. H. Redia, R. J. Goldstona, R. B. Whitea, R. V. Budnya,

D. C. McCunea, C. O. Millerb, S. J. Zwebena

a Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

b Richard Stockton College of New Jersey, Pomona, N. J. 08240

1. Introduction

Ripple loss of alphas can result in reduced alpha heating and potentially severe localized

wall damage in fusion reactors. In this paper we show guiding center code (GC) calculations

of ripple-induced alpha loss in ITER, under a number of di�erent operating conditions for

the ITER Interim Design [1]: L-mode, H-mode, post-sawtooth, and reversed-shear con�g-

urations. In all cases except for the last, alpha loss is very small [2, 3]. In the case of

reversed-shear operation, alpha banana convection loss can be important. We also present

a new theoretical calculation of the stochastic threshold [2], which gives excellent agreement

with the much more computationally intensive GC calculations.

2. Guiding Center Code Method

Recently, the ORBIT Hamiltonian coordinate guiding center code [4] has been used to

quantitatively evaluate TF ripple losses for TFTR alpha particles [5] and to adjust the

normalization of a simple model for stochastic ripple losses within the TRANSP code [6].

Collisions were found to be far more important than had been expected, with pitch angle

scattering during the alpha particle slowing down time moving particles into the stochastic

regions and thus causing losses about twice those without collisional e�ects. Good agree-

ment was found in comparing appropriately normalized TRANSP simulations to measured
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con�ned alpha pro�les [6].

3. Application to ITER

ORBIT GC simulations for the 21 MA, 20 TF coil ITER Interim design are based on

comprehensive, self-consistent TRANSP simulations of two scenarios: moderately peaked

density pro�les (L-mode) and 
at pro�les (H-mode). ITER equilibria were obtained with

the PEST code using pressure and q pro�les from TRANSP, based on cases in the ITER

database. TRANSP simulations of ITER also provided alpha source pro�les, before and

after sawtooth broadening, and collision rates.

The TF ripple data �eld was �t to

�(R;Z) = �oexp[((R�RMIN(Z))
2 + brZ

2)0:5=wr]:

Here br is the ellipticity, wr is the scale length of the ripples, �o is the minimum value of the

ripple �eld, and RMIN = 6:75 � 0:034Z2 is the radius at which this minimum occurs. The

magnetic axis is typically at Z = 1.5 m. The ripple �eld strength increases exponentially

with R, and with vertical distance from the midplane, Z. We �nd �o = 3:75� 10�6, with wr

and br 0.535 m and 0.268, respectively.

Monte Carlo simulations were carried out for 256 alpha particles of birth energy 3.5 MeV,

including collisional pitch angle scattering over one alpha slowing down time and with R =

8.14 m, a = 2.8 m, Ip = 21 MA, B = 5.7 T and edge q of 3.3. The alpha particle source

pro�les were calculated by TRANSP from simulation of DT fusion, with prescribed D and T

pro�les and a simple Kadomtsev sawtooth model. Two di�erent alpha source pro�les occur

in the TRANSP L-mode simulations. A peaked, pre-sawtooth pro�le was �t by (1� jr=aj)3

and a sawtooth-broadened pro�le was �t by uniform density out to r=a = 0:7, and zero for
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r=a > 0:7. Constant collision rates used were ��perp = 0:126sec�1 and ��� = 5:0sec�1.

GC simulations of ITER with the presawtooth, L-mode alpha pro�le showed no losses of

the 256 particles followed, Monte Carlo errors in the particle loss calculations are approx-

imated by n0:5=nT where n is the number of particles lost and nT is the total number of

Monte Carlo particles followed. When simulations yield no particles lost, the error should

be less than calculated for one lost particle (�0:4%), thus an upper bound to alpha ripple

losses is � 0:4% in the new design.

