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Abstract

Lower Hybrid (LH) current drive experiments on PBX-M have shown
that the current profile can be changed by varying the phase velocity of the
waves. The radial profile of the current carrying electrons was deduced
from 2-D hard X-ray tomography.  For a certain range of phase velocities,
there is a correlation between the peak of the fast electron profile and the
launched wave spectrum, despite the presence of a wide spectral gap. A
model is proposed to explain how first-pass damping is possible in such
plasmas. The radio frequency (RF) power can form a tail of energetic
electrons, and waves with moderate phase velocity can damp on them. For
waves with very fast phase velocity, there must be an upshift of the nˆ

spectrum for any damping to occur. These hypotheses are supported by ray
tracing results which were coupled to relativistic Fokker-Planck
calculations of the electron distribution function.
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1.   Introduction.

Lower Hybrid (LH) waves are routinely used to drive currents in
tokamak plasmas non-inductively, thus significantly extending the
tokamak operation space to long-pulse, steady-state discharges.  A more
ambitious goal is the use of LH current drive to control the current density
profile, in order to improve both the plasma stability and confinement
properties.  This generally requires less power, but a more flexible control of
the launched wave spectrum during the time of the discharge, eventually
coupled to an appropriate feedback system.  In addition, there are more
intrinsic difficulties.  The propagation and damping of LH waves (usually
described as a bundle of rays) is a complex phenomenon, which is a
sensitive function of quantities that are difficult to measure and control,
such as the density, temperature and safety factor profiles, magnetic ripple,
density and magnetic field fluctuations etc.  Two regimes, with opposite
properties, have been identified: the single-pass regime (high temperature,
density, and parallel refractive index nˆ), in which the wave propagation
properties are simple, since full Landau damping takes place before the
wave completely crosses the plasma, and the multi-pass regime (low
temperature, density, and nˆ), in which the wave damping is weak and the
behaviour of the rays becomes stochastic.  Unfortunately, most of the
experiments in present-day tokamaks are realized in intermediate regimes,
in which the rays are absorbed after crossing the plasma a few times and
the theoretical prediction of the driven current profile becomes difficult.

Therefore, the experimental investigation of the LH wave damping in
such regimes is an important task, which calls for appropriate diagnostic
tools, in order to be able to compare measured and computed power
deposition profiles.  The PBX-M experiment is equipped with both a flexible
LH wave launching system and a unique diagnostic set for the
measurement of the spatial distribution of the superthermal electrons,
which can be used to monitor the wave power deposition profile.  This has
motivated the extensive experimental and theoretical investigation of the
LH wave damping in various physical regimes, which is presented in this
paper.

The Lower Hybrid experiments have been performed on the PBX-M
tokamak [1] with either indented or circular plasma configurations: in this
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paper we refer mostly to the indented configuration. Typical parameters
were: plasma current  Ip ~ 180 kA, density ne=1~3x1019 m-3, and RF power
up to 800 kW at 4.6 GHz delivered to the plasma through two fully-phased
arrays of 32 waveguides each [2].

Partly because of the limited power available, steady state current
drive was never achieved. Therefore we used the loop voltage drop to
determine the current drive (CD) efficiency , corrected for changes in
current and internal inductance,  with a fitting method explained in section
2.

The current drive efficiency can also be obtained by fitting the
experimental results using Fisch's theory with the "hot" conductivity [3].
The values obtained are in good agreement with the method of section 2. It
is noteworthy that from this fit, it is possible to obtain the value of the
conductivity of a plasma with suprathermal electrons. This is presented in
section 3.

The phase dependence of the damping is presented in section 4. Some
apparent anomalies can be explained by considering the two damping
regimes which are apparent from the analysis of the CD efficiency.

In section 5, computer modeling is performed which couples a ray
tracing code with a relativistic Fokker-Planck code. The agreement with the
experimental results confirms the damping scenarios of section 4.

Discussion and conclusions are in section 6 and 7.

2.  Current drive efficiency

Figure 1 shows a typical experimental condition in which 370kW of
RF power are injected in the plasma, and it causes the loop voltage to drop
approximately 60%.

