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Abstract

A global stability analysis of mirror modes in the magnetosheath is presented.

The analysis is based upon the kinetic-MHD formulation which includes rele-

vant kinetic e�ects such as Landau resonance and gradient drift e�ects related

to inhomogeneities in the background density, temperature, pressure and its

anisotropy, magnetic �eld, and plasma ow velocity. Pressure anisotropy pro-

vides the free energy for the global mirror mode. The local theory of mirror

modes predicts purely growing modes con�ned in the unstable magnetosheath

region; however, the nonlocal theory that includes the e�ects of gradients and

plasma ow predicts modes with real frequencies which propagate with the

ow from the magnetosheath toward the magnetopause boundary. The real

frequency is on the order of a combination of the diamagnetic drift frequency

and the Doppler shift frequency associated with plasma ow. The diamag-

netic drift frequency provides a wave phase velocity in the direction of the

magnetopause so that wave energy accumulates against the magnetopause

boundary, and the amplitude is skewed in that direction. On the other hand,

plasma ow also gives rise to a real phase velocity, but the phase velocity is

smaller than the ow velocity. As a result, the wave amplitude is increased

in the wake of the plasma ow and piles up against the bow shock boundary.
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I. INTRODUCTION

Recently much attention has been given to the identi�cation of wave modes in the mag-

netosheath and, in particular, near the magnetopause [1{8]. Such e�orts are of interest

primarily because the identi�ed modes may grow to substantial amplitudes and can cause

signi�cant change in plasma pro�les and pressure anisotropy. For example, it is thought

that ion-cyclotron waves control the degree of pressure anisotropy in the magnetosheath [9].

Moreover, low frequency MHD waves such as mirror modes excited in the magnetosheath

or fast compressional Alfv�en waves originating from the bow shock can propagate to the

magnetopause and lead to signi�cant plasma transport. Transport at the magnetopause

due to low frequency MHD wave turbulence can be very e�cient because magnetic �eld

and density gradients at the magnetopause e�ciently couple large scale wave energy into

small scale kinetic Alfv�en waves with perpendicular wavelength on the order of the gyrora-

dius [10{13]. Using quasilinear theory we have shown that these waves can lead to e�cient

particle transport across the magnetic �eld for both northward and southward IMF. More-

over, for southward IMF, we have shown that kinetic Alfv�en waves can propagate to the

location because the Landau damping is suppressed by magnetic gradient and curvature

drifts [12]. As a consequence, magnetic islands can form and for a typical spectrum of low

frequency MHD waves, there will be multiple overlapping islands in the particle phase space

which can lead to massive particle transport.

The mirror modes destabilized in the magnetosheath are of substantial interest they

can couple a signi�cant amount of wave energy from the magnetosheath to waves at the

magnetopause. The mirror modes are unstable and can grow to large amplitudes because

the magnetosheath is characterized by a large pressure anisotropy [14, 15]. Based on local

mirror mode theory the mirror modes is purely growing and has no real frequency so as

a consequence they would be con�ned in the magnetosheath and can not propagate to

the magnetopause. In this work we shall study the nonlocal e�ects of realistic background

gradients and plasma ow and demonstrate that the mode frequency is actually complex with
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a substantial real component due to particle diamagnetic drift and Doppler shift associated

with plasma ow. With a substantial real frequency, these modes can propagate to the

magnetopause and e�ciently mode convert into kinetic Alfv�en waves which may play an

important role in transport processes at the magnetopause.

Large pressure anisotropy develops in the magnetosheath because as plasma crosses the

bow shock, the ow velocity perpendicular to the magnetic �eld is converted into into

gyromotion yielding a large perpendicular plasma temperature. Motion along the magnetic

�eld is not readily converted into thermal energy so that a large anisotropy develops with

�? > �k. In the magnetosheath the kinetic pressure dominates the relatively weak magnetic

�eld so that typically � > 1. For such conditions the plasma is unstable to the well known

mirror mode [1, 3, 16]. Near the magnetopause, the magnetic �eld sharply increases while

the plasma pressure decreases and becomes more isotropic. The plasma � falls to a more

typical magnetospheric value much less than 1 which suppresses the mirror mode instability.

