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ABSTRACT

Results from recent DT experiments on TFTR to measure the radial density pro�les
of fast con�ned well trapped �-particles using the Pellet Charge eXchange (PCX) diag-
nostic [PETROV M. P., et.al. Nucl. Fusion, 35 (1995) 1437] indicate that sawtooth
oscillations produce a signi�cant broadening of the trapped alpha radial density pro�les.
Conventional models consistent with measured sawtooth e�ects on passing particles do
not provide satisfactory simulations of the trapped particle mixing measured by PCX
diagnostic. We propose a di�erent mechanism for fast particle mixing during the saw-
tooth crash to explain the trapped �-particle density pro�le broadening after the crash.
The model is based on the fast particle orbit averaged toroidal drift in a perturbed he-
lical electric �eld with an adjustable absolute value. Such a drift of the fast particles
results in a change of their energy and a redistribution in phase space. The energy re-
distribution is shown to obey the di�usion equation, while the redistribution in toroidal
momentum P' (or in minor radius) is assumed stochastic with large di�usion coe�cient
and was taken at. The distribution function in a pre-sawtooth plasma and its evolution
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1. Introduction

The physics of con�ned fast charged fusion products in tokamak plasmas is becom-

ing the reactor relevant issue for experimental study. Trapped �-particles are studied

in Deuterium-Tritium (DT) TFTR plasma with the PCX diagnostic [1]. During the

sawtooth activity in the plasma, trapped particles were seen to be redistributed and

their pro�les were signi�cantly broadened [2]. Similar e�ects were seen by the �-CHERS

(alpha particle CHarge Exchange Recombination Spectroscopy) diagnostic [3]. Trapped

particles are easily a�ected by toroidal magnetic �eld ripple, which may give rise to en-

ergetic ion uxes to the �rst wall of tokamak reactor. If ripples are weak these uxes are

not important, provided there is no anomalous radial transport of fast particles. There-

fore, sawtooth broadening of alphas pro�les may lead to some restrictions for ITER-like

tokamaks.

The modeling of the con�ned fast particle redistribution during the sawtooth crash

has started recently [4]. Models were developed mainly for neutral beam injected passing

particles, which were assumed to have a small radial deviation from the magnetic surface.

Therefore such particles do not di�er from the plasma ions and should obey the same

equations. Also assumed was the conservation of particle energy during the mixing.

Slowing down distribution functions of beam ions that were obtained give good agreement

with measurements of neutron uxes due to beam-plasma fusion reactions.

PCX results indicate, however, that the local density of trapped particles on the outer

bypass of the torus was signi�cantly increased after the sawtooth crash, which may be

explained only by the radial expulsion of trapped �-particles from the center accompanied

by nonconservation of their energy. Our goal is to develop a model which can describe

the PCX data and has measurable critical parameters. In this paper we assume that the

toroidal drift in the perturbed perpendicular electric �eld determines the energy change

of fast particles during the sawtooth crash. We propose a mechanism of fast particle

energy redistribution, which is shown to obey the di�usion type equation. A helical

electric �eld is assumed to be generated during the so-called \collapse" period of the

sawtooth oscillations on a very short time scale �cr ' 10�5�10�4sec (crash time) [5]. This
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approach provides the possibility for fast particles to undergo signi�cant displacement

within the mixing radius during the crash. It can be considered as a resonant interaction,

even though the mode itself has very low frequency and was assumed not to be rotating

during the short crash. Therefore, particles with energy higher than some critical value

Ecr perform toroidal precession during the crash and do not interact with perturbed

electric �eld. We introduce Ecr from the comparison of particle toroidal rotation and

sawtooth crash time �cr. It plays the role of an adjustable parameter in the comparison

with the experimental data. The comparison is discussed in the paper.

The paper is organized as follows. In Section 2, we consider the physical constraints

for fast particle mixing and obtain the equations for energy redistribution. In Section

3, the FPPT code for fast particle distribution function calculation is described and

compared with TRANSP Monte-Carlo calculations and with sawtooth free PCX mea-

surements. Section 4 is devoted to the comparison of the FPPT sawtooth mixing model

with experimental data. Summary and conclusions are given in Section 5.