Figure 2a plots the relative loop voltage drop [-(Vrf-Voh)/Voh] versus
RF power normalized to line averaged density, current and major radius of
the plasma. Voh  is the loop voltage in the purely ohmic plasma and Vrf is
the residual loop voltage after application of RF power. The quantity
(P/nIpR) is the inverse of the wellknown "current drive figure of merit"  η.

The curve "rolls over" rather than increasing linearly with (P/nIpR),
because of the diminishing effect of the electric field as more current is
driven by the RF and less by the OH system. This has been verified by using
the quasilinear Fokker/Planck code, described in section 5. The theoretical
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fit in fig. 2b shows the good agreement obtained with the experimental,
which illustrates the efficiency of the quasilinear interaction between the
wave electric field and the static electric field of the transformer. The
electrons accelerated by the static field are described by a shifted
Maxwellian. The static field, therefore, moves electrons from low to higher
velocities, making their interaction with the wave field more efficient.

The value of (P/nIpR)-1 = η o  at which the curve crosses the line
-∆V/Voh=1 defines the efficiency of current drive at Vloop =0. For any other
value of -∆V/Voh, the efficiency  η(Vrf) is given by the intercept of the line
from the origin passing through this value and -∆V/Voh= 1. It is evident
that   η(Vrf)  is a monotonically decreasing function with increasing RF

power.
In order to calculate the current drive efficiency ηo  at Vloop = 0, we

follow the approach of Karney-Fisch [4] by plotting

Pel

Pabs

     vs.     u …  
vφ

vDreicer

= c
n||absvDreicer

where

Pel = VloopIRF ≡ Vloop −
∆Vloop

Voh







Ip        (1)

is the RF power converted into electromagnetic energy,

Pabs = αPinjected

is the fraction of RF power absorbed by the electrons, and

n||abs = βn||o

is the value of nˆ  absorbed by the electrons, which is usually upshifted (due
to toroidal effects [5]) relative to the injected value. All the other quantities
have the standard definitions.
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In this set of equations, the parameters α and β are varied in order to

have the experimental points fall between the curves for   
Pel

Pabs

 vs. u

corresponding to Zeff = 2 and Zeff = 5, obtained from the polynomial
approximation given by Karney-Fisch to match the experimental value
Zeff≈ 3.

Figure 3 plots the values of    
Pel

Pabs

  vs. u    for all phases. In this plot α=0.65,

while β varies for each phase.

The efficiency at Vloop = 0 is then calculated from:

        ηo = 31
log Λ

4
(Zeff + 5)

α
β2n||o

2( )        (2)

Clearly, various combinations of α and β will fit the data between the
Fisch-Karney curves, but the ratio α/β2 is rather constant and ηo is well
determined.  For very low values of α, we obtain an  nˆabs which is too low to
be explained. On the other hand, values of α close to 1 would imply an nˆabs

which is far too high. Instead the choice of α=.65 produces a value for β in
the case of total upshift of the spectrum to nearly nˆabs =7, which is what is

calculated with the ray tracing code.
The results are shown in figure 4 where η o is plotted versus the

injected value of nˆo for circular and indented configurations.

Systematically, the efficiency iin circular plasmas is lower than in indented
plasmas, but in both cases it shows a maximum near nˆo=2.

For nˆo ≥ 2.1 the efficiency decreases  as nˆo is increased as expected
[6]. For values  nˆo ≤ 2.1 efficiency decreases with decreasing nˆo. This is a

surprising result since it is well known that faster phase velocity waves are
more efficient in driving current.

The explanation can be seen in figure 5, where the value of nˆabs is
plotted against nˆo. For nˆo ≥ 2.1,  the upshift is modest and fairly constant,
while for  nˆo ≤ 2.1,  the waves need a large upshift before damping. This

points to two different damping regimes.
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3.   Determination of the hot conductivity of the plasma.