Kinetic e�ects on waves at the magnetopause have been extensively studied using Vlasov

theory based upon a homogeneous background [2, 3, 9, 17{19]. While these calculations

provide very useful information about local threshold conditions, they do not account for

kinetic e�ects that involve background gradients and boundary conditions. On the other

hand, MHD wave analysis e�ectively deals with complicated boundary conditions and global

gradients, but fails to account for important kinetic e�ects.

While one- and two-dimensional hybrid simulations [8] have the advantage of describing

many kinetic e�ects of ion, it is di�cult to prescribe and maintain an realistic equilibrium

magnetic �eld geometry with appropriate boundary conditions. Moreover, the extension

of such models to include the important e�ects of curvature is not straightforward. We

employ the kinetic-MHD approach which is an attempt to incorporate the most important

ion kinetic e�ects into the MHD formalism [20, 21]. The gyrokinetic equation, which is

essentially the gyroaveraged Vlasov equation, is the cornerstone of the model. Moments of

the gyrokinetic equation are taken and provide a modi�ed momentum equation and Ohm's

law. This approach retains the important kinetic e�ects of Landau damping and gradient
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drift as well as the physics associated with the ion magnetic gradient and curvature drifts.

Moreover, it is straightforward to generalized this model to realistic two or three dimensional

equilibrium pro�les.

The organization of this paper is as follows. We shall briey review the mirror mode

and point out the important consequences introduced by (a) background gradients in the

equilibrium and (b) kinetic e�ects. We present the kinetic-MHD model for the mirror mode

which includes these e�ects. Then, we solve for the global mirror eigenmodes using a one-

dimensional equilibrium based upon typical observations and interpret the results. Finally,

a conclusion and discussion is given.

II. BACKGROUND GRADIENT AND KINETIC EFFECTS ON MIRROR

MODES

Without kinetic e�ects, low-frequency (! � kkvA; kkcs) compressional magnetic �eld

uctuations may be described by the MHD equation
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where the �rehose and mirror instability parameters are respectively

� = 1 + (�? � �k)=2 (2)

and

�MHD = 1 + �?(1 � �?=�k): (3)

The dispersion relation for waves without background ow is !2 = �k2
k
v2A+�MHDk

2
?
v2A which

reduces in the isotropic limit, �; � ! 1, to the well known compressional Alfv�en wave. In

a plasma with �? > �k � 1, �MHD < 0 can lead to the well known purely growing mirror

instability.

Modi�cations to the simplistic uniform plasma MHD description of the compressional

wave can be signi�cant. In the magnetosheath and near the magnetopause it is important to
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consider the e�ects of gradients in the equilibrium as well as kinetic e�ects. The parameter,

�MHD, which indicates regions of local instability when negative, has a pro�le which changes

from positive in the solar wind (relatively isotropic) to negative in the magnetosheath (due

to large pressure anisotropy) to positive in the magnetosphere (low �, less anisotropy). As

a consequence, (1) describes an eigenmode with a speci�c eigenfrequency localized in the

region of instability. Moreover, as the instability grows, wave energy is transported out of

the region of instability. The global solution gives information about how energy from this

instability may be transported from the magnetosheath across magnetopause.

The background plasma ow is also important. In a uniform plasma, the mirror mode

is purely growing in the plasma frame and should be convected with the ow. However,

if the background plasma ow is nonuniform, deceleration of plasma can lead to wave pile

up and modify the wave structure. Furthermore, purely growing modes can acquire a real

frequency due to Doppler shift.

If kinetic e�ects are included in Eq. (1), kinetic contributions arise which modify the term

proportional to �MHD so that �MHD must be replaced by an appropriate kinetic � which

contains wave-particle resonances and �nite Larmor radius e�ects. In the low frequency

limit (! � kkvthk), the kinetic � reduces to �MHD. It has already been shown that kinetic

e�ects strongly a�ect the MHD picture of the mirror instability. If (! � kkvthk), then wave

particle resonance is important. Hasegawa [16] �rst provided a description of kinetic e�ects

on the mirror mode. More recently extensive studies of local mirror mode theories including

kinetic e�ects have been compiled [1{3,9,17{19]. Southwood [22] has provided an excellent

physical picture of the kinetic e�ects on the instability and relates the instability to resonant

particles with zero phase velocity. An important feature of the kinetic dispersion relation is

that for an anisotropic plasma, in addition to the weakly damped fast magnetosonic wave

found in the limit ! � kkvthk, the mirror mode is found with ! � kkvthk. For low frequencies