The physics of the sawtooth instability is an active area of present research with the de-

tails of the sawtooth magnetic �eld reconnection and its e�ect on the fast particle distribution

function not yet well known. See for example Ref. 7 where energetic ions were detected very

near the plasma edge immediately after sawtooth events in PDX. The sawtooth broadened

L-mode alpha pro�le led to particle (power) losses of 0.8(0.7) �0:6%. Because of the very

short duration of sawtooth broadened alpha pro�les in experiments and in present models of

the sawtooth instability, the pulse averaged energy losses should be virtually una�ected by

the existence of sawteeth and so described by the upper bound 0.4%. However pulsed energy

loss may be signi�cant, particularly if large sawteeth give rise to MHD activity. Alpha losses

from the sawtooth broadened L-mode ITER, with reversed direction of toroidal �eld, were

1:6(0:8) � 0:8% particle (power) losses.

Simulations were also carried out for the H-mode scenario. The source pro�le was mod-

elled as trapezoidal, 
at to r/a = 0.4, decreasing to zero at r/a = 0.7. The slowing down

and pitch angle scattering times are similar to those for L-mode, as are the alpha pro�les

outside r/a = 0.3. No losses were simulated so that alpha particle energy losses are < 0:4%.

Initial simulations of a Reversed Shear ITER plasma [1] led to no �rst orbit losses, but
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16% alpha ripple power loss and 19% alpha particle losses due to strong banana convection

(see Sec. 4 below). An alternative ITER/RS equilibrium [8], with reduced elongation to

make the plasma more nearly centered within the TF coil set, is found to lose only 2:9�0:4%

of alpha particles. Since it �ts the outer wall less snugly, it may present increased problems

of vertical control. Figs. 1 and 2 show the ripple trapping regions for the ITER 21 MA case

and the Interim Design Reversed Shear plasma.

We estimate the heat load for maximum alpha ripple losses for the 21 MA case of 0.4%

gives � 0:01MW=m2, and for the RS cases 0:07� 0:40MW=m2. The wall heat load may be

increased by MHD and TAE enhanced losses, in addition to toroidal peaking factors.

4. Theory

In principle, since the mechanisms of ripple-induced alpha loss are well understood, it should

be possible to provide a very fast algorithm for determining alpha loss, without the large

computational e�ort associated with unaccelerated GC orbit calculations. Previous e�orts

[6] in this direction have been based on using a very simpli�ed version of the stochastic

loss criterion, given as Eq. 3 in Ref. 9. To provide a match between GC calculations and

the stochastic loss criterion, substantial ad hoc normalization factors were required. This is

understandable, since the loss criterion used in that work ignored the poloidal dependence

of the stochasticity threshold, as well as the e�ects of toroidal precession.

As indicated in Ref. 9, the transition to chaos occurs when the radial step size in

the banana map reaches a critical value, scaled either by the spacing between precession

resonances (where the banana precession distance, R�p, changes by 2�R=N) or between

banana-length resonances (where the banana length, R�b, changes by 2�R=N). For the

usual case where the the banana-length resonances are much more closely spaced than the
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precession resonances, detailed calculations of the transition to chaos give the threshold

radial displacement:

Eq (1)

�s = c=[N(j�0bj+ dj�0pj)]

with c = 1.0 and d = 0.5, as opposed to c=1.0, d=1.0 estimated in Eq. 15 of Ref. 9. (Primes

indicate radial derivatives.) Investigation of the underlying map shows that the transition to

chaos in this case occurs as the islands centered at precession resonances replicate across the

banana-length resonances and begin to �ll all of space. In the region where �0b=�
0

p is not large,

the phasing between the two kinds of resonant surfaces becomes important, as represented

by wk = N�b=2 + N�p=2, evaluated at resonant surface k. In particular, for wk = �=2

and �0b=�
0

p = �1, the stochastic threshold goes to in�nity! In the region j�0b=�
0

pj < 4, the

stochasticity threshold must be evaluated as a function of wk (Fig. 3) as well as �
0

b=�
0

p, and

used instead of Eq. (1), above. Eq. (1) has also been generalized for top-bottom asymmetry,

giving

Eq (2)

�s = 1=[N((2 � rp)j�0bj+ 0:5rqj�0pj)]

with r equal to the ratio of the smaller to the larger ripple strength at the banana tips, p =

0.2, and q = 0.55. �s is the threshold value of the larger ripple. The result of comparing

this calculation with GC calculations of stochastic loss for a wide range of equilibria in ITER

and TFTR is very favorable, with no evidence of error outside of the expected Monte Carlo

statistical noise, as shown in Fig. 4.