The data of figure 2a can be fitted by using Fisch's theory, which
includes the "hot" conductivity due to the suprathermal electrons. From
this fit, it is possible to derive the value of the hot conductivity itself.
Following reference [3], we call Johm = σSpitzerEˆ the purely inductive part of
the current density, Jrf the part generated by the LH waves, and Jhot = σhotEˆ

the cross term proportional to RF power and loop voltage. We can write then
the total current density as:

J = Johm+Jrf+Jhot

(3)

The use of Eq. (3) implies that we neglect higher-order cross terms, e.g.
those proportional to the square of RF power, the square of the electric field,
etc.  This is appropriate if we are far from the runaway regime, and it is
consistent with the fact that in the experimental parameter range explored,
the ratio of the phase velocity and the Dreicer velocity is always less than
one (see Fig. 3).  Note also [3] that σhot is generally proportional to P/n2,

weakly dependent on Zeff and generally expected to increase with
temperature. Its temperature dependence however, will be related to the
filling of the spectral gap in a complicated way, similar to the current drive
efficiency.

Combining equations (1) and (3), we obtain

− ∆V
Voh

= (A + B)x
1 + Bx

(4)
where

A = αηo

B =
nIpR

P

σhot

σSpitzer
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x ≡ P
nIpR

and the symbol <...> denotes averaging over the plasma cross-section.  Since
σhot is proportional to P/n2, the parameter B is actually independent of
power, but is proportional to IpR/n and depends on Te and Zeff through σhot

and σSpitzer.  The parameter A depends on Te and Zeff as well.  Assuming

that Ip, n, Te and Zeff are not strongly varying over the data base considered,
Eq. (4) can be used to fit ∆V/Voh as a function of x.  The fit for the data of

figure 2a is shown in figure 6; the value for the efficiency at Vloop=0 agrees
very well with the one obtained in section 2. From the value of B, it is
possible to obtain the "hot" conductivity.

It is also possible to characterize the CD efficiency as a function of the
residual loop voltage, Vres, with

η(Vres ) =

αηo + 1
x







σhot

σSpitzer

1 +
σhot

σSpitzer

       (5)

4.   Phase dependence of the damping.

In PBX-M, we made extensive use of a 2-D Hard X-ray pinhole
camera [7] to study the effect of the application of Lower Hybrid power to
the plasmas.  The diagnostic yielded information on the location of the
damping of the waves, allowed estimates of the fast electron diffusion
constant, and demonstrated the effect of MHD instabilities on the fast
electron tail. [8,9]

As is well known, changing nˆo varies the phase velocity and
damping of the waves. In this section, we discuss the relationship of nˆo to
the damping an the RF-induced current. When the electron temperature is
high enough for the waves to be damped on first pass, i.e. Te(keV)≈(7/nˆo)2

(with values of nˆo typically up to 3), the value of nˆo  controls the damping
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location andtherefore the current profile. In experiments  with relatively
low electron temperature, such as in PBX-M, multiple passes of the LH
waves through the plasma are expected, until the value of nˆ is upshifted
enough for the damping to occur. This situation could lead to the loss of
control of the damping location. In other words, the absorbed LH waves
could lose "memory" of the original nˆo. In PBX-M, we found that this last

statement is only true for waves with very high phase velocity (nˆo < 2). For
slower waves, first pass damping is still dominant and allowed us to
achieve a degree of current profile control [10].

In PBX-M, there are two perplexing results which counter the notion
that a large spectral gap makes the damping of the LH waves independent
of the original nˆo. The location of the damping and the velocity of the fast
electrons generated were observed to depend on the value of nˆo.

Figure 7 shows the location where the maximum of the fast electron
tail is formed as obtained from inverting the hard X-ray emission [11] as a
function of  nˆo.The continuous line, obtained from the ray tracing code LSC

[12], is the locus of the maximum penetration of the wave in its first pass
across the plasma. That the hard X-ray emission follows the first pass of
the wave is a surprise, since at this location the value of nˆ has changed
very little from the launched value. Given that the typical temperature of
the plasma is ≈1keV, the wave is far too fast for damping; this is usually
referred to as the 'spectral gap'. Instead, the damping should be expected
close to r/a=0.5, where the value of  nˆ is allowed to reach a maximum [13].
At this location, which is rather insensitive to the original value nˆo,
because of the large upshift, nˆ ≈ 7. 

The other anomaly concerns the effective temperature of the photon
spectrum, as defined by von Goeler in [14] and deduced from the 2D hard X-
ray camera measurements. As shown in fig. 8, the photon temperature is
approximately inversely proportional to nˆo, for nˆo ≥ 2.2: this is what is
normally expected since faster waves interact with faster electrons. Below
nˆo = 2.2 the situation is inverted and the photon temperature decreases for
higher phase velocity.

