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I. Field-aligned Coordinates for Nonlinear Simulations

of Tokamak Turbulence

M. A. Beer, S. C. Cowley� and G. W. Hammett

The turbulence that evolves from �ne-scale instabilities (e.g. �i, trapped
electron, or resistive ballooning modes) is thought to be responsible for the
anomalously large particle, momentum, and heat transport levels in toka-
maks. It is therefore of great interest to simulate numerically the nonlinear
evolution of these instabilities to determine the resulting uctuation and
transport levels. These instabilities are characterized by long wavelengths
parallel to the magnetic �eld and short perpendicular wavelengths, on the
order of the ion gyroradius, �i. This is, of course, a consequence of the rapid
communication along �eld lines (at the sound speed for electrostatic insta-
bilities) and slow communication across the �eld lines (typically velocities
across the �eld do not exceed the diamagnetic speed). In addition, uctu-
ation measurements1,2 in tokamaks indicate a relatively short perpendicular
correlation length (� 10�i), but a long parallel correlation length.3 Simula-
tion of a full tokamak with adequate resolution of these �ne perpendicular
scales is somewhat beyond the presently available computational resources,
since �i=a � 10�3 for present day large tokamaks, where a is the minor
radius. (The latest full torus gyrokinetic particle simulations can now be
run down to �i=a = 1=128.4) However, it may be unnecessary to simulate a
whole torus to reproduce small-scale, locally-driven turbulence. This paper
describes a coordinate system for nonlinear simulations that resolves a much
smaller volume and is therefore computationally more e�cient, while still
resolving the relevant small scales. The smallest possible simulation volume
is a long thin ux tube that is several correlation lengths wide in both per-
pendicular directions (radial and poloidal), and extended along the �eld line,
exploiting the elongated nature of the turbulence (k? � kk). This approach
is advantageous for uid, gyrokinetic \Vlasov," and particle simulations, and
could eventually be compared with full torus simulations.

The fundamental idea is to use coordinates that follow �eld lines.5 With
such coordinates a ux tube (a tube with a surface parallel to B), which is
bent by magnetic curvature and twisted by magnetic shear, is mapped into a
rectangular domain. Such twisting coordinates were originally proposed by
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Roberts and Taylor,6 and Cowley et al.7 emphasized their utility for nonlinear
calculations. In Ref. 8, we described the essential features of this approach,
with an emphasis on slab geometry. Here we focus more on the toroidal as-
pects and actual details of implementation. The major problem of these �eld
line coordinates is enforcing the periodicity constraint since the coordinates
are multivalued in a torus, except at low order rational surfaces. In Ref. 7 it
was emphasized that it is unlikely that the correlated volume wraps around
the torus and overlaps itself. When this is true, the physical periodicity of
the full torus is irrelevant, and the simplest approach is to simulate a ux
tube subdomain that is several parallel correlation lengths long, just as it
should be several perpendicular correlation lengths wide. As described in
Ref. 5, this can be di�erent from imposing periodicity at � = �� as is usu-
ally suggested for the ballooning representation, which could lead to arti�cial
correlations and modify the results.

Another advantage of �eld-line coordinates, in addition to the e�ciency
of a minimum simulation volume, is that radial periodicity can be easily
implemented, thus avoiding the problems of \quasilinear attening" and al-
lowing self-consistent turbulence-generated \zonal" ows (ows which cause
ux surfaces to rotate). The �eld-line coordinates are also particularly con-
venient for gyrouid simulations where partially Fourier transformed quan-
tities (in 2 of the 3 dimensions) need to be evaluated, such as j!d(�)j /
jk� cos(�) + kr sin(�)j.