2. Fast Particle Redistribution during a Sawtooth Crash.

2.1. Physical constraints and characteristic electric �elds

We start the analysis with the formulation of physical constraints for fast particle

mixing and introduce three motion invariants, which are the variables to describe the

fast particle distribution function in a tokamak. The �rst variable is the perpendicular

adiabatic invariant or magnetic momentum � = E?=B, where E? is the perpendicular

particle energy and B is magnetic �eld. Magnetic momentum is conserved during the

crash time due to the fast cyclotron rotation of the particles

�cr � 2�!�1c ; (1)

where !c is the fast particle cyclotron frequency.

The second variable is the longitudinal invariant or toroidal momentum P'

P' =
e� 

m�c
� vkR; (2)
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where ' is toroidal angle, e� and m� are the charge and mass of �-particle, respectively,

 is the poloidal magnetic ux, R is the major radius of the torus, vk = v
q
1� pB=B0R0,

where the subscript \0" means that the value is taken at the tokamak magnetic axis,

and

p = �B0R0=E; (3)

which is equal to the major radius of the drift orbit bounce point for trapped particles.

P' is not conserved during the crash, because of the breakdown of toroidal symmetry.

In helical perturbed magnetic �elds, the fast particle invariant P' may change due to

the stochastization of magnetic �eld lines in the presence of two or more nonlinearly

interacting modes [6, 7] and/or freezing of fast particles in the central and peripheral

magnetic uxes during the collapse [4]. The �rst mechanism leads to rather at distribu-

tions in P', while the second one may result in hollow pro�les [8], provided a small radial

width of fast particle drift orbits is assumed. In tokamaks such as the Joint European

Torus (JET) or Tokamak Fusion Test Reactor (TFTR) [9], the radial excursions of fast

particles �b are signi�cant and may be equal to the mixing radius rm, which is of the

order of inversion radius. Under these conditions the problem needs extensive numerical

calculations. For the sake of simplicity, we will assume that the distribution in P' is

at at each moment. This assumption seems reasonable for passing particles as a zero

order approximation. Trapped particles do not follow the helically perturbed magnetic

lines, and we estimate the di�usion in P' for trapped particles as follows. The radial

component of perturbed magnetic �eld Br is expressed through the island half width w

by the familiar equation:

Br

B
' w2

r2
�Sm

4q
; (4)

where S = rq0=q is shear, � is the inverse aspect ratio, m is the poloidal mode number of

the perturbation, and the expression must be evaluated at the rational magnetic surface

r = rs, where q(rs) = m=n = 1 for m = n = 1. The displacement in minor radius

during one toroidal precession of the trapped particle is �r = 2�BrqR=B which will

give the di�usion coe�cient, if we assume the stochastization of magnetic �eld lines,
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D = (�r)2=�pr, where �pr ' 2�r=qvdr is the toroidal precession time, and vdr is the drift

velocity. Then, the time required for the fast particle to di�use in P' (or in minor radius)

from the center to the periphery is

�t =
r2s
D
�pr: (5)

For �-particles in a typical TFTR plasma (see Section 4) with S = 10�1 and m = 1,

Eq.(5) gives �t = 10�3 sec, which is less than or of the order of the sawtooth precursor

evolution time [5].

The third variable may be either particle energy E or p, which are assumed not

to be conserved here. Three variables �; P'; E or �; P'; p determine the particle orbit

in axisymmetric tokamak equilibria. Fast motion along the drift orbit may be ignored

because of the inequality �b � �cr, where �b is the bounce (for trapped) or transit (for

passing particles) period of fast drift motion.