(! � kkvthk), the mirror mode is well approximated by the MHD description and as such,

the threshold condition for the kinetic mirror mode remains the same although growth rates

are signi�cantly reduced when ! � kkvthk.
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Other kinetic e�ects not described by uniform plasma Vlasov theory also arise where gra-

dients are important. Hasegawa �rst described these e�ects as the drift-mirror mode [16],

but these e�ects were thought to be unimportant because local gradients in the magne-

tosheath are generally small; however, we shall show that large localized gradients at the

magnetopause can a�ect the global structure and provide a real frequency to the mirror

mode. The gradients enter into the kinetic description through the diamagnetic drift. At

the magnetopause, the diamagnetic drift frequency, !� � kkvthi�i=LMP (LMP is the gradient

scale at the magnetopause, kk is the azimuthal wave number, vthi is the ion thermal velocity,

and �i is the ion gyroradius) can be signi�cant and for typical magnetopause parameters,

!� � kkvA.

III. KINETIC-MHD FORMULATION OF THE MIRROR MODE

An appropriate description of the mirror mode in the magnetosheath and near the mag-

netopause should attempt to account for the e�ects outlined in the last section. In particular,

the model should contain the global pro�le e�ects which arise for inhomogeneous ow veloc-

ity, density, pressure, temperature, and magnetic �eld. Moreover, the model should contain

important kinetic e�ects associated with the wave-particle interaction and diamagnetic drift.

The kinetic-MHD model, which retains all of these e�ects is appropriate because the small-

est background scale (the magnetopause) is typically the order of 10 �i and thus satis�es the

gyrokinetic approximation. To focus on the e�ects described above, we take for simplicity

a one-dimensional equilibrium in the x direction which is taken to be normal to the mag-

netopause. While we expect that the two-dimensional and three-dimensional nature of the

magnetopause can be important, the one-dimensional equilibrium gives us an abundance of

new insight on the mirror mode. All equilibrium quantities will be functions of x only. For

simplicity, we take the magnetic �eld and velocity to be B0(x)ẑ and V0(x)x̂ respectively. We

neglect drifts due to magnetic �eld gradients and curvature in the resonant wave-particle

interaction (which at most will shift the real frequency of the modes by a negligible amount).
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Coupling to transverse magnetic uctuations is ignored. If ! < kkcs; kkvA this assumption is

reasonable, but we expect that there will be localized coupling near the location where the

phase velocity of the wave approaches vA or cs leading to mode conversion to kinetic Alfv�en

waves or damping from the sound continuum.

The kinetic-MHD equations then reduce to Eq. (1) with kinetic modi�cations to the

instability parameter,

�MHDB � �B! �B � �B � �MHDB � �B+ �p̂?; (4)

which arise through the nonadiabatic pressure response,

�p̂? = m

Z
d3v(v? �V0)

2g=2: (5)

The nonadiabatic particle distribution, g, evolves according to

(! � ivk � r� iV0 � r)g = � q

m

@F

@E

�
1� !�

!

�
!v?

k?
J1(k?v?=
)

B � �B
B

(6)

where it is implicitly understood that k? and !� are operators [23]. (We have dropped

several terms in Eq. 6 which couple to the transverse magnetic �eld and parallel electric

�eld through the magnetic gradient and curvature drifts which are smaller than the term

proportional to �Bk which contains the essential kinetic e�ects required to replicate the well

known mirror mode dispersion relation [16].) Because k?�i < 1 we may formally expand

the Bessel function to retain nonlocal e�ects in (6). We solve the integral equation using

an expansion equivalent to a WKB approximation in the x̂ direction. We verify the validity

of that approximation a posteriori. This approximation allows us to replace V0 � rg by

gV0 � r�Bk=�Bk.

We solve Eq. (1) with Eq. (4) using

�p̂ = ��?T?

