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Abstract

A new nonlinear Raman instability in underdense plasma is investigated

theoretically. Unlike the usual linear Raman instabilities which grow expo-

nentially in time, this instability takes a �nite amount of time to diverge.

The explosion time t1 depends on the initial level of the perturbation. A

general set of equations for spatio-temporal evolution of the forward non-

linear Raman scattering is derived and its temporal evolution is studied in

detail. This new instability results in the generation of forward Raman ra-

diation shifted by half the plasma frequency for laser intensities of order or

exceeding 1018W=cm2, something that has been recently observed ( Astorre

Modena, private communication, 1995).

1Permanent address: Universite de Paris XI, L.P.G.P., 91495 Orsay, France.

PACS: 52.40.N, 52.60.N, 52.35.P, 42.65.K

1



I. INTRODUCTION

The advent of high power short pulse lasers makes possible the experimental exploration

a new regime in laser-plasma interactions, where the plasmamotion is strongly relativistic. A

number of nonlinear phenomena occur in this regime, such as plasma wake generation [1{5],

relativistic guiding [2,6], parametric instabilities [7,8] and harmonic generation [2,9], to name

a few. Parametric instabilities have been studied in the context of Raman backscattering [10],

small-angle Raman scattering [11], and Raman forward scattering [8]. A fully relativistic

analysis of the Raman forward scattering (RFS) carried out in [8] concludes that, apart

from the modi�cation of the growth rate due to the relativistic change in the electron mass,

relativity does not bring conceptually new physics into RFS.

This paper introduces a new explosive Raman forward scattering instability (ERFS),

which is absent in a non-relativistic plasma. Actually, the motivations for this calculation

was the recent experimental observation [13] of a Stokes component in the forward spectrum

at a frequency ! = !0�!p=2, where !0 is the frequency of the laser pump and !p is the plasma

frequency. While the harmonics of the plasma frequency have been observed in experiments

and simulations (and are easy to explain by steepening of a strongly driven plasma wave{

without even invoking relativity), the Rutherford experiment [13] appears to be the �rst

clear observation of the fractional harmonic of the plasma frequency. The instability that

we describe in this paper provides a possible explanation of this phenomenon.

The paper is organized as follows: In Section II, we derive the equations of motion

for the plasma electrons in the combined �elds of a laser pump and a forward scattered

signal. In Section III, we derive the equations describing the forward scattered signal at

! = !0 � !p=2. In Section IV, we show how this signal can be explosively unstable. In

Section V, we summarize our results.
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II. EQUATIONS OF MOTION

For simplicity we treat the problem as one dimensional and restrict our analysis to

forward scattering of circularly polarized light. Extending these results to arbitrary laser

polarization, three dimensional particle motion, and �nite angle scattering would be straight-

forward. Electrons are characterized by a Lagrangian displacement �(t; z0), where z0 is the

position of the undisplaced electron. The motion of an individal plasma electron (which is

labeled by z0) can be described by the relativistic Hamiltonian [12]

H(t; z0) = (1 + (~p + ~a0 + ~a1)
2)1=2 + �2=2; (1)

where we use e = m = c = 1; and time is normalized to the nonrelativistic plasma frequency.

The normalized vector potentials a0 and a1 represent the laser pump and the scattered

radiation (whose frequency will be later shown to be shifted by half the relativistic plasma

frequency), respectively. The last term in the Hamiltonian (1) describes the longitudinal

plasma wave. The transverse vector potentials are chosen as

~a0 =
a0

2
(~ex + i~ey)e

�i!0(t�z) + c:c;

~a1 =
a1

2
(t; z)(~ex+ i~ey)e

�i!0(t�z) + c:c; (2)

where a1 is assumed to be a slow function of z and t on the 1=!0 time scale. Since the

Hamiltonian (1) is independent of the transverse coordinates x and y, canonical momenta

px and py are conserved and can be chosen, without loss of generality, to vanish. H can be

expanded in powers of a1; which is assumed small:

H = H0 +H1 +H2; (3)

where

H0 = (M2 + p2z)
1=2 + �2=2

H1 =
a0a

�

1 + a�0a1

4(M2 + p2z)
1=2

H2 = �
(a0a�1 + a�0a1)

2

32(M2 + p2z)
3=2
; (4)
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where M2 = 1+ j a0 j2. Note that j a0 j is not assumed small. On the other hand,

pz(t; z0) (canonical momentumconjugate to �(t; z0)) can be assumed small to study the initial

evolution of a1. From the single-particle Hamiltonian, it is clear that the perturbation term

(H2) is responsible for the instability. Note that a similar term proportional to (a0a�1+a
�

0a1)
2

enters the right-hand side (RHS) of the Maxwell's equation for a1.