Due to the magnetic momentum conservation, the number of particles with given �

must be conserved:

N =< f�(�; P'; p) >P';p�
Z
f�(�; P'; p)J dP'dp = const; (6)

where f�(�; P'; p) is the �-particle distribution function, J is the Jacobian of the tran-

sition from 6th dimension phase space to variables �; P'; p with ignorable toroidal angle,

gyrophase rotation and particle position on the drift orbit:

J =
(2�)2BB0R0

!c

�b

p2
: (7)

To explain the PCX experimental data (see Section 3.3), one must �nd the mechanism

which leads to energy change during the sawtooth crash. The e�ect of the parallel

electric �eld is too small to change the fast particle energy [10] and is neglected here,

while the perpendicular electric �eld leads to the change of particle energy due to the

toroidal drift motion and is proportional to < vdr � E? >, where vdr is toroidal drift

velocity, E? is the electric �eld in the laboratory frame of reference, and angle brackets

mean the orbit averaging. To �nd the characteristic electric �eld we assume that the

bulk plasma is described by the ideal magnetohydrodynamic (MHD) formalism and has
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helical symmetry during the crash with m = n = 1 [11] and has the local plasma velocity

vector

vEpl ' v0[er cos (m� � n'� !t)� e� sin (m� � n'� !t)]: (8)

Here v0 = rm=�cr, er and e� are unity vectors in the radial and poloidal directions,

respectively, and we introduced the frequency of the mode rotation !. Then, in the

laboratory frame of reference the electric �eld is given by

E? = c�1B� vEpl = E0[er sin (m�� n'� !t) + e� cos (m� � n'� !t)]; (9)

where E0 = rmB=c�cr. Another estimate of the electric �eld comes from the poloidal

component of Faraday's law r � E? = �c�1@B=@t, provided Ek = 0 and we know

the change of central safety factor �q0. Then, the change of poloidal magnetic �eld is

�B� ' B��q0, which together with Faraday's law gives

E0 ' qR�B�

c�cr(m� nq0)
' rmB

c�cr

�q0
m� nq0

; (10)

which is consistent with our previous estimate Eq.(9). For a crash time of �cr ' 3 �
10�5 sec; we evaluate the perturbed electric potential:

e�

rm
= eBrm=c�cr ' 1keV cm�1: (11)

The potential is of the order of plasma temperature within the mixing radius rm ' 40 cm,

but may lead to a signi�cant change of fast particle energy, as will be shown.

2.2. Fast particle energy change in the model electric �eld

A single particle changes its energy in the electric �eld given by Eq.(9) in accordance

with the following equation

dE
dt

= e� hvdr �E?i ' �
E0

B

cE
R

��
2� pB

B0R0

�
cos ((m� 1)� � n'� !t)

�
; (12)

where the toroidal drift velocity was taken neglecting plasma pressure e�ect as vdr =

E(2 � pB=B0R0)[B �r lnB]=m�!cB. Note that the toroidal angle is no longer ignor-

able and we assume that before the crash particles were equally distributed in '. For
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analytical estimates we will use the approximation of large tokamak aspect ratio with

circular magnetic surfaces, and zero radial width of drift particle orbits. Near the q = 1

surface we can write ' = q� + 'md, where 'md is toroidal angle where fast particles

intersect the midplane on the low magnetic �eld side. Then, with the magnetic �eld

in the form B = B0R0=R and R = R0 + r cos �, one can obtain the expression for the

toroidal precession rate:

d'md

dt
' q

e�B

cE
rR

��
2� pB

B0R0

�
cos �

�
: (13)

Comparing Eq.(12) and Eq.(13) and using helical symmetry, which impliesm�nq� 1,

we obtain the equation for the energy variation during the sawtooth crash

dE
dt

= �E0e�r

q
cos(n'md � !t)d'md

dt
: (14)

After time integration Eq.(14) results in the fast particle energy change during the crash

�E = �2E0e�r

Rnq sin

 
Rd'md

dt

n�cr

2

!
cos

 
Rd'md

dt

n�cr

2
+ n'md0

!
; (15)

where we assumed that the precession rate is time independent, R = 1�!(nd'md=dt)�1

is the resonance factor and 'md0 is taken before the crash. In a small orbit width

approximation the precession rate is given by the following expression:

d'md

dt
' q

e�B

cE
rR

h(�2) � 2�

�pr0
h(�2); (16)

where

h(�2) =
�
2� p

R0

�( �1 + 2E(�2)=K(�2); if � < 1
1� 2�2 + 2�2E(��2)=K(��2); � > 1

; (17)

