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Abstract

A novel set of nonlinear 
uid equations for mirror-trapped electrons is de-

veloped which di�ers from conventional 
uid equations in two main respects:

1) the trapped-
uid moments average over only two of three velocity space

dimensions, retaining the full pitch angle dependence of the trapped electron

dynamics, and 2) closure approximations include the e�ects of collisionless

wave-particle resonances with the toroidal precession drift. By speeding up

calculations by at least
p
mi=me, these bounce averaged 
uid equations make

possible realistic nonlinear simulations of turbulent particle transport and

electron heat transport in tokamaks and other magnetically con�ned plas-

mas.
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Mirror-trapped particles often play an important role in long mean free path plasma

dynamics, especially in magnetic con�nement fusion devices and planetary magnetospheres.

This Letter presents a reduced nonlinear 
uid-like description for mirror-trapped particles.

These equations should be useful for describing nonlinear trapped particle dynamics in a wide

range of plasma phenomena, but we will focus on tokamaks, where trapped electrons can

be an important cause of turbulent transport. Through wave-particle resonances, trapped

electrons can destabilize the dissipative or collisionless trapped electron mode (TEM) and

can double the growth rate of the ion temperature gradient (ITG) mode. We include these

kinetic resonances by using an extension of the method of Ref. [1] to take 
uid moments of

the bounce averaged drift kinetic equation of Ref. [2].

Although much progress has been made recently in nonlinear simulations of electrostatic

core tokamak turbulence arising from the ITG instability, more realistic simulations require

proper treatment of the trapped electron dynamics. To date, most simulations have focused

on ion heat transport and have assumed adiabatic electrons, i.e. ~ne = n0e~�=Te, where

~ne is the 
uctuating electron density and ~� is the 
uctuating electrostatic potential. For

realistic tokamak parameters, however, the nonadiabatic electron response, which primarily

comes from trapped electrons, is often important. To describe electron heat transport and

particle transport in addition to ion heat transport, proper treatment of the nonadiabatic

electron response is necessary. If the turbulence is electrostatic and the electrons are purely

adiabatic, there is no net particle transport, since the E�B convection of the perturbed

electron density is zero (E�B � r~ne = 0).

In this Letter, a sophisticated bounce averaged trapped electron 
uid model is derived

which retains the pitch angle dependence of the electron response, as opposed to more

simpli�ed models which assume all electrons are deeply trapped [3]. Retaining this pitch

angle dependence is important for advanced tokamak con�gurations in the second stability

regime or with reversed magnetic shear [4], where a large fraction of the trapped electrons

have favorable toroidal precession drift. This approach also allows use of a full pitch angle

scattering operator for electron collisions, not a Krook-type algebraic approximation, so these
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equations are continuously valid in the collisionless regime, where the electron response is

driven by the toroidal precession resonance, in the dissipative regime, and also in the very

collisional regime where the electrons become adiabatic. Since bounce averaging removes

the fast parallel time scale, these trapped electron 
uid equations are not numerically sti�.

Coupled with the gyro
uid ion equations derived in Ref. [5{7], these equations can be used

e�ciently in high resolution 3D toroidal simulations which simultaneously include trapped

electron e�ects as well as the ITG drive. In addition, these equations enable calculation of

the full transport matrix: electron and ion heat 
uxes and particle 
uxes.

The electron dynamics are actually simpler than the ion dynamics in two respects, be-

cause me � mi. First, the turbulent scales are on the order of the ion gyroradius, so

k?�e � 1 and we can neglect FLR e�ects for the electrons and use the drift kinetic equation.

Second, the turbulent time scales (on the order of the ion transit frequency, !ti = vti=qR,

or the diamagnetic frequency, !� = k?�ivti=Lne) are long compared to the electron bounce

frequency, ! � !be =
p
�vte=qR. Thus we can average over the fast bounce motion so that

the trapped electron dynamics are described by the nonlinear bounce averaged drift kinetic

equation [2]. It is useful to rewrite this equation for hfeib, the bounce averaged distribu-

tion function, instead of the nonadiabatic piece he as in Ref. [2]; the two are related by

fe = Fee�=Te + he, where Fe is the Maxwellian equilibrium. At this point we normalize �

to e=Te. In addition, we use the �eld-aligned coordinate system given by the transformation

Eq. (10) in Ref. [8], where x is the radial variable, y is perpendicular and mostly poloidal,

and z = qR � is the coordinate along the �eld line at �xed x and y. Ref. [7] gives details of

the simpli�cation of Eq. (31) of Ref. [2], which can be rewritten:

(
d

dt
+ i!de)hfeib = hCib(hfeib � Feh�ib) + iFe(!de � !T

�e)h�ib: (1)

This equation is four dimensional (4D) (two velocity and two space dimensions), since the

variation along the �eld line has been removed by bounce averaging and the rapid particle

gyration frequency, !ce = eB=mec, has been averaged over. The bounce average is de�ned

by hAib =
H
dz A=jvkj=

H
dz=jvkj, where the integration is along an orbit. To lowest order in

3



!=!be, the fast electron parallel motion causes he to be constant along a �eld line, which

prescribes fe = hfeib�Feh�ib+Fe� for trapped electrons and fe = Fe� for passing electrons.