Considering the results on efficiency obtained in the preceding
sections, a mechanism is proposed which can explain how first pass
damping is possible in situations with a large spectral gap.

As the waves propagate in the plasma, they must upshift in order to
damp. As an electron tail is formed, enhanced by the electric field of the
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transformer, less upshift is needed for damping. Ultimately, even the
incoming wave (with a practically unchanged nˆ) can deposit some of its

power into the tail. At equilibrium, the tail is maintained by a spectrum
broader than the launched one: the value of the upshift is then intended as
a 'weighted average' upshift of the various absorbed nˆ. This scenario
applies to the spectra centered at nˆo≥2.

For values of nˆo≤2, the incoming wave with nˆ≈nˆo is confined by

accessibility to the outer portion of the plasma. For these faster waves, the
spectral gap is too wide to be bridged, and only upshifted values of nˆ are

damped.
The waves with lower nˆ have the following characteristics:

1. efficiency is lower than for nˆo ≥ 2.1

2. damping location is not correlated to accessibility, but to upshift,
which is largely independent of the original nˆo. Infact , as seen in figure 7,

the hard X-rays are observed near mid-radius where the upshift reaches a
maximum [13].
3. the photon temperature decreases as the phase velocity increases. If
the photon temperature is plotted versus the absorbed value of nˆ, an almost

monotonic function is obtained (see figure 9).

5.   Modeling.

To simulate the propagation and absorption of the LH waves in PBX-
M, we have constructed a numerical code which couples the solution of the
system of differential equations for the LH ray trajectories (describing the
wave propagation) with the solution of the quasilinear Fokker-Planck
equation for the electron distribution function. This is essential in the
determination of the power deposition profiles.

Given the LH power spectrum launched at the plasma edge, the
objective is first to calculate the ray trajectories for each component of the
wave spectrum (each nˆo). This is so that, if we consider a fixed number of

ray reflections between the plasma center ("whispering gallery reflection
point") and the edge ("cut-off reflection point") [15], we know the evolution of
the parallel wavenumber along the trajectory, and as a function of the flux
surface coordinate ψ.
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Since the time of the LHW propagation tlh is much shorter than  tql

(the typical time of the quasilinear evolution of the distribution function), we
can assume that, if there is no first-pass-absorption, the effect of the wave
electric field on the plasma for each magnetic surface can be described by
summing the quasilinear diffusion coefficient associated with the wave, at
each passage on that magnetic surface. Specifically,

 Dql(ψ)=Dql1(ψ)+Dql2(ψ)+Dql3(ψ)+......Dqlnψ)                    (6)

where 1,2,.....n is the number of passages of the wave on the particular
magnetic surface. Clearly, a value Dqln(ψ) is associated with each interval

in the parallel velocity space v1-v2 , determined by the resonance condition
v=ω/kˆ, in which the wave interacts.

In this way, we are able to obtain the electron distribution function
from the 2-D relativistic Fokker-Planck code [16], and determine the
quasilinear damping of the wave, i.e.,

γ ≈ ∂fe /∂v|| v|| =ω / k||
   

(7)

for all the spectra we are considering, the current generated, the absorbed
power, and the efficiency of the LHCD.

In the following, we have summarized the results obtained for the
simulation of the LHCD on PBX-M tokamak in an indented magnetic
surface configuration.

Given a power spectrum coupled to the plasma edge, between n||1

and nˆ2 and centered on nˆo, with a Maxwellian shape, we run the Fokker-

Planck code with three power spectra on each magnetic surface: all these
spectra evolve according to the ray-tracing calculation. The first spectrum
represents the upshifted nˆ-spectrum at the third passage through the

plasma, the second is the spectrum at the second passage, and the third is
the spectrum at the first passage, which is essentially equal to the launched
one. Their amplitudes represent the power that is transmitted in each one.
The quasilinear interactions of these three spectra enables us to calculate
the wave power dissipated in the plasma, the generated rf-current, and the
quasilinear damping. In our calculation, we have divided the LH power
spectrum into 100 rays, each carrying a fraction of the total power, and the
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plasma in 100 magnetic surfaces from the edge (ψ=0) and the center (ψ=1).