E;K are full elliptic integrals of second and �rst order, respectively, and

�2 = (1 � �)
R0(1 + �)� p

2�p
;

which is � < 1 for trapped and � > 1 for passing particles. In the limit cases of well

trapped (�! 0) and passing (�!1) particles we have

h(�2) '
(

1� �2; if �! 0
���2=2; �!1 : (18)
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The displacement of the alternative to the energy variable, the bounce tip position p,

results from the conservation of �:

�p = �p�EE =
2pE0e�r

nRqE sin

 
Rd'md

dt

n�cr

2

!
cos

 
Rd'md

dt

n�cr

2
+ n'md0

!

� �0 cos

 
Rd'md

dt

n�cr

2
+ n'md0

!
: (19)

We introduce a useful parameter

Ecr = E�pr0
n��cr

=
2!cm�rR

n�crq
; (20)

which is approximately equal to the energy of particles which have the precession period

satisfying �pr = �cr. From Eqs.(16,20) we obtain

�0

rm
=

p

R0

Ecr
ER sin

 
h(�2)ER
Ecr

!
: (21)

Figure 1 shows an example of the displacement versus bounce point position p for ! = 0

and di�erent particle critical energies Ecr. As one can see from Eq.(21), the interaction

is resonant, which gives the largest e�ect for particles with either E = 0, ! = 0 or R = 0.

In the comparison with experiments we will assume ! = 0, while the second case with

R = 0 is analogous. Note, that experimental observations indicate low rotation period

in comparison with the crash time.

It follows from the Fig. 1 that low energetic (�cr < �pr), well trapped particles have

maximum energy change and maximum bounce tip displacement. We can also see from

Eq.(19) that the variation of the particle energy or p is an oscillating function of 'md

and needs to be averaged over 'md in order to �nd the distribution function after the

crash (see next section).

2.3. Redistribution in energy or banana tip position p

Let us assume that p displacement is small �p=R0 � � and take the fast particle

distribution function in p as a � function and at in '. It can be easily shown using

Eq.(19), that after the averaging over ' we obtain the transformation

�(p)! G(p) =
Z
�(p+�p)

d'

2�
=
�(�2

0
� p2)

�
q
�2

0 � p2
; (22)
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where � is Heaviside step function. It follows from this equation that the distribution

function after the crash f�+(p) is expressed through the one before the crash f��(p) as:

f�+(p) = J �1
Z
f��(p

0)G(p � p0)J dp0 = J �1
Z
f��(p

0 + p)G(p0)J dp0: (23)

We expand f�� in series and perform the integration, which gives

f�+(p) = f��(p) +
@2f��(p)

@p2
�2

0

4
: (24)

Noticing that the transformation of the distribution function was made during the time

�cr, we construct the di�usive type equation from Eq.(24) for the p-mixing of the fast

particle distribution function as follows

@f�

@t
= Dp

@2f�

@p2
; (25)

where the \di�usion" coe�cient is Dp = �2

0=4�cr. Equations (23,25) are valid for small p

displacement, while well trapped low energetic particles have �0 � rm. For such a group

of particles the transformation formula in Eq.(23) does not conserve particles with given

�, and the postcrash �-particle density must be normalized to the precrash value.

We also propose the other nonintegral procedure for p redistribution in contrast to

integral Eq.(23). This new procedure can be used for large p displacement, and is based

on the assumption of a di�usive nature of the mixing. This means that the distribution

function tends to be attened in p with an exponentially fast rate and the following

procedure may be used:

f�+(p) = f��(p)g + Cn(1� g); (26)

where Cn does not depend on p, Cn = hf�(1 � g)iP';p = h1� giP';p, g is attening rate

which must satisfy the following conditions: (1) 0 < g < 1; (2) g ! 0 at � ! 0; E ! 0

giving full mixing for well trapped particles;(3) g ! 1 at E ! 1 representing fast

precession drift without changing energy; and, (4) as it follows from Eq.(24) g is linear

in �2

0 if �0 ! 0. The following function satis�es these conditions:

g =
exp(�4Dp�cr=r

2

m + 1) � 1

e� 1
=

exp((r2m ��2

0)=r
2

m)� 1

e� 1
: (27)