The nonlinear term describing convection by the bounce averaged E�B drift has been

absorbed in d=dt = @=@t + b̂ � h�ib � r. The collision term is discussed below. The

diamagnetic frequency is !T
�e = (kycTe=eBLne)[1 + �e(v

2=2v2te � 3=2)]; where �e = Lne=LTe,

and the bounce averaged rB and curvature drift frequency, !de, is the toroidal precession

frequency. Our derivation is correct for general magnetic geometry, but by expanding for

large aspect ratio circular 
ux surfaces the bounce average can be written in terms of elliptic

integrals [2]. We combine the geometric and pitch angle dependence in the usual manner in

G: !de = (kycTe=eBR)(v
2=2v2te)G(ŝ; �): It is important to keep the pitch angle dependence

of !de to describe the stabilization of the TEM in reversed shear con�gurations (ŝ < 0).

The limiting values at � = 0 and � = 1 are independent of shear, but as ŝ decreases, the

precession drifts of barely trapped particles are reversed, so they cannot resonate with the

TEM. We have recently emphasized that the Shafranov shift can be even more e�ective in

reversing these drifts and stabilizing the TEM.

It will be most convenient to use the velocity space variables v and �, where v is the total

velocity (E = mv2=2) and � is a pitch angle variable de�ned by �2 = (1 � �Bmin=E)=2�B;

where �B = (Bmax�Bmin)=2Bmax, Bmax and Bmin are the maximum and minimum values of

the magnetic �eld on the 
ux surface, and � = mv2
?
=2B. Thus � is the pitch angle at the

outer midplane normalized to unity at the trapped-passing boundary (where E = �Bmax),

and is a constant of the bounce motion. For deeply trapped electrons (with E = �Bmin),

� = 0, and the maximum � for passing particles (where � = 0) is 1=
p
2�B. For trapped

particles (� < 1), the poloidal angle of the banana tip or turning point, �t, is related to

� by � = sin(�t=2). Our pitch angle variable di�ers slightly from Ref. [2], but for trapped

particles the di�erence is negligible since v � v?. Writing jvkj in terms of v and �: jvkj =

v
q
1� (1 � 2�B�2)B=Bmin, the bounce time is �b(�) =

H
dl=jvkj, and the bounce average

becomes h�ib(x; y; �) = (qR=v)
R �t
��t

d��(x; y; �)=�b
q
1� (1� 2�B�2)B=Bmin:

Before taking moments of Eq. (1), it is instructive to calculate the total electron density,
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which we break into separate integrals over passing and trapped particles. Since the pass-

ing particles are adiabatic: ne =
R
p d

3v�Fe +
R
t d

3vfe =
R
p d

3v�Fe +
R
t d

3v(hfeib � h�ibFe

+�Fe): Combining the adiabatic pieces for trapped and passing particles gives: ne =

n0� +
R
t d

3v (hfeib � h�ibFe) : The velocity space integral over trapped particles in v and �

variables is
R
t d

3vhfeib =
R
1

0 4�dv v2
R 1
sin(�=2) 2B�B�hfeibd�=

q
B2

min �BBmin(1 � 2�B�2): We

introduce the following shorthand notation for the pitch angle part of this integration:

hA(�)i� =
Z 1

sin(�=2)

2B�B�A(�)d�q
B2

min �BBmin(1� 2�B�2)
: (2)

Averaging in pitch angle turns functions of � into functions of �, because of the � dependence

of the Jacobian and the turning points. The electron density in real space is just the �

average of the v-averaged hfeib. De�ning a �-dependent \density" by integrating only over

v: nt(x; y; �) =
R
1

0 4�dv v2hfeib, the total density in real space is:

ne(x; y; z) = n0� + hnt(x; y; �)i� � n0hh�ib(x; y; �)i�: (3)

The � average of h�ib in Eq. (3) is analogous to the polarization density in the ion real space

density, and comes from the z-dependent part of the total electron distribution function.