Indeed, wave-particle energy exchange can be described by an interaction Hamiltonian

Hint = ~a �~j which can be expressed as a sum of single-particle contributions:

Hint =
X
j

�(z � zj(t))
~Pj � ~a
j

; (5)

where ~Pj is the kinematic momentum of the j'th particle. The term proportional to (a0a�1+

a�0a1)
2 is obtained by using the conservation of the transverse canonical momentum and

expanding the relativistic  to �rst order in a1.

The unperturbed Hamiltonian H0 describes a relativistic plasma wave. The �rst order

perturbation H1 describes the usual Raman forward scattering. Using H1; in combination

with Maxwell's equations, one recovers an exponential growth of a1, shifted by the relativistic

plasma frequency 
p = 1=
p
M . In this paper we concentrate on H2; which we show describes

an explosive instability in a1, shifted by half the relativistic plasma frequency. We note that

H2 is absent in the nonrelativistic treatment, since it describes the relativistic change of

mass. Hence, the generation of the radiation shifted by half plasma frequency cannot be

described by nonrelativistic equations of motion.

It is interesting to note the experimental data on half harmonic generation. The half

harmonics have apparently never been observed in the backscattered spectrum. It would

follow from the treatment here that the reason for this may be that the phase velocity of the

resulting plasma wave is relatively small, therefore wavebreaking can occur at a relatively low

intensity, before relativistic e�ects become important. Indeed, experimental measurements

show a very complicated backscattered spectrum at intensities of order 1017W=cm2 [10],

which is indicative of the wavebreaking. In contrast, in RFS the phase velocity of the plasma

wave is close to the speed of light and wavebreaking is not an issue for intensities of order
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1018W=cm2, allowing the relativistic e�ects to become important.

Keeping H0 and H2 and assuming that pz and � are small results in

�� +
�

M
=

1

32M4

@

@z0
(a0a

�

1 + a�0a1)
2; (6)

where we used @=(@�) = @=(@z0). The nonlinear density n(z; t), for the case of initially

uniform plasma of density n0 is given by

n(t; z) = n0

Z
dz0�(z � z0 � �(t; z0)); (7)

which can be integrated, before wavebreaking, to get n = n0=(1+@�=@z0): Linearizing Eq.(7)

for small � and using Eq.(6) results in equation for �n=n0 = (n� n0)=n0; we get: 
@2

@t2
+ 
2

p

!
�n

n0
=

(a0a�1 + a�0a1)
2

32M4
: (8)

In deriving Eq.(8) we have assumed that, for laser pulses longer than the plasma period, the

density wake �n=n0 is a function of 
p(t� z=c); so that @2=@z2 � �(
p)2:

III. DERIVATION OF INSTABILITY EQUATIONS

To close the feedback loop of the instability, we apply Maxwell's equation to the per-

turbed �eld a1: 
� @2

@t2
+

@2

@z2

!
a1e

�i!0(t�z) = �a0(a0a
�

1 + a�0a1)

4M3
�n=n0e

�i!0(t�z): (9)

Assuming a very underdense plasma, so that !0 � 1, and introducing moving coordinates

� = t and  = t� z, Eq.(9) can be averaged over the fast scale of laser oscillation yielding

 
i!0

@

@�
� @2

@�@ 

!
a1 = �

a0(a0a�1 + a�0a1)

8M3
�n=n0; (10)

where we have neglected the @2=@� 2 term, since the instability is assumed to be slow at least

in the beginning. Introducing

(a0a
�

1 + a�0a1) =
b

2
ei
p =2 + c:c:

�n

n0
=
�i�n
2
ei
p + c:c:; (11)
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Eq.(8) can be re-written in the new coordinates as 
@

@�
+

@

@ 

!
�n =

b2

128M7=2
; (12)

and Eq.(10) becomes

@b

@�
=

a20b
��n

16!2
0M

7=2
: (13)

A nonlinear set of partial di�erential equations (12-13) describes a spatio-temporal evolu-

tion of the explosive Raman instability. Its space-time characteristics are the same as for the

usual linear Raman instability [8]. The variable b describes the modulation in laser intensity.

As it is clear from Eqs.(12-13), the instability does not occur without an initial modulation

in the laser intensity. This is in contrast with the linear Raman instability where either the

initially present variation in laser light a1 or the initial density modulation of the plasma

�n=n0 (which can, for example, originate from the discrete nature of plasma electrons) is

unstable. On the other hand, as numerical simulations indicate [14], the main source of the

linear RFS instability is not associated with initial density noise but, rather, with the pro�le

of the laser which generates a �nite density wake, which gets ampli�ed. Hence, the source

of both the explosive and linear RFS instabilities is the initial pro�le of the laser.