As it follows from the numerical comparison, both Eqs.(23) and (26) give similar results

within a few percent accuracy even for trapped particles.
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3. FPPT code

3.1. Formulation

For processes with a characteristic time greater than the �-particle bounce period,

which is �b � 10�6 sec in TFTR, the distribution function of �-particles can be repre-

sented as a function of particle integrals of motion f� = f�(�; P'; p; t). The FPPT code

solves the drift orbit averaged Fokker-Planck equation [12]

@fF�
@t

= hSt(f�)i+ hS�i � fF�
��
� fF�
�conf

: (28)

Here angle brackets denote time averaging over the drift �-particle orbit, fF� is the

FPPT calculated �-particle distribution function expressed in terms of variables fF� =

fF� (v; P'; p; t), so that the distribution function introduced in the previous section is

f�(�; P'; p; t) = fF� (v(�; p); P'; p; t), v(�; p) =
q
2B0R0�=p, with

S� = STR(r; t) exp
�
�(v � v�0)

2=v2T

�
=
p
�v2�0vT (29)

being the �-particle source with STR(r; t) taken from TRANSP analyzing code [13], and

vT being the Doppler broadening, which was taken for a Maxwellian plasma with the

temperature Teff = 30 keV . The value of Teff = 30 keV for the broadening is obtained

from measurements and changes by � 10% during the discharge [14]. The collisional

integral St(f�) in Eq.(28) includes only slowing down of alphas without scattering and

velocity di�usion:

St(fF� ) =
1

v2�s

@(v3 + v3�)f
F
�

@v
+
P' � e� =2�m�c

�s
(1 + v3�=v

3)
@fF�
@P'

; (30)

where �s is the slowing down time. The third term on the right hand side in Eq.(28)

accounts for the magnetic ripple e�ect with �� being the �-particle con�nement time

in the presence of toroidal ripple, which we determine based on the results of Ref.[15],

where the approximate formula describing the smooth transition to the stochastic regime

was obtained:

�� = �b
(r � a)2
�r2

= �b
(r � a)2

�2L

2�3 sin �b
�q3N�2(rb; �b)

(1 + e6:9�5:5�); (31)
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where

� =

 
16�N3q5R3

m�!2
c r

5

!1=2

E1=2�(rb; �b)
�b(r=q)(dq=dr) + cot �bp

sin �b
; (32)

�r is the banana tip displacement for one bounce period, rb; �b are the radial and poloidal

coordinates of the banana tip, �L = v�=!c is the Larmor radius, � is the magnetic �eld

ripple amplitude, which in TFTR is given by the expression:

�(r; �) = �0 exp
��
(R0 + r cos � �Rrip)

2 + brip(r sin �)
2
�1=2

=wrip

�
; (33)

R0 is the major radius, Rrip = 2:25 m, brip = 1:31, wrip = 0:1657 m, �0 = 0:6 � 10�5,

N = 20. Note that for deeply trapped �-particles, sin �b ' (vk=v)
q
2=�. For details see

Ref.[15]. We note that the � approximation for the ripple e�ect gives a smooth boundary

between the loss region (near the plasma periphery) and the con�ned region (near the

axis). The width of this transition region depends on plasma parameters and is about

10 � 20 cm.

The last term in Eq.(28) is introduced to simulate the e�ect of �nite con�nement

time on �-particle distribution function in comparison of FPPT with experiment and

will be studied later.

Eq.(28) was solved numerically by the method of integration over the particle charac-

teristics [16]. Direct guiding center orbit averaging was performed using TRANSP equi-

librium along the drift orbit of �-particle determined by three integrals p; P'; v. Test

calculations to be shown later in the paper agree with TRANSPMonte Carlo simulations.

FPPT code is routinely used now for modeling of �-particle distribution function in

TFTR.