The separable v and � dependence of Eq. (1) and the pitch angle dependence of h�ib

suggest a signi�cantly di�erent approach for deriving trapped electron 
uid equations. Both

the gyrokinetic and drift kinetic equations have already reduced the velocity space dimen-

sions from three to two by gyroaveraging. For the ions, we take moments over vk and v? of

the 5D fi(x; y; z; vk; v?) to obtain 3D ion 
uid equations [7]. For the electrons, we start with

the 5D fe(x; y; z; v; �) and bounce average, which removes the parallel coordinate. Then we

only need to take moments over v of hfeib(x; y; v; �) to obtain 3D pitch angle dependent

\
uid" equations for the electrons, which are functions of x, y, and �. These moments

can be thought of as the electron density, pressure, etc., of banana tips, since � is directly

related to the turning point by � = sin(�t=2). The resulting trapped electron 
uid equations

look similar to the 3D ion 
uid equations derived in Ref. [7], with the parallel coordinate

replaced by the pitch angle variable, �. This has the advantage of retaining the full pitch
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angle dependence of the electron moments, !de, and the bounce averaged potential. When

the real space electron density or pressure is needed, we perform the � average in Eq. (2).

We derive trapped electron 
uid equations by averaging Eq. (1) over v. Since only

even powers of v appear in Eq. (1), we will only need even moments: nt(x; y; �) =

4�
n0

R
1

0 dv v2hfeib; pt(x; y; �) = 4�
3n0v

2

te

R
1

0 dv v4hfeib; rt(x; y; �) = 4�
15n0v

4

te

R
1

0 dv v6hfeib;

tt(x; y; �) =
4�

105n0v
6

te

R
1

0 dv v8hfeib; and vt(x; y; �) =
4�

945n0v
8

te

R
1

0 dv v10hfeib, which have been

normalized to their Maxwellian values. The v2 dependence of !de brings the next higher

even moment into each dynamical equation, introducing the usual closure problem of the

coupled moments hierarchy. Performing the v integration and rede�ning !de = Gk�cTe=eBR

and !�e = k�cTe=eBLne, we have:

dnt

dt
+
3

2
i!de(pt � h�ib) + i!�eh�ib = hCib(nt � h�ib); (4)

dpt

dt
+

5

2
i!de(rt � h�ib) + i(1 + �e)!�eh�ib = hCib(pt � h�ib);

drt

dt
+
7

2
i!de(tt � h�ib) + i(1 + 2�e)!�eh�ib = hCib(rt � h�ib);

dtt

dt
+
9

2
i!de(vt � h�ib) + i(1 + 3�e)!�eh�ib = hCib(tt � h�ib):

We require a closure approximation for the highest moment to model toroidal precession

drift phase mixing, using an extension of the method of Ref. [1]. For a 3-moment electron

model (evolving nt, pt, and rt) we choose: tt = �i j!dej
!de

(�ant + �bpt + �crt), and in the 4-

moment model (also evolving tt), we choose: vt = �i j!dej
!de

(�ant + �bpt + �crt + �dtt). As

in Ref. [7], each closure coe�cient has both a dissipative and non-dissipative piece, � =

�r + i�ij!dej=!de, but now !de is pitch angle dependent. We choose these closure coe�cients

to closely match the collisionless bounce averaged kinetic response function, given by: Re =

nt(�)=h�ib(�) = (4�=n0)
R
dv v2Fe(�!de + !T

�e)=(! � !de): This can be factored into the

form: Re = Re0 +
!�e
!de

Re1 +
!�e�e
!de

Re2: These integrals [9] become functions of xe = !=!de

and � (through !de(�)): Re0 = 1 + 2xe � 2x3=2e Z(�pxe), Re1 = �2[1 � pxeZ(�
p
xe)],
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Re2 = �[1 + 2xe � 2x3=2e Z(�pxe)] + 3[1�pxeZ(�
p
xe)], where Z is the plasma dispersion

function. The corresponding response function from the 3-moment electron 
uid equations

is (� = !de=j!dej):

Re0 =
�12x2e + 42i��cxe � 30xe + 105(i��b + i��c � 1)

8x3e � 28i��cx2e � 70i��bxe � 105i��a
;

with similar expressions for Re1 and Re2 and for four moments. We �nd the closure coe�-

cients by minimizing the error between the 
uid and kinetic response functions, Re0, Re1,

and Re2, along the real xe axis. The best �ts are �a = (:290;�:071), �b = (�1:102;�:689),

and �c = (:817; 1:774) for the 3-moment model, and �a = (�:038; :073), �b = (:657;�:060),

�c = (�1:522;�1:085), and �d = (:905; 2:073) for the 4-moment model. The response func-

tion for the 4-moment model is shown in Fig. 1, essentially identical results are obtained

with the 3-moment model [7].