If one wants to describe turbulence which is highly elongated along �eld
lines and narrowly localized across �eld lines it is natural to introduce coor-
dinates which are constant on �eld lines. A natural way to do this for any
general magnetic �eld is to use the Clebsch representation of the magnetic
�eld9 (since r �B = 0):

B = r��r : (0.1)

Clearly B � r� = B � r = 0 so that � and  are constant on �eld lines.
Thus � and  are natural coordinates for the ux tube. A third coordinate,
z, must be de�ned that represents distance along the ux tube. In many
applications toroidal ux surfaces are de�ned and it is natural to take  to
be the poloidal ux. The choice of � is less obvious and may be optimized for
a particular calculation. A further complication is that � and  are typically
not naturally single valued and a cut must be introduced to enforce single
values.9 This issue will be discussed extensively below. Let us imagine that
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a choice of �,  , and z has been made and that � = �(r),  =  (r), and
z = z(r) are known functions, obtained for instance from an equilibriumcode.
Thus the metric coe�cients for the transformation to the �; ; z coordinates
are taken to be known.

We shall assume that the turbulence has short perpendicular correla-
tion lengths compared to equilibrium scale lengths but a parallel correlation
length on the order of the equilibrium scale lengths. Consider a ux tube sim-
ulation domain de�ned by �0��� < � < �0+��,  0�� <  <  0+� ,
and �z0 < z < z0. This volume is chosen to be several correlation lengths
in all three directions, but should be as small as possible for computational
e�ciency. Once the box volume is larger than several correlation lengths, the
turbulence should be insensitive to the size of the box. One tests whether the
box size is adequate by increasing the box size and comparing the turbulence
in the di�erent size boxes, or by measuring the correlation functions in a
given box and verifying that they go to zero at the edges of the box. In this
way we arrive at a minimum simulation volume.

Three spatial operators appear many times in the equations for the per-
turbations: B � r, r2

?, and B � r� � r. In the �eld-aligned coordinates
xi = (�; ; z) these are:

B � rA = (r��r � rz)
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where A and � are any scalars. Since the simulation volume is narrow in
� and  compared to equilibrium variations, all equilibrium quantities, or
gradients of equilibrium quantities when they appear in these operators, are
to lowest order functions of z alone, with � = �0 and  =  0. For example,
the Jacobian J = (r� � r � rz)�1 is to a good approximation constant
across the box but not along the box, thus J = J(�0;  0; z). When A is
a perturbed scalar (n, T , etc.), and � is the electrostatic potential, we can
neglect the @=@z terms in r2

?
, and B � r� � r, since they are smaller by
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kk=k?. Then Eqs. (0.3,0.4) reduce to:
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Therefore, the equations to be solved in this minimum simulation volume
have no explicit dependence on � or  , which leads to great computational
simpli�cation. The E�B nonlinearity takes the simple form Eq. (0.6), and
all other coe�cients in the equations are only functions of z.

The perpendicular boundary conditions on the perturbations at � = �0�

�� and  =  0 � � are taken to be periodic. If the box is more than a
correlation length wide the turbulence should be insensitive to the boundary
conditions, although one set of boundary conditions that is not advisable is
�xed boundary conditions which prohibit energy and particle uxes through
the boundary. If �xed radial boundary conditions without sources or sinks
are used, then the components of the perturbations which are constant on
ux surfaces (the m = 0, n = 0 components, i.e. n( ), T ( ), where m and n
are the poloidal and toroidal mode numbers) will grow to eventually cancel
the driving equilibrium gradients (\quasilinear attening"), thus turning o�
the turbulence. In principle, this problem can be overcome with a su�ciently
large box so that the time scale to atten the driving gradients becomes much
longer than the simulation time, but periodic radial boundary conditions
avoid attening altogether and allow the use of a more e�cient, smaller box.
Past simulations have sometimes zeroed out the m = 0; n = 0 components
of perturbations to avoid this attening, but this prevents the generation
of sheared zonal E�B ows resulting from the m = 0; n = 0 component
of �( ), which can be an important nonlinear saturation process. Periodic
radial boundary conditions allow the self-consistent evolution ofm = 0; n = 0
perturbations such as the zonal ows.