3.2. Comparison of FPPT and TRANSP Monte-Carlo calculations

FPPT calculated spectra of �-particles are compared with TRANSP Monte-Carlo

results [13] in Fig. 2 for shot #86644 at 4:15 sec, i.e. 0:15 sec after the Neutral Beam

Injection (NBI) was turned o�. To eliminate the statistical error in Monte-Carlo sim-

ulations we present the energy distribution averaged over the pitch angle. TRANSP
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uses a delta function for the energy dependence of fusion product source, which explains

di�erent behavior of distributions at E� > 3 MeV . Another domain where both codes

di�ers is E� < 0:5 MeV . This is because FPPT is based on the method of integration

over the characteristics, which does not allow inclusion of the second derivative operator

into the code. Thus, FPPT does not have pitch angle scattering in the collisional oper-

ator, which results in the radial transport in TRANSP. This e�ect should be taken into

account while comparing with experiments.

Figure 3 presents a comparison of energetic (E� > 1 MeV ) �-particle pro�les for the

same shot as in Fig. 2. Fig. 3 shows the density pro�les (a) and stochastic ripple loss

pro�les (b) integrated in energy and pitch angle. The TRANSP model of ripple loss

implies instant loss if the banana tip of fast particle is in the loss region. Therefore the

boundary between the stochastic and nonstochastic regions is sharp. FPPT uses the

model formula Eq. (31) for the con�nement time in rippled magnetic �eld, which from

the �gure: (1) gives the same boundary for the stochastic region, and (2) gives the similar

integral losses. The model based on Eq. (31) has some �nite width of the transition to

the stochastic region, which determines the accuracy of our tau approximation. More on

the ripple e�ects on alphas can be found in Ref.[17].

3.3. FPPT simulations for the pellet charge exchange diagnostic

The PCX diagnostic was designed and installed on TFTR to measure the well trapped

con�ned fast particle distributions in D-T plasmas [18, 19]. A neutral particle mass and

energy analyzer is used to detect fast particles converted to neutrals in the ablation cloud

of the injected impurity pellet. The neutral particle analyzer is located in the tokamak

midplane and allows measurements of the local density and energy spectra of fast parti-

cles during the pellet penetration into the plasma. At the moment of neutralization, the

fast particle has a pitch angle � = vk=v = �0:048 in the midplane, which corresponds

to the inner leg of its drift banana orbit. PCX was used to measure the distribution

of fusion �-particles in DT TFTR experiments and e�ects of magnetic �eld ripple and

sawtooth oscillations on energy spectra and radial pro�les [1, 2, 17, 20].

Figure 4 represents the FPPT calculations of the evolution of �-particle slowing
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down energy distribution function taken at the plasma center and at the PCX measured

pitch angle � = �0:048. Calculations were done for discharge #86291 with NBI power

Pb = 15 MW , except one curve at 0:012 sec for discharge #86299 with Pb = 20 MW .

PCX data [20] are also shown. In the shot #86291 the measurements were done at 0:2 sec

after 1 sec NBI, while in the shot #86299 the energy spectrum was measured in a \beam

blip" case at 0:02 sec after a beam pulse of 0:1 sec duration. The typical alpha slowing

down time in TFTR is �s � 0:5 sec, which is much larger than the \blip" duration

and, therefore, can yield information about the energy distribution of �-particles. The

modeling of FPPT shows reasonable agreement with PCX data. As we mentioned above,

FPPT may not be good for the low energy part of alphas distribution function as it does

not include pitch angle scattering. This may explain higher data point for the two lowest

energy channels with good statistics in discharge #86291.

Figure 5 shows the sensitivity of the modeling to the con�nement time �conf intro-

duced in Eq.(28). The con�nement time was taken constant during the discharge and

not to be a function of particle energy. The curves deviate from the curve �conf =1 at

lower energy, because the longer a particle lives in the plasma the more probable it will

be lost. The con�nement time for this case was �s ' 0:3 sec. The best �t corresponds

to the longest con�nement time (at least �conf > 3�s), which supports the idea that the

slowing down is classical without additional loss mechanisms. Fig. 5 also shows the

sensitivity of PCX measured spectra to additional losses.