We now derive collision terms from the Lorentz collision operator: C =

(�e(v)=2)@=@�[(1 � �2)@fe=@�], where � = vk=v. The energy dependent collision frequency

is: �e(v) = (4�nee
4 ln�=m2

ev
3)(Ze� +Hee(v=vte)), where the Ze� part accounts for electron-

ion collisions (assuming v � vti) summed over ion species (Ze� =
P

j Z
2
j nj=ne), and the

Hee(x) part is from electron-electron collisions, where Hee(x) =
q
2=� exp(�x2=2)=x + [1�

1=(x2)]erf(x=
p
2). This collision operator conserves particles and energy, but not momen-

tum. The bounce average of this collision operator [10] enters Eq. (1), and in our variables,

is:

hCib =
�e

8�2Bj�j�b
@

@�

"
(1� 2�B�

2)
�b

j�j

��
Bmin

B

�
b

� 1 + 2�B�
2
�

@

@�
(hfeib � Feh�ib)

#
; (5)

This operator must be integrated over v to �nd the collision terms in the trapped electron


uid equations. The velocity dependence of �e should introduce coupling between di�erent


uid moment equations, just as the velocity dependence of !de did. However, for the time

being we will assume �e = constant when integrating over v, which leads to the simple form

of the collision tems in Eqs. (4). A better approximation will be described in future work,

which leads to weaker collision terms in the higher moment equations to model the �e � 1=v3

dependence.
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We now describe how these electron moment equations are solved. The emphasis is

on numerical solution, but analytic solution follows conceptually similar procedures. In

our numerical simulations [7,8,11], the ion gyro
uid moments are stored and evolved in

(x; y; z) space. The electron moments are stored and evolved in (x; y; �) space, and separate

electron moments are independently evolved in each magnetic well along z. The bounce

averaged h�ib(�) is calculated from �(z) by numerically integrating along z, and is then

used to advance the electron moments in time. The electron nonlinearities are evaluated

pseudospectrally, as the ion nonlinearities, but in � rather than in z. The electron collision

terms are evaluated implicitly. The � dependence in Eq. (5) and the boundary condition that

hfeib = Feh�ib at � = 1 automatically incorporates the strong e�ects of pitch angle scattering

near the trapped-passing boundary. Only the electron density needs to be evaluated in real

space. To solve the gyrokinetic quasineutrality equation, the real space density, ne(z), is

calculated by performing the � averages of nt(�) and h�ib as given by Eqs. (2) and (3).

Then the quasineutrality equation is solved for �, and the cycle is repeated.

As in the adiabatic limit, special treatment is required for toroidally symmetric pertur-

bations with ky = 0, which have a component which is constant on 
ux surfaces. When

ky 6= 0, trapped electrons scattered onto passing orbits quickly become adiabatic, but this

is not true if ky = 0. When ky = 0, !de = !�e = 0, so the bounce averaged kinetic

equation reduces to dhfeib=dt = hCib(hfeib � Feh�ib). This equation applies to passing

particles with 1 < � < 1=
p
2�B as well as trapped particles with 0 < � < 1. Thus the

passing ky = 0 electron moments interact only via collisions with trapped ky = 0 moments,

which in turn interact with trapped ky 6= 0 moments only through the nonlinear term in

d=dt = @=@t + b̂ � h�ib � r. Conservative boundary conditions for hCib ensure that there

is no 
ux across the � = 1=
p
2�B boundary. The bounce average is generalized for � > 1

to an orbit average with � ! �1 so that only the ky = 0 component of � or fe leads to a

nonzero h�ib or hfeib, since � and fe must vanish as �!�1 for ky 6= 0 but not for ky = 0.

The upper bounds on the � integrals in Eqs. (2) and (3) are extended to � = 1=
p
2�B for

ky = 0 modes. Note that in the �nal analysis there is no ky = 0 electron response to a
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component �� of � which is constant on a 
ux surface, since h��ib = �� is independent of �

so hCibh��ib = 0.

To conclude, we demonstrate the accuracy of these trapped electron 
uid equations by

comparing fully nonlocal linear results with kinetic theory in the collisionless limit. The

eigenfrequencies from the six moment toroidal gyro
uid equations [7] and the three moment

trapped electron 
uid equations are compared with fully kinetic calculations [12] in Fig. 2.

These results are for a pure deuterium plasma with �i = �e = 3, ŝ = 1, q = 1:5, Lne=R = 1=3,

and r=R = 1=6, as in Fig. 1 of Ref. [12]. The gyro
uid results with adiabatic electrons are

also shown. The trapped electron response doubles the growth rates for these parameters,

even though this is an ITG mode. Our trapped electron model also agrees quite well for the

TEM. Initial nonlinear results using this model have been presented in Refs. [11] and [7].

Quite recently, we have found that this model reproduces several interesting features of the

transport in the core of supershots and Enhanced Reversed Shear discharges on TFTR [13],

where the TEM dominates. These results will be reported in a future publication.
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FIGURES

FIG. 1. Kinetic and 
uid bounce averaged response function, Re0, for the 4-moment electron

model.

FIG. 2. Comparison of linear eigenfrequencies from the trapped electron 
uid equations (gf) and

fully kinetic results (Ref. [12]). Also shown are the gyro
uid results assuming adiabatic electrons.
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