Tk

�
(� � �(1)

�
)Z(�)2I3=� � �(2)

�
Z(�)2I5=�+

�(3)
�
�(1 + �Z(�))2I3=�

�
B � �B (7)

� =
(! � iV0 � r)p

2kkvthk
(8)

7



�(1)
�

=
B� k?vth?p

2kkvthk
�i

 
rn
n

+
1

2

rTk
Tk

� rT?
T?

!
(9)

�(2)
�

=
B� k?vth?p

2kkvthk
�i

�rT?
T?

�
(10)

�(3)
�

=
B� k?vthkp

2kkvthk
�i

 
rTk
Tk

!
(11)

where � = k2
?
�2i =2. The integral operators, I3;I5 are de�ned in the appendix and involve

integrals over Bessel's functions. For small k?�i, 2I3=� � 1 and 2I5=� � 3. This set of

equations properly reduces to the kinetic dispersion relation for �; �� � 1:

! = k �V0 + !� � ikkvthk

s
2

�

Tk

�?T?

 
�k2

k

k2
?

+ �MHD

!
(12)

where !� = (3!�p�!�n)=2 with !�n = ��ivth?b�k �rn=n and !�p = ��ivth?b�k �rP=P .

Boundary conditions at the bow shock and magnetopause are critical in determining

the structure of the modes. Because the group velocity of the modes that we consider

are far less than the ow velocity in the solar wind, no wave information can be carried

across the bow shock. This property is manifest in a singularity at the location where

�MHD = (V0=vA)
2 = M2

A. At that location, the group velocity of compressional waves

propagating against the ow approaches zero. A careful expansion of the MHD equations

near this point indicates that the solution can consist of two Frobenius solutions, one of

which is a power series and the other dominated by a logarithmic singularity. The behavior

of the solutions is very similar to the behavior of MHD solutions near the well known �eld

line resonance [24]. In this case, however, we choose the coe�cient of the logarithmic solution

to vanish because there is no physical mechanism which can provide the buildup of energy

at the boundary. The remaining solution behaves like c(1+�2x+ :::) where � = !=rV0 with

� � 1 for a sharp boundary. In essence, this means that d�Bk=dx � 0 near the boundary

which can be interpreted as a reecting boundary condition. The amplitude of the wave

should reduce to zero in a small boundary layer near the bow shock when appropriate kinetic

e�ects and coupling are include. We take the approximation d�Bk=dx � �2 near the bow
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FIG. 1. Model steady state con�guration for the global mode analysis for � = LMP =L� = 0:05

and MA = V0=vA0 = 0:1 where vA0 is the Alfv�en velocity at �x = 0. LMP and L� are the width of

the magnetopause and magnetosheath respectively.

shock in all of our results. On the magnetospheric side of the magnetopause we take the

boundary condition that the solution connects to the appropriate exponentially decaying

Eikonal solution which we obtain implicitly from the di�erential equation.

IV. RESULTS

We solve for the normal modes of the outlined system of equations for a steady state

con�guration based upon a typical pass through the magnetosheath and magnetopause

[7,15]. In Fig. 1 we display typical steady state radial pro�les for northward IMF. Although

a true steady state con�guration requires at least two dimensions in order to properly model

the normal gradients in the plasma ow, the normal component of the bulk ow in the
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magnetosheath is typically much smaller than the plasma and magnetic pressures and thus

does not appreciably a�ect the gradients that enter though the plasma pressure and magnetic

�eld and thus the essential MHD pro�les do satisfy a steady state solution to �rst order in

�V 2
0 =(P + B2=2). On the other hand, the Doppler e�ects may be reasonably modeled by

specifying a small normal velocity pro�le which is meant to be similar to what one would

expect from a two dimensional steady state con�guration. We introduce two spatial scales:

L� is the scale length of the unstable region based upon �MHD < 0 which corresponds roughly

to the width of the magnetosheath (� 2� 5RE [25]), and LMP represents the gradient scale

length of the magnetopause (� 10�i). The Mach number, MA is given by the ratio V0=vA0

where vA0 is the Alfv�en velocity at �x = 0. The pro�le of V0is chosen to decrease from

the bow shock slowly to a value of zero at the magnetopause. The dimensionless radial

coordinate is �x = �x=L� . The bow shock is at �x = �0:5 and magnetopause at �x = 0:5. The

dimensionless frequency is �! = !L�=�vA0. For typical parameters, this gives a frequency

f = (10�100)�! mHz. The wavevectors in the directions perpendicular to x remain constant.