As we mentioned above, FPPT can not treat the di�usion self consistently. To model

di�usion and to see the sensitivity of the method to radial di�usion we used the formula

Eq.(23) for di�usion in P' and p (with the substitution P' ! p for P' di�usion). The

formula Eq.(23) was used once, right before the time of PCX measurements. The value

�0 was taken as a function of particle energy and di�usion coe�cient DP' ;p as follows

�0 =

s
DP' ;p

�s

2
ln
E�
E�0

: (34)

Results show that DP' does not change the pro�les of alphas, but a�ects the spectra (we

can write �conf ' a2=DP' ). In contrast, Dp has e�ect on the pro�les which is illustrated

in Figure 6. It shows the FPPT simulation of �-particle pro�les at di�erent values of Dp
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and �xed particle energy E� = 1:21 MeV . We can see that the best �t to experimental

PCX pro�les [2] is at the lowest di�usion or Dp < 0:01 m2sec�1. We again conclude

that there are no signi�cant anomalous processes in slowing down in terms of energy

di�usion.

4. Simulation and observation of con�ned �-particle sawtooth

redistribution

Figure 7 presents an example of the PCX alpha density pro�le for discharges #84549

and #84550 with and without sawtooth activity, respectively, for a given energy E =

0:82 MeV . Alpha particles appear farther out from the plasma center in the discharge

with a sawtooth. This behavior is typical for most discharges with sawteeth [2].

4.1. FPPT trapped �-particle simulations

Figure 7 also presents the results of the FPPT calculations of �-particle pro�les for the

sawtooth free discharge #84550. Numerical results are normalized to the PCX data at

R = 2:65 m. Keeping the same normalization, we present also calculated pro�les for the

discharge #84549 neglecting the sawtooth e�ect. The pro�le is similar to the calculations

for the discharge #84550. Any mixing without changing the energy of trapped particles

will lead to a drop of the central �-particle density value as it is illustrated on Fig. 7 for

the at post crash alphas distribution in P'.

Figure 8 shows the PCX measured spectra for the same discharges but at di�erent

major radius: R = 2:65 m for #84550 and R = 2:9 m for #84549. Also shown are FPPT

calculated �-particle spectra for the sawtooth free discharge #84550 where we performed

the normalization, and calculated spectra for the #84549 discharge without and with

mixing using di�erent critical energy Ecr. In numerical analysis we used the mixing

formula from Eq.(23). The best adjusted value for Ecr is obtained from the comparison

with other spectra and equals Ecr ' E�0. Note that the time of PCX measurements is

120 msec after the crash. This is comparable with the slowing down time, which means

that PCX analyzes particles which at the crash had energy equal to the birth energy of
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�-particle.

The calculated pro�les are compared with measurements in Figure 9. In all the

comparisons, the PCX signal is assumed to be proportional to the density of �-particles,

which is true if the density of the cloud is more than certain critical value [18]. This

assumption allows us to compare the �-particle pro�les for two di�erent discharges. One

can see from pro�le comparisons (Fig.9) that again Ecr � E�0 gives the best �t to the

data.

In all the calculations above we used the mixing radius rm = 1:5rs (q(rs) = 1), which

determines the mixing region. Mixing radius is the second critical parameter of the

model. Its value was also chosen to give the best �t to the data.

Within the accuracy of the measurements and the model, good agreement is seen in

a comparison of the PCX pro�le and spectra measurements with FPPT model.

4.2. FPPT passing �-particle simulations

In Figure 10 we present the pro�les of passing particles calculated at the pitch angle

� = 0:8 in the midplane and compare it with the trapped particle results at � = �0:048.
This �gure shows that the mixing radius for both group of particles is the same, even

though the physical reasons of the mixing are di�erent. Trapped particles are redis-

tributed because they change energy in the perpendicular electric �eld, while passing

particles change only P' in the perturbed magnetic �elds.