On each magnetic surface, we calculate self-consistently the quasilinear
diffusion coefficient (by integrating the Poynting equation, which gives the
square amplitude of the electric field), the velocity interval, and the
quasilinear damping of the rf-power (square amplitude of the electric field),
for each nˆ.

The quasilinear absorption of the rf-power (integrated over the whole
n ˆ spectrum) for the three waves is calculated versus ψ  for plasma
parameters typical of the PBX-M experiment, i.e., average density ne=1x1013

cm-3, with a parabolic profile, ion and electron temperatures of about 1 keV
with parabolic profiles, magnetic field on the axis B=1.95 T, and indentation.
The injected spectrum is centred on nˆo = 2.5±1.0 with an extent of ∆nˆ=2,

and a Maxwellian shape

P(n|| ) = α
π

exp − α(n|| − n||c)[ ]2{ }.        (8)

The frequency is 4.6 GHz, and the coupled power is about 140 kWatt.
Only a fraction (45%) of the power carried by the wave (with an

upshifted spectrum centered on nˆc ≈ 5.5) is damped into the plasma to

generate the hot electron population.  Altogether, almost 85% of the total
power carried by the wave is quasilinearly absorbed by the plasma. Without
mutual interaction among these spectra, no power is absorbed by the
plasma from the nonupshifted  and slightly upshifted spectra.

Figure 10 shows the quasilinear absorbed power for the three spectra
we have considered versus nˆ. The solid line represents the launched

spectrum, while the dotted one is the absorbed power for the nonupshifted,
slightly upshifted, and upshifted spectra.

As is  shown by this figure, a large fraction of the power of the
nonupshifted spectrum is absorbed because of the efficient quasilinear
interaction among the waves. In particular, the fraction of power dissipated
due to the upshifted spectrum results in a sink of electrons (tail formation)
at higher velocities. These fast electrons are further accelerated by
dissipation of the nonupshifted wave spectrum on this tail. The power
deposition is concentrated at the half radius, where the nˆ-upshift is

maximum. Integrating the power density over the volume and the current
density over the surface of the cylindrical plasma, we obtain the absorbed
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power in Watts (≈140 kWatt) and the generated current in Amperes (≈70
kAmps), with an efficiency of 0.47.

Finally, in fig. 11 the calculated efficiency of current drive is plotted
versus nˆo and compared to experiment. Again, the plot shows  the expected
behaviour of the efficiency for nˆo > 2; the higher the launched nˆo, the lower

the efficiency. This is in agreement with the analytical expression for the
efficiency :

η = 〈v||
2 〉

σ
= 1

σ
v2

2 − v1
2

ln(v2 / v1)
       (9)

where σ  is a numerical coefficient which takes into account the 2-D

Fokker/Planck correction to the efficiency and is proportional to the

temperature, and vi = v||i

vth

= c
n||ivth

 , which decreases by increasing the

minimum allowed value of nˆ in the plasma. For values of nˆo ≤ 2.1, the

situation is reversed. In this case, the nonupshifted spectrum does not
interact quasilinearly with the other two spectra (the slightly upshifted and
the upshifted), and therefore, it does not damp on the tail formed by the
upshifted one. The efficiency drops down abruptly. The ray tracing for nˆo<2

shows that in this case, the wave is not immediately accessible to the
interior of plasma. Instead, the low values of nˆ remain confined in an

external layer where the wave suffers reflections between the slow and the
fast branch of the dispersion relation. The wave, after a series of fast/slow
reflections, penerates to the plasma core with a totally upshifted value of nˆ.

Therefore, in the central zones of the plasma, only rays with upshifted
values of nˆ are present.

Figure 12 illustrates the scenario obtained from the computer
modeling. Fig. 12a shows the maxwellian with the tail produced by the
upshifted waves originated from nˆo<2, and  fig 12b shows the situation for
nˆo>2, with the tail extending to  nˆ=nˆo≈ vˆ /11vth.