They are de�ned by k and � where k2 = k2y+k2z and � = tan�1(ky=kz). The results displayed

here have k0�=L� = 5 and � = 30�. For larger values of �, the mode becomes more stable.

For a sharp magnetopause, there is a spectrum of purely growing modes up to an accu-

mulation point. The boundary conditions limit the growth rate. For a smooth variance in

the density, pressure and its anisotropy, and magnetic �eld, the kinetic part of � has both a

real and an imaginary part (which arises from the diamagnetic drift). The imaginary part

of � causes the eigenvalue to become complex rather than purely imaginary. If !� were

uniform the real frequency is identically !�, but for nonuniform diamagnetic e�ects, the

real frequency arises as an averaged !�. As the scale of the magnetopause is increased, the

real frequency increases. The normal bulk plasma ow velocity also provides a signi�cant

contribution to the real frequency which is roughly given by an averaged k �V0. (Note that

we have not included the ŷ component of ow which would lead to a further Doppler shift

in the real frequency.)

To illustrate these two e�ects we plot in Fig. 2 the evolution of the mode frequencies
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FIG. 2. Evolution of the eigenfrequencies (�! = !L�=�vA0) of the eigenfunctions. The solid

lines correspond to evolution of the roots in � with MA = 0. The dashed lines correspond to

evolution of the roots in MA with � = 0:05. Various points on these curves are indicated by

symbols described in Table 1.

as functions of the magnetopause gradient scale and the plasma ow, V0. Each curve

in this �gure corresponds to an eigenfunction with a speci�c number of nodes beginning

with the damped fundamental in ascending order. In particular, we plot the evolution of

the n = 2; 5; 8; 10; 15 modes, where n is the number of nodes in the radial wave function

(kx � (n+1)�=L�). The solid curves show the evolution of the mode frequency as a function

of � = LMP=L� with V0 = 0. The dashed curves show the evolution of modes as a function

of MA with � = 0:05. Speci�c values of � and MA are indicated by symbols described in

Table 1.
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Symbol � MA

� 0 0

� 0.01 0

� 0.05 0

M 0.05 0.1

N 0.05 0.2

TABLE I. Speci�c values of � and MA are indicated by these symbols in Fig. 2.

As expected, for small LMP , the modes all line up on the imaginary axis. However, as

LMP increases to more realistic values, the eigenvalues undergo excursions into the complex

plane and are characterized by a signi�cant real frequency. For substantial plasma ow

(MA > 0:1) the higher n modes are suppressed for n > 8. The lower n pick up a substantial

real frequency contribution from the Doppler shift with a roughly linear dependence, ! � V0.

In Fig. 3 we illustrate three radial wave structures of the n=5 eigenmode for three di�er-

ent plasma ow velocity and magnetopause boundary layer thickness. �x = �0:5 corresponds

to the bow shock position and �x = 0:5 the magnetopause position. The dotted and dashed

lines correspond to the real and imaginary part of the eigenfunctions of �Bk, respectively.

In all of these three cases, the real frequency is negative (same sign as diamagnetic drift

frequency). This means that if the real part of the eigenfunction leads the imaginary part,

then the mode travels to the left (phase velocity is negative). Conversely if the imaginary

part leads the real part, the wave travels to the right.

For a sharp magnetopause with zero layer width (� ! 0; V0 = 0; �! = (0; 0:73), the

eigenfunction (the top panel in Fig. 3) is a standing wave. However, for a more realistic

magnetopause gradient (� = 0:05;MA = 0; �! = (�0:1; 0:81)), the eigenfunction (the middle

panel in Fig. 3) is complex and the real and imaginary parts of the eigenfunction are not in

phase. Near the magnetopause where �MHD is small, the imaginary part of � dominates over

the real part and leads to a phase shift in the real and imaginary parts of the eigenfunction.