5. Summary

We propose a model for the fusion �-particle mixing during the sawtooth crash.

The model is based on the � conservation and an energy change in a helical perturbed

perpendicular electric �eld. The model gives good agreement with PCX measurements of

the trapped �-particle distributions in DT TFTR plasmas. It describes the spectra and

the broadening of alpha density pro�les after the crash. The FPPT sawtooth model can

be applied to both passing and trapped particles. However, trapped particles are more

a�ected by the electric �eld than passing particles, which allows the energy redistribution
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(using trapped particle diagnostic PCX) and the P' (minor radius) redistribution (using

mostly passing particle diagnostic �-CHERS) to be studied separately.

FPPT model has two critical parameters, which are the critical energy Ecr and the

mixing radius rm. Comparisons with the experimental data for one DT TFTR discharge

#84549 gives Ecr ' E�0. Such particles slowed down to E ' 1 � 2 MeV by the time

(120 msec) of PCX measurements. The predicted Ecr ' E�0 gives �cr ' 10 �sec for

discharge #84549, which is in reasonable agreement with sawtooth measurements [5].

The second critical parameter rm = 1:5rs, q(rs) = 1 is equal (within the accuracy of

the model) to the Kadomtsev model for parabolic plasma current pro�le rm =
p
2rs

[11]. The model can be used to study the passing particle mixing, but more realistic P'

redistributions must be included.

Also more detailed measurements of the sawtooth crash (e.g. ne, Te, �cr etc.) for

comparison with the model should be obtained.

The model presented here and the FPPT code can be used to examine the implications

for �-particles in ITER.
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Figure 1: Fast particle bounce point displacement �2

0=r
2

m (see Eq.(21)) versus the posi-
tion of the bounce point p=R0 at � = :2, E=Ecr = 1=4; 1=2; 1; 2; 4, respectively.
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Figure 2: Comparison of FPPT and TRANSP Monte-Carlo calculations of �-particle
distribution functions versus energy. Spectra are averaged over the pitch angle and
taken at di�erent plasma minor radius in the equatorial plane at the low magnetic �eld
side. The results are for TFTR shot #86644 at 4:15 sec, i.e. 0:15 sec after NBI.
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Figure 3: FPPT and TRANSP calculated energetic (E� > 1 MeV ) �-particle pro�les of
the (a) density and (b) stochastic loss due to the magnetic �eld ripples for the same shot
as in the Fig. 2.
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Figure 4: FPPT calculation of the evolution of �-particle distribution function in TFTR.
Curves correspond to the shot #86291 except curve at 0:12 sec, which is plotted for shot
#86299. Shown also are the PCX data for these shots [20].
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Figure 5: Comparison of PCX measurements with FPPT calculated spectra with di�er-
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Figure 6: Simulation of �-particle distribution function pro�les for di�erent di�usion
coe�cients of the banana tip p di�usion. PCX measured data are also shown.
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Figure 7: Alpha particle radial density pro�les for E� = 0:82 MeV from PCX data for a
sawtooth free discharge # 84550 and a sawtooth discharge # 84549. Shown also are the
results of FPPT modeling.
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Figure 8: PCX alpha energy spectra for a sawtooth free discharge #84550 (solid circles)
at R = 2:65 m and a sawtooth discharge #84549 (open circles) at R = 2:9m. FPPT
modeling is presented as a spectrum without mixing for the sawtooth free discharge
#84550 (curve 1) and for discharge #84549 (curve 6) with sawtooth. The calculations
with mixing are for parameters Ecr=E�0 = 2: (curve 2), 1: (curve 3), 0:5 (curve 4), 0:25
(curve 5).
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Figure 9: Alpha particle radial density pro�le for E� = 0:82 MeV from PCX data for
the discharge with a sawtooth #84549. Shown also are the results of FPPT modeling of
trapped particle pro�les for di�erent critical energies.
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Figure 10: Passing (midplane pitch angle �mid = 0:8) and trapped (�mid = �0:048)
�-particle pro�les for E� = 0:82 MeV from FPPT calculations for the discharge #84549
with a sawtooth.
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