The assumption of radial periodicity in the small ux-tube is not based
on actual physical constraints, which would require simulating the full toka-
mak to include heating in the core, losses to the limiter or edge regions,
etc.. Instead, we are assuming that the statistical properties of the uctu-
ations at  + 2� are the same as at  , and that if the simulation box
width 2� is larger than the radial correlation length we can assume that
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they are actually identical at every instant. Periodic boundary conditions
are often used in two dimensional plasma simulations or in simulations of
homogeneous Navier-Stokes turbulence, but are complicated in three dimen-
sional plasma simulations by the shear in the magnetic �eld. The uctua-
tions tend to be elongated along the direction of the magnetic �eld, which
points in di�erent directions at di�erent radii. In regular coordinates this
requires the use of something like the \twist-and-shift" radial boundary con-
ditions suggested by Kotschenreuther and Wong.11{13 In coordinates already
aligned with the magnetic �eld, however, radial periodicity becomes simply
A( + 2� ;�; z; t) = A( ;�; z; t).

For the same reasons, we can also assume statistical periodicity in the
� direction, A( ;� + 2��; z; t) = A( ;�; z; t). Since there is no explicit
dependence of the operators in Eqs. (0.5,0.6) on � or  , we use a Fourier
series in  and �, which also provides periodicity in those directions:

A( ;�; z; t) =
1X

j=�1

1X
k=�1

Âj;k(z; t)e
ij�( � 0)=� +ik�(���0)=��: (0.7)

The boundary conditions in the z direction are discussed in Ref. 5. Note that
while each term in the Fourier series is a plane wave in �,  coordinates, the
wavefronts in real space can be very distorted, by magnetic shear for example,
measured by the parameter ŝ � (r0=q0)(@q=@r)r=r0. Magnetic shear makes
the angle between constant � and 	 surfaces change as z changes|in real
space the ux tube is then sheared and its cross-section changes from a
rectangle to a parallelogram. The wavefronts of each term in the Fourier
series, Eq. (0.7), also get sheared. For example the j = 0, k 6= 0 term has
wavefronts corresponding to the constant � lines. The individual terms in
the series Eq. (0.7) are therefore \twisted eddies"6,7 whose wavefronts twist
as one moves along z.

Now let us discuss the choice of the coordinates � and  . As shown
in Ref. 14, it is possible to choose �,  , and generalized \toroidal" and
\poloidal" angle variables � and � such that the �eld lines are straight in the
(�,�) plane and physical quantities are periodic over 2� in both variables.
For the general magnetic �eld Eq. (0.1), we have:9

� = �� q( )�� �( ; �; �); (0.8)

where  = (2�)�2
R
V d�B � r� is the poloidal ux, q( ) = d T=d ,  T =

(2�)�2
R
V d�B � r� is the toroidal ux, d� is the volume element, and � and

6



� are the physical toroidal and poloidal angles, so physical quantities are
periodic over 2� in � and �. The function � is also periodic in � and �. We
now introduce a new toroidal coordinate, � = ���( ; �; �). With this choice

� = � � q( )�; (0.9)

and the magnetic �eld lines are straight in the (�,�) plane, and are given by
� = constant. Further, periodicity is preserved in � and �. For our parallel
coordinate z we will use z = �, since this makes our description very close
to the usual ballooning mode formalism. Note that z is not restricted to
�� < z < �, as we may choose to simulate a ux tube which wraps around
the torus several times in the poloidal direction, not just once.

In summary, our �eld-line following coordinate system is given by ( ;�; z),
where �eld lines are labeled by constant  and �. One can think of  as a
radial coordinate, � as a perpendicular-to-the-�eld coordinate, and z = � as
a parallel-to-the-�eld coordinate. Our notation simpli�es if we introduce the
following new variables:

x =
q0

B0r0
( �  0); y = �

r0

q0
(� � �0); z = �; (0.10)

where q0 = q( 0), B0 is the �eld at the magnetic axis, and r0 is the distance
from the magnetic axis to the center of the box. Then the representation of
the perturbations, Eq. (0.7), becomes:

A(x; y; z; t) =
1X

kx=�1

1X
ky=�1

eikxx+ikyy Âkx;ky(z; t); (0.11)

with kx = j�=�x, ky = �k�=�y, �x = q0� =B0r0, and �y = r0��=q0.
The rectangular computational box of \radial" width 2�x, and \poloidal"
width 2�y, and extended along the �eld line, �, is mapped onto a ux tube,
as shown in Fig. 0.1, for example.