6.   Discussion.
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The fact that the RF current for nˆo ≥ 2.1 is observed near the

maximum penetration of the wave, while the tail itself is initially formed
near the mid-radius, can be explained by the following model. Radial fast
electron diffusion can allow a good fraction of the tail to be present on the
magnetic surface where the radial wavenumber  n˜r  becomes zero and the

electric field of the wave grows, favouring damping.
Radial diffusion of fast electrons generated by LHCD in PBX-M has

been extensively investigated in ref. 11.  The main result of that study,
which applies to the same type of discharges discussed here, is a fairly
precise estimate of the fast electron radial diffusion coefficient Dr, namely,
Dr ≈ 1 - 2 m2/s.

This range of diffusion coefficient values is also needed to explain the
change in the current profiles measured in these plasmas during LHCD
[17,18].

We now show that this level of radial diffusion is sufficient to provide
a substantial fast electron population in the central part of the discharge, by
inward diffusion of electrons originally driven at r ≈ a/2.  The radial
distribution of electrons generated at a given position r' is given by the
Green's function g(r,r') of the steady-state kinetic equation, including radial
diffusion and Coulomb collisions.  An approximate Green's function, can be
evaluated assuming that both Dr and the collision frequency  ν  are radially

constant. This is justified in the central part of the plasma, where the
density profile is rather flat.  The derivation of this Green's function is
given in the appendix.  For r < r', g(r,r') is proportional to Io(hr), where h =
(ν/Dr)1/2 and Io is a modified Bessel function.  Thus, the ratio of the electron

populations at the locations r and r' for inward diffusion (i.e., r < r') can be
simply quantified by the ratio

g(r, r' )
g(r' , r' )

= Io (hr)
Io (hr' )

     (10)

This quantity is plotted in Fig. 13 for r' = a/2, ne = 2 1013 cm-3, Te = 1
keV, Dr = 1 m2/s (solid lines), and several values of nˆ.  The case Dr = 2 m2/s,
nˆ = 2.5 is also shown for comparison (dashed line).  Figure 13 shows that
between 25 and 70% of the electrons originally driven at r' ≈ a/2 have
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diffused to the central part of the discharge. This provides a sufficient
"seed" to start wave damping and tail build-up by low-nˆ waves.

Concerning the difference in efficiency between circular and
indented plasmas evident in figure 4, it must be noted that the latter usually
have a higher electron temperature. Figure 14 shows the efficiency
normalized to the central electron temperature. For nˆo > 2.1, it appears
clearly that the efficiency depends linearly from the electron temperature,
while this is not the case for nˆo < 2.1

The following qualitative scenario can illustrate the effect of
temperature on the damping and the current drive efficiency. A higher
temperature makes the spectral gap smaller, so the required "average
weighed" upshift is less for an indented than a circular plasma (higher
efficiency).

At lower temperatures, it is not the width of the gap which
determines the necessary upshift, but the ability of the wave itself to upshift
at all, which is strongly dependent on the plasma shape [13].

7.   Conclusions.

In this paper, we present an experimental argument for the upshift
of the LH waves, and consequently, a validation of our ray tracing codes. A
scenario has been developed in which the upshifted spectrum creates a fast
electron tail strong enough to damp part of the power during the first pass
through the plasma. The concept of the 'weighted upshift' can give useful
information on the formation and sustainment of the fast electron tail.

Since it is found that the spectral gap can be bridged with the help of
the residual electric field, current profile control appears to be possible in
experiments with moderately low electron temperature. The current drive
efficiency is found to be proportional to Te.

For faster waves (lower nˆ), for which the spectral gap is too wide,
only upshifted waves damp. The damping location is fairly independent of
nˆ, and the efficiency is only marginally dependent from Te.
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A method for calculating the experimental current drive efficiency
with residual inductive electric field has been presented. As a by-product,
the hot conductivity can also be determined.

These results confirm that LH waves can be a powerful tool for
current profile control over a wider range of plasma parameters than
originally anticipated. This is because localized RF power absorption can
occur in discharges where the electron temperature is too low for first-pass
damping. In all cases, it is desirable to have coupling systems which give a
good and wide control of the nˆ-spectrum.
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Appendix: approximate Green's function for radial diffusion

The steady-state kinetic equation for the superthermal distribution
f(vˆ, v˜, r) is given by:

1
r

∂
∂r

rDr

∂f
∂r

+ Ĉf = S(r)

where Ĉ is the collision operator and the source term S(r) is the quasilinear
term