Because there is a real frequency associated with the wave, the structure slowly propagates
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FIG. 3. Three radial wave structures of �Bk (real: solid lines, imag: dashed lines) for the n=5

eigenmode for three di�erent plasma ow velocity and magnetopause boundary layer thickness

corresponding to three di�erent points on the curve shown in Fig. 2. Notice that the density

gradients and bulk ow strongly modify the mode structure. Note that n indicates the number of

nodes of the eigenfunction.

as it grows. The wave amplitude is largest near the magnetopause. To understand why the

eigenmode is skewed we consider the local dispersion relation in the magnetosheath region

far away from the magnetopause boundary. The mode has largest growth with kk > ky

and ! < kkVA so that �k2x � ��kk. Because diamagnetic drift e�ects are unimportant and

!r � !i, j�rj � j�ij and we have kx � �k0(1 + i�) where k0 =
q
��k2

k
=�r and � = ��i=2�r.

For unstable modes with j!=kkvthj � 1, �r < 0 and �i � �p�(�?T?=Tk)!r=kkvth. For

!r < 0, �i > 0 and � > 0. By inspection of the eigenfunction, kxr < 0 (the imaginary

part of the eigenfunction leads the real part) and hence the eigenfunction will have the

spatial behavior, exp(�ik0x+�k0x), which increases in amplitude in the positive x direction.
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Because the real frequency is a consequence of the diamagnetic drift at the magnetopause,

this growth can be interpreted to result from coupling of the wave with the diamagnetic drift

associated with the pressure gradient. The diamagnetic drift causes the waves to drift with

phase velocity toward the magnetopause boundary. As a result, the waves pile up against

the magnetopause and the wave amplitude is enhanced. Although the diamagnetic drift is

only large near the magnetopause, its e�ects are globally transmitted throughout the entire

spatial domain leading to a slowly propagating mirror mode with real frequency.

When the plasma ow is included (� = 0:05;MA = 0:1; �! = (�0:2; 0:7)) the real fre-

quency of the mode is some combination of an averaged k�V0 and !�. The real and imaginary

parts of the eigenfunction (the bottom panel in Fig. 3) are out of phase which indicates that

the wave phase velocity is in the ow direction. The solutions are skewed toward the bow

shock. To physically understand the origin of the relatively larger real frequency, we note

that the mode is most unstable when the arguments of the Z-functions (!�k �V0) is small

so that !�k �V0 ' 0 and the wave has a real frequency close to an average value of k �V0.

The behavior of the amplitude can be understood by considering j(! � k �V0)=kkvthj � 1.

In this case �i � �
p
�(�?T?=Tk)(!r � k �V0)=kkvth. The real part of the n=5 mode local

wavevector varies between -5 and -10 over most of the domain so that k �V0 � �(0:5� 1:0)

whereas !r = �0:2 so that �i < 0. For unstable modes �r < 0, then � = ��i=2�r < 0

and k0 > 0. Hence the mode has a spatial behavior, exp(�ik0x + �k0x) so that the mode

decays with increasing values of x. Physically, because the mirror mode propagates in the

same direction as the ow but with a slower phase velocity, the mode will propagate toward

the bow shock direction in the plasma moving frame. As the mode propagates toward the

bow shock, its amplitude is enhanced by additional pressure anisotropy free energy and its

energy accumulates near the the bow shock boundary because of the reecting boundary

condition there.

In general, the actual wave structure at the magnetopause will consist of a large number

of modes because the growth rates for the modes are approximately the same (see Fig. 2).

It is expected that �nite Larmor radius e�ects will suppress the modes with su�ciently
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large kx and that there will be some range of n with maximum growth. We expect that the

observations will consist of many such modes with di�erent kx. As a result, there will be

substantial beating between the waves leading to mirror mode wave structures with shorter

spatial scale which would be comparable with the scales that are observed. The theory

predicts a skew in the amplitude toward the magnetopause for small radial plasma ow

and a skew toward the magnetosheath for large radial plasma ow. These are predictions

from the theory that can be carefully compared with the observations in order to determine

whether further re�nements might be required for the theory.

V. CONCLUSIONS

In this paper we have presented an eigenmode analysis of the global mirror mode at

the magnetopause using the kinetic-MHD model which accounts for both kinetic e�ects and

global e�ects due to background gradients. The analysis demonstrates that:

� magnetopause gradients and plasma ow lead to a substantial real part of the eigen-

frequency for the global mirror modes which is on the order of a combination of the

Doppler shift frequency associated with plasma ow and diamagnetic drift frequencies,

� pressure and density gradients at the magnetopause modify the wave structure because

of diamagnetic drift e�ects. The real frequency associated with the diamagnetic drift

frequency provides a wave phase velocity in the direction of the magnetopause so that

wave energy accumulates against the magnetopause boundary and the amplitude is

skewed in that direction.