In order to provide detailed comparison with full GC calculations (and to predict overall

losses), other loss mechanisms must be taken into account. When banana tips are located
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in regions of ripple wells, two very important processes must be included. If the ripple wells

are on the gradB drift side of the plasma, then in most magnetic geometries collisionless

ripple trapping is likely to be very rapid [10]. On the other hand, if ripple wells are located

on the opposite side of the device, and no ripple wells are located on the gradB drift side

- due to up-down asymmetry - then a rapid net outward convective drift of alpha particles

is induced. A calculation of this drift rate is shown in Fig. 12 of Ref. [10] and discussed

in some detail in Ref. [11]. Finally, any of these loss mechanisms must persist along a near

vertical trajectory of constant jBj, in order for an alpha to be fully lost from the system.

In order to include the collisional e�ects of pitch-angle scattering and slowing down, all

three loss criteria are evaluated 10 to 100 times as the alphas slow down. This permits the

GC slowing-down calculation to take place in toroidally symmetric �elds, and with greatly

accelerated collisions. A factor � 200 improvement in computer run time is achieved, while

preserving accuracy to within the Monte-Carlo noise of the GC runs, for cases examined to

date.

5. Conclusions

Encouraging results are presented for predicted alpha losses in most ITER cases. However,

since the losses are so small, more careful evaluation of the alpha birth pro�les and sawtooth

ejection patterns may be in order to give quantitively accurate results. Potentially serious

wall damage issues appear to be avoidable for the 20 TF coil ITER, if the �rst wall is

carefully designed to allow for predicted levels of alpha ripple loss and wall heating and if

MHD and TAE enhanced loss is controllable. Attractive reversed shear regimes also appear

accessible.

A �rst principles algorithm with no adjustable normalization factors has been developed
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which provides an accurate and computationally economical method of evaluating alpha

losses. It is well suited for detailed parameter scans in support of ITER 
exibility studies.

Acknowledgment

We are grateful to W. Nevins and S. Putvinski, for their interest and help in this work and

also to R. J. Hawryluk, K. McGuire and N. Sautho� for their interest and encouragement.

This research was supported by the U. S. Department of Energy Contract No. DE-AC02-

76-CHO-3073. C. O. Miller was suppported by a DOE National Undergraduate Research

Fellowship.

7



REFERENCES

1: ITER Interim Design Report, July 12, 1995, ITER JCT, San Diego, CA (private com-

munication, S. Putvinski).

2: R. B. White, et al., Phys. Plas. 3 (1996) 3043.

3: M. H. Redi, et al., Phys. Plas. 3 (1996) 3037.

4: White, R. B. and Chance, M. S., Phys. Fluids 27 (1984) 2455.

5: Redi, M. H., et al., Nucl. Fusion, 35 (1995) 1191.

6: Redi, M. H., et al., Nucl. Fusion, 35 (1995) 1509.

7: Goldston, R. J., et al., Nucl. Fusion 27 (1987) 921.

8: W. M. Nevins, LLNL, private communication 1996).

9: Goldston, R. J., et al., Phys. Rev. Lett. 47 (1981) 647.

10: Goldston, R. J., et al., J. Plasma Phys. 26 (1981) 283.

11: Yushmanov, P. N., et al., Nucl. Fusion 33 (1993) 1293.

8



FIGURES

Fig. 1. Ripple well domain in 21 MA ITER equilibrium.

Fig. 2. Ripple well domain in reversed shear ITER equilibrium 01.
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Fig. 3. Transport barrier to stochastic di�usion at large �0p=�
0

b.

Fig. 4. Good agreement between algorithm and gc simulation of loss (%).
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