The choice of parallel boundary conditions involves a number of subtle,
yet important issues.5 The main concept is that of a statistically-motivated
periodicity, as described above for the  and � boundary conditions For mod-
erately \ballooning" turbulence we might expect parallel correlation lengths
�c � (1 � 2)� (though it might be longer than this). The simulation box
should have a length 2z0 = 2�N in the parallel direction which is several
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Figure 0.1: The rectangular computational domain mapped onto a ux tube
in a torus, with q0 = 2:4 and shear, ŝ = 1:5. The ends of this ux tube are
cut o� at poloidal angle �� and �, and the sheared cross-sections of the ux
tube in the poloidal plane are indicated.

times the parallel correlation length. In some cases a box length of 2� might
be su�cient, but a longer box may be necessary to ensure that one end of
the box is su�ciently decorrelated from the other end to avoid arti�cially
constraining correlation e�ects, just as the box must be at least a few corre-
lation lengths wide in the  and � directions. For the cases simulated below,
parallel box lengths of at least 4� were needed for good convergence.

We have implemented this coordinate system in nonlinear gyrouid simu-
lations of toroidal ITG turbulence. The simulation results are presented here
to describe practical computational issues and to test some of our assump-
tions. It is not meant to be a complete description of our gyrouid equations
or our nonlinear results, which are discussed in Ref. 10.

To test the small-scale assumption, we present two simulations, one with
perpendicular dimensions (Lx = 85�i, Ly = 100�i), and one with double
the box size (Lx = 170�i, Ly = 200�i). That these simulations give similar
results indicates that the small ux tube may be capturing the essence of the
turbulence. The physical parameters are taken from the Tokamak Fusion
Test Reactor (TFTR) L-mode shot #41309: �i = 4, Ln=R = 0:4, ŝ = 1:5,
q = 2:4, Ti = Te, �i = :14cm, Ln = 103cm, and the computational box
is centered at r0 = 53cm. The box sizes then correspond to n0 = 10 for
the small box and n0 = 5 for the large box. Both simulations use 64 grid
points along the �eld line coordinate �. Using 128 grid points along � gives
essentially the same results. For these runs, N = 2, so the physical � domain
extends from �2� to 2�. The equal length (�) extension method (for a total

8



extended � domain from �3� to 3�) was used to implement the parallel
boundary condition.

Figure 0.2: Contours of potential for a) small run, and b) large run. Doubling
the perpendicular simulation domain did not change the dominant scale of
the uctuations.

Fig. 0.2 shows contours of electrostatic potential in the (x,y) plane at
� = 0 (the outer midplane of the torus), for both runs at saturation. (The
uctuations on the inner midplane have roughly 1/2 the amplitude, which
would be an interesting feature to look for in experiments.) It is appar-
ent that although the box was doubled, the dominant scale didn't change.
This is also evident from the spectra in Fig. 0.3, also at � = 0, where
j�j2(kx) =

P
ky �kx;ky�

�

kx;ky
, j�j2(ky) =

P
kx �kx;ky�

�

kx;ky
, and the low reso-

lution spectra are reduced by a factor of two to account for mode density.
Although the resolution has increased, the shape and the location of the
peak in the spectrum is roughly the same. These spectra are similar to
BES measurements on TFTR.1 The large ky = 0 component is evidence of
sheared zonal E�B ows,8 which are primarily in the poloidal direction.
Though there are some small di�erences in the spectra, the two runs agree
within statistical uctuations on global quantities such as the volume aver-
aged RMS uctuation levels and transport levels: e�=Ti = 15�i=Ln ' 0:020
and �i = 7:4�2i vti=Ln, averaged from tvti=Ln = 150 � 300. The statistical
uctuations in �i at saturation are about 10% for both runs. This level of
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Figure 0.3: Potential spectra for both runs.