The ERFS e�ect is caused by the relativistic variation of the electron mass and, therefore,

by modulation in the laser intensity. The change in the radiation intensity can result from

(i) transverse spreading of the laser (di�raction) which leaves the total power in a given

longitudinal slice in  constant or (ii) longitudinal bunching of the laser power which results

from the varying group velocity of the radiation from slice to slice. In the context of the

linear Raman scattering, the �rst process was studied by Antonsen and Mora [11] using

paraxial-ray approximation, while the second process was studied by Mori [8]. In this paper

we present only a one-dimensional calculation, which relies on mechanism (ii) and neglects

small-angle sidescattering. Three-dimensional e�ects are easily incorporated into the wave

equation (9) by adding a r2
?
term to the LHS. The wake equation (8) is similarly modi�ed,

as demonstrated in [11,15]. The study of the explosive small-angle Raman scattering will

be described in the forthcoming publications.
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IV. CONVECTIVE AND SELF-SIMILAR SOLUTIONS

The complete analysis of the set of nonlinear partial di�erential equations (12-13) is

rather complicated, but the essential physics for our purposes, can be extracted by consid-

ering the purely convective solutions, i.e. by neglecting the  derivative in Eq.(12). The

resulting set of ordinary di�erential equations is analogous to the standard three-wave in-

stability (treated, for example, in Ref. [16] ), where two out of the three waves are identical.

Two integrals can be easily identi�ed:

C = i�2(b
2n� � b�2n)=2

E =
1

2
�22 j n j2 �

1

2
�1�2 j b j2; (14)

where

�1 =
1

128M7=2

�2 =
1

16!2
0M

7=2
(15)

Equations (12-13) can now be solved by quadratures:

_Q = 2
q
(2E + �1�2Q)Q2 � C2; (16)

where Q =j b j2. Equation (16) allows to calculate the explosion time given initial conditions.

It is straightforward to show that as t ! t1, Q diverges as Q / 1=(t � t1)2, where t1 is

the explosion time given by

t1 = 0:5
Z
1

Q0

dQq
(2E + �1�2Q)Q2 � C2

: (17)

Assuming that _Q = 0 at t = 0 and �n = 0 we �nd

t1 =
32
p
2�M7=2!0

a0Q
1=2
0

: (18)

For n0 = 1020cm�3, �0 = 1�, and a0 = 1, and an initial noise level of 10%, we �nd that the

instability explodes after about 1mm of propagation through plasma.
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An important di�erence between the explosive and linear RFS instabilities, as we show

later, is that the explosion time t1 of the nonlinear instability depends on the amplitude of

the initial wake �n. Therefore, a linear instability (such as, for example, RFS) can create a

strong density wake, reducing the explosion time and resulting in a scaling di�erent from

Eq.(18). Taking C = 0 (which is always true, in the averaged sense, since C depends on the

phasing between density and intensity perturbation) and assuming a large initial density

wake,

2E � �1�2Q0 (19)

results in

t1 �
1p
2E

ln
4E

�1�2Q0

: (20)

For similar parameters this scaling gives roughly the same result as Eq.(18).

Additional insight into the spatio-temporal evolution of ERFS can be obtained by noting

that the system of partial di�erential equations (12-13) can be reduced to a set of ordinary

di�erential equations by assuming self-similar solutions in the form

�n =
1

� �  
�( 1=2(� �  )1=2);

b = �( 1=2(� �  )1=2); (21)

where � and � obey an ordinary di�erential equation

d�

du
= 2�1u�

2

d�

du
= 2�2�

��=u; (22)

where u =  1=2(� �  )1=2. The solution of the system (22) is similar to that of the system

(12-13), with  derivatives neglected, and exhibits an explosion in u.

V. CONCLUSIONS

In conclusion, we have theoretically investigated a new nonlinear explosive Raman in-

stability, ERFS. Unlike the standard Raman scattering, ERFS takes a �nite amount of time
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to diverge and has a distinct spectral characteristic, shifted by half the plasma frequency

from the incident laser. This spectral feature was recently experimentally observed [13],

consistent with the theory of ERFS developed here. While there are complicated features

to be considered, such as scattering at small angles, this calculation appears to capture the

essential physics of the unusual experimental observation of a Raman instability shifted by

half a plasma frequency.
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