� plasma ow also gives rise to a real phase velocity, but the phase velocity is smaller

than the ow velocity. As a result, the wave amplitude is increased in the wake of

the plasma ow and piles up against the bow shock boundary and is skewed in that

direction.
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� boundary conditions are important because they impose restrictions that determine

the global solution far away from the boundary and determine how the waves propagate

within the region of instability,

� the kinetic-MHD formalism is useful when it is important to consider both global scale

gradients and kinetic e�ects.

We want to reiterate that the real frequency that these modes exhibit has important

consequences for magnetopause transport because e�cient mode conversion to kinetic Alfv�en

waves can occur at the magnetopause boundary{particularly if the magnetic �eld rotates

so that the Alfv�en resonance frequency goes through a minimum. The wave energy is

funneled to small scales (the order of the ion gyroradius) which can lead to e�cient cross

�eld transport.

One obvious direction for future consideration is an extension to obtain two-dimensional

mirror mode solutions based on a two-dimensional magnetosheath-magnetopause con�gura-

tion which includes the e�ects of curvature. Another important area for further consideration

is coupling between the compressional and transverse components of the perturbed magnetic

�eld which becomes essential near the shear Alfv�en and slow magnetosonic resonances. Be-

cause these modes have a real frequency, they can couple strongly with the kinetic Alfv�en

wave near the location where the real frequency matches the local shear Alfv�en resonance

frequency which will occur if the background magnetic �eld rotates. Such coupling could

lead to enhanced particle transport across the magnetopause boundary layer.

APPENDIX: INTEGRALS OVER PRODUCTS OF BESSEL FUNCTIONS

In the kinetic-MHD equations, the �elds are multiplied by J0 and J1 so that integrals

over the product J0J1 are frequently encountered. Integrals of this type may be evaluated

through di�erentiation on the well known integral 6.633.1 from [26]

I1(�; �) �
Z
1

0
exp(���2)[J0(��)]2�d� =

1

2�
exp(��2=2�)I0(�2=2�) (A1)
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where I0 is the modi�ed Bessel function.

Kinetic e�ects for the core plasma involve two integrals

I2 �
Z
1

0
exp(��2)J0(��)J1(��)�2d� (A2)

I3 �
Z
1

0
exp(��2)J0(��)J1(��)�4d� (A3)

I5 �
Z
1

0
exp(��2)J0(��)J1(��)�6d� (A4)

Using the relationship

@J0(z)

@z
= �J1(z) (A5)

we �nd that

I2 = �1

2

@I1
@�

�����
�=1

(A6)

I3 =
1

2

@2I1
@�@�

�����
�=1

(A7)

I5 = �1

2

@3I1
@�@�2

�����
�=1

: (A8)

We �nd through di�erentiation using the rule

2
@In(z)

@z
= In�1(z) + In+1(z) (A9)

and

2n

z
In(z) = In�1(z)� In+1(z) (A10)

and with the auxiliary de�nition

�n(z) = exp(�z)In(z) (A11)

that

I2 =
�

4
[�0(�

2=2) � �1(�
2=2)] (A12)

I3 =
�

2

n
[1� �2=2]�0 � [1� �2]�1=2

o
(A13)

I5 =
3�

2

n
[1� 11�2=12 + �4=6]�0 � [1� 9�2=4 + �4=2]�1=3

o
(A14)
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The limiting forms of these expressions are of interest. The power series representations

(in �) of these functions is

I2 =
�

4
(1 � 3�2=4 + 5�4=16 + ::: (A15)

I3 =
�

2
(1 � 9�2=8 + 5�4=8 + ::: (A16)

I5 =
3�

2
(1� 3�2=2 + 83�4=48 + ::: (A17)

The asymptotic expansions for large � are

I2 �
1

4
p
��2

(A18)

I3 � �
7

8
p
��2

(A19)

I5 �
3

16
p
��2

(A20)
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