S(r) = − ∂
∂v||

DLH

∂
∂v||

(f + fMaxw. )

or more generally, the sum of the quasilinear diffusion term and the
convective term due to the dc electric field.  The following approximations
are used:
1) S(r) is treated as a known term (its radial structure can be accurately
evaluated by ray-tracing codes).
2) A simplified collision term is used:

Ĉf = −ν(v)f,

where

ν(v) = ν0

vth

v






3

,          

and νo is the collision frequency of thermal electrons.
3) We assume that Dr  and ne (thus ν) are radially constant.  This is a

good approximation for this particular problem, since we are interested in
inward diffusion, and the density profile is rather flat between 0 < r < a/2.
With these approximations, one can analytically evaluate the radial
Green's function g(r,r'), i.e., the solution of:

D
r

∂
∂r

r
∂g
∂r

− νg = δ(r − r' )
2πr

with the boundary conditions:
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∂g
∂r r =0

= 0                g(r = a) = 0

The result is:

g(r, r' ) =

K0 (ha)
I0 (ha)

− K0 (hr' )
I0 (hr' )











I0 (hr)I0 (hr' )
2πDr

      0 ≤  r <  r'

K0 (ha)
I0 (ha)

− K0 (hr)
I0 (hr)











I0 (hr)I0 (hr' )
2πDr

     r'  <  r ≤  a














h = √ν/Dr and In, Kn are modified Bessel functions.  From g(r,r') and the

source term S the distribution function f(r) can be evaluated:

f(r) = 2π dr' r' g(r, r' )S(r' )
0

a

∫
but g itself already provides information on the inward diffusion of fast
electrons originally located at r = r'.
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Figure captions.

Fig 1 a.  Loop voltage versus time: top trace without RF power, lower trace
with RF power.
b.   RF power pulse; power = 231 kW, B=15.3 kG, Ip= 187 kA,
ñe=1.3x1013cm-3, bean configuration.

Note that at  t ≈ 490 msec, MHD instability eliminates current drive.

Fig 2a Relative loop voltage drop [-(Vrf-Voh)/Voh]   vs. RF power, normalized
to average density ñe, major radius R, plasma current Ip.

The top scale is the inverse of the bottom one.
full dots = LH in bean plasma configuration
circles = LH in circular plasma
All the data for nˆinjected = 2.1
The values at -∆V/Voh=1 [Vrf=0] are obtained from figure 4.

Fig 2b Fit to the data of figure 2a obtained with the quasilinear Fokker-
Planck code.

Fig 3 Pel/Pabs vs. phase velocity normalized to runaway velocity: the
various symbols refer to different values of nˆinjected , density,

current, field; lines are the theoretical value from Karney-Fisch for
Zeff = 1, 2 and 5.
For all the cases α=0.65, β is variable.

Fig 4 Current drive efficiency (InR/P) at Vloop=0 vs. injected value of nˆ.

full dots = LH in bean plasma configuration
circles = LH in circular plasma.

Fig 5 nˆ absorbed vs.  nˆ injected for the data of figure 4.

Fig 6 Analitic fit to the data of figure 2a, with the hot conductivity.

Fig 7 Radial location of the maximum of the HXR intensity, versus
nˆinjected. The line is the maximum accessibility of the wave at the
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first pass from LSC code. Plasma conditions are: Ip=180 kA, average
density = 2.2x1013 cm-3,  B=1.7 T, PRF ≈260 kW, bean plasma
configuration.

Fig 8 Photon temperature vs. nˆinjected for the same shots of figure 6.

Fig 9 Photon temperature vs. nˆabsorbed.

Fig 10   Launched nˆ-spectrum (continuous line) and absorbed spectra
(broken lines) as obtained from the quasilinear Fokker-Planck code.
The ordinate is the power per unit nˆ, normalized to the total RF
power.

Fig 11  Comparison of the experimental efficiency (dots) vs. nˆinjected  with 
  the  calculated one (crosses).

Fig 12  Electron distribution function vs. vˆ for   nˆinjected<2 (a) and
nˆinjected>2  (b).

Fig 13 Electron populations vs. r/a, normalized to the value at r/a=0.5

Fig 14 Data of figure 4: efficiency normalized to peak electron temperature
(squares=bean plasma, dots=circular plasma).