ion heat transport is near the experimentally measured �i = 8:8�2i vti=Ln, but
these simulations ignore impurities and beams (usually a stabilizing e�ect),
trapped electrons (destabilizing), and use our four momentmodel which gives
lower transport than our more accurate six momentmodel. Nevertheless, this
level of agreement is encouraging, and suggests that toroidal ITG turbulence
is responsible for anomalous ion heat transport in tokamaks. The transport
from these toroidal simulations is about a factor of 25 larger than sheared
slab simulations for the same parameters, demonstrating the importance of
toroidicity. Our toroidal simulations can be run in the sheared slab limit by
taking Ln=R! 0 and q=ŝ! 0 so that Ln=Ls = Lnŝ=qR remains �nite.

To summarize, we are simulating a rectangular domain in (x; y; z), and
using the transformation Eq. (0.10), this domain becomes a long, thin, twist-
ing ux tube in a torus. The di�erential operators take the particularly
useful forms Eq. (0.2-0.6), applicable to general magnetic geometry; only the
metric coe�cients r�, r , and rz need to be speci�ed. The boundary
conditions can make the perturbations periodic in �, if N = 1, which makes
this representation equivalent to the ballooning representation for a coarse
grid in n, with spacing n0. However, when n0 > 1, the box must be extended
in � to avoid non-physical correlations if the parallel correlation length is
longer than 2�qR, i.e. �c > 2�. The fundamental assumptions are that the
correlation lengths (both parallel and perpendicular) are smaller than the
box size, that the equilibrium gradients vary slowly across the small perpen-
dicular extent of the box, and that the turbulence is local, i.e. driven only by
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the equilibrium gradients within the box. For typical tokamak parameters,
our reduced simulation volume can represent large computational savings.

11



References

1R. J. Fonck, G. Cosby, R. D. Durst, S. F. Paul, N. Bretz, S. Scott,
E. Synakowski, and G. Taylor, Phys. Rev. Lett. 70, 3736 (1993).

2E. Mazzucato and R. Nazikian, Phys. Rev. Lett. 71, 1840 (1993).

3S. Zweben and S. S. Medley, Phys. Fluids B 1, 2058 (1989).

4S. E. Parker, J. C. Cummings, W. W. Lee, and H. E. Mynick, in Proceed-

ings of the Joint Varenna-Lausanne International Workshop on Theory

of Fusion Plasmas, (Societa Italiana di Fisica, Bologna, 1994).

5M. A. Beer and S. C. Cowley and G. W. Hammett, to appear in Phys.
Plasmas (1995).

6K. V. Roberts and J. B. Taylor, Phys. Fluids 8, 315 (1965).

7S. C. Cowley, R. M. Kulsrud, and R. Sudan, Phys. Fluids B 3, 2767 (1991).

8G. W. Hammett, M. A. Beer, W. Dorland, S. C. Cowley, and S. A. Smith,
Plasma Phys. Controlled Fusion 35, 973 (1993).

9M. D. Kruskal and R. M. Kulsrud, Phys. Fluids 1, 265 (1958).

10M. A. Beer, Ph.D. Thesis, Princeton University (1994).

11W. Dorland, G. W. Hammett, T. S. Hahm, and M. A. Beer, in U. S.-

Japan Workshop on Ion Temperature Gradient Driven Turbulent Trans-

port, edited by W. Horton, M. Wakatani, and A. Wootton, (American
Institute of Physics, New York, 1993), p. 344.

12M. Kotschenreuther and H. V. Wong, private communication (1991).

13A. M. Dimits, Phys. Rev. E 48, 4070 (1993).

14J. M. Greene and J. L. Johnson, Phys. Fluids 5, 510 (1962).

12



II. Theory Publication for April 1995 { June 1995

Gorelenkov, N. and C. Z. Cheng, Alfv�en Cyclotron Instability and Ion

Cyclotron Emission, IAEA Technical Committee Meeting and Joint
US-Japan Workshop on Alpha Particles in Fusion Research, Princeton
University, Plasma Physics Laboratory Report PPPL-3114. Submitted
to Nuclear Fusion.

Hahm, T. S. and K. H. Burrell, E �B Flow Shear E�ects on Radial

Correlation Length of Turbulence and Gyroradius Scaling of Con�ne-

ment, Princeton University, Plasma Physics Laboratory Report PPPL-
3126. Submitted to Physics of Plasmas.

Naitou, H., K. Tsuda, W. W. Lee, and R. D. Sydora, Gyrokinetic Sim-
ulation of Internal Kink Modes, Princeton University, Plasma Physics
Laboratory Report PPPL-3101. Submitted to Physics of Plasmas.

Lee, W. W. and R. Santoro, Gyrokinetic Simulation of Isotope Scaling

in Tokamak Plasmas, Princeton University, Plasma Physics Laboratory
Report PPPL-3123. Submitted to Phys. Rev. Lett.

Park, W., E. Fredrickson, A. Janos, J. Manickam, and W. M. Tang,
High-� Disruptions in Tokamaks, Princeton University, Plasma Physics
Laboratory Report PPPL-3104. Submitted to Nuclear Fusion.

Wu, Y., R. B. White, Y. Chen, and M. N. Rosenbluth, Nonlinear Evo-
lution of the Alpha Particle Driven Toroidicity-Induced Alfv�en Eigen-

mode, Princeton University, Plasma Physics Laboratory Report PPPL-
3103. Submitted to Physics of Plasmas.

White, R. B., Y. Wu, Y. Chen, E. Fredrickson, D. Darrow, M. Zarn-
stor�, R. Wilson, S. Zweben, K. Hill, G. Fu, and M. N. Rosenbluth,
Nonlinear Analysis of the Toroidicity-Induced Alfv�en Eigenmode, IAEA
Technical CommitteeMeeting and Joint US-Japan Workshop on Alpha
Particles in Fusion Research. Submitted to Nuclear Fusion.

Rogers, B. and L. Zakharov, Nonlinear !�-Stabilization of the m = 1
Mode in Tokamaks, Princeton University Plasma Physics Laboratory
Report PPPL-3125. Submitted to Physics of Plasmas

13



III. Theory Visitors for April 1995 { June 1995

Boozer, A., Columbia University, April 27.

Chen, L., University of California, Irvine, April 10-16, and May 29-
June 4.

Dremin, I., Lebedev Institute, Moscow, May 18-19.

Evrard, M., Plasma Physics Laboratory, Royal Military Academy,
Brussels, Belgium, May 22-25.

Fitzpatrick, R., Institute for Fusion Studies, University of Texas at
Austin, June 11-24.

Fivaz, M., Center for Plasma Physics Research, Lausanne, Switzer-
land, May 1-5.

Kepner, J., Princeton University, DoE Computational Graduate Fel-
lowship Summer Intern, June 12-September 1, 1995.

Kritz, A., Lehigh University, approximately 1 day/month April - June.

Merkel, P., Max-Planck Institut fuer Plasmaphysik, Germany, April
6-28.

Pastukhov, V., Kurchatov Institute of Atomic Energy, Russian Fed-
eration, June 13-16.

Pigarov, A., Kurchatov Institute of Atomic Energy, Russian Federa-
tion, May 15, 1995 to May 15, 1996.

Salas, A., CIEMAT, Madrid, Spain, June 20-August 20.

Shafranov, V., Kurchatov Institute of Atomic Energy, Russian Feder-
ation, June 13-16.

Solano, E., Fusion Research Center, University of Texas at Austin,
June 5-9.

14



Summer Science Education Program Visitors

Summer Research Program for Under Represented Groups

Huang, T. S., Prairie View A & M University, June 2-August 18.

Sen, A., Mt. Holyoke College, June 2-August 18.

Smith, I., Prairie View A & M University, June 2-August 18.

Storr, K., Prairie View A & M University, June 2-August 18.

Upshaw, S., Hampton University, June 2-August 18.

Yu, X., Prairie View A & M University, June 2-August 18.

National Undergraduate Fellowship Program

Chen, L., Duke University, June 19-August 25.

Fu, Q., Hamilton College, June 19-August 25.

Strasburg, S., Benedictine College, June 19-August 25.

15


