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In this paper we develop a theoretical framework for the Magnetic Reconnection Experi-

ment (MRX) in order to understand the basic physics of the experiment, including the e�ect

of the external driving force, and the di�erence between co and counterhelicity cases of the

experiment. In order to simplify the problem we reduce it to a 1-D resistive MHD model.

Also, we de�ne a special class of holonomic boundary conditions under which a unique se-

quence of global equilibria can be obtained, independent of the rate of reconnection. This

enables us to break the whole problem into two parts: a global problem for the ideal region,

and a local problem for the resistive reconnection layer. We carry out the calculations and

obtain the global solution for the ideal region in one particular case of holonomic constraints,

the so called \constant force" regime, for both the co and counterhelicity cases. After the

sequence of equilibria in the ideal region is found, we tackle the problem of the rate of

reconnection in the resistive reconnection region. This rate tells us how fast we proceed

through the sequence of global equilibria but does not a�ects the sequence itself. Assuming

the Sweet-Parker model for the reconnection layer, we calculate the reconnection rate, and

demonstrate the di�erence between the co and counterhelicity cases, as well as the role of

the external forces. We �nd our results to be in a reasonable agreement with the experiment.



I. INTRODUCTION

Recently, experiments were performed [1-3] to explore the physics of magnetic reconnec-

tion. These experiments consisted of bringing together two spheromaks with common major

axis. The toroidal currents in the two spheromaks were in the same direction. Thus, the

poloidal �elds in the region between the merging spheromaks were oppositely directed, so

that magnetic reconnection of them could occur. The toroidal �elds of the two spheromaks

were parallel in one case of the experiments and antiparallel in another. These two cases were

denoted as cohelicity and counterhelicity cases, respectively. The magnetic reconnection rate

was appreciably faster in the counterhelicity case.

Since the magnetic reconnection phenomenon is of great importance, both in laboratory

experiments [4-5] and in astrophysics (see [6], and references therein), it was decided to

carry out more detailed experiments with larger spheromaks and with a more elaborate and

controlled environment [7].

In order to understand the physics of these experiments we have carried out a simpli�ed

theory of the merging process. This theory attempts to describe the experiments on the

basis of resistive magnetohydrodynamics in order to isolate how much of the phenomena

can be understood without resort to �nite gyration radius e�ects, anomalous resistivity and

other more complicated e�ects. Since in the experiments the magnetic Reynolds numberRm

(or, strictly speaking, the Lundquist number S) is very large, we take Rm >> 1 throughout

this paper.

We found that the general results of the experiments can be understood by such a

description including the dependence of the reconnection rate on the external forces, and

the gross di�erences in the reconnection rates between the co and counterhelicity cases.

However, our model for the solution of the resistive magnetohydrodynamic equations is too

crude to give very precise agreement.

Our paper appears in stages of increasing simpli�cation.

The general situation during the reconnection process in the experiment can be seen

in Figs. 1a and 1b. Fig. 1a indicates the two spheromaks just about to merge. Fig. 1b
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shows the situation after some of the poloidal magnetic ux has merged. In this Figure,

regions I are the parts of the spheromaks that have not yet merged. We call these regions

the unreconnected regions. They come from the regions labeled 1 in Fig. 1a. In Fig. 1b,

region II is the common region of merged poloidal ux. We call this region the reconnected

region. It comes from the regions labeled 2 in Fig. 1a. (At t = 0 region II does not exist).

In the cohelicity case this region also contains the toroidal ux that was originally in the

regions 2 of Fig. 1a. In the counterhelicity case there is no toroidal ux in region II since,

in this case, the toroidal ux is destroyed in the reconnection process. Finally, outside the

spheromaks, there is a vacuum region, whose geometry is determined by external coils and

walls.

Since the reconnection occurs on a time scale much shorter than the characteristic dif-

fusion time, total poloidal magnetic ux in the plasma 	tot remains unchanged. We take

the external walls/coils to be in�nitely conducting, so that the amount of poloidal magnetic

ux in the vacuum region, 	vac, also remains unchanged during the reconnection process.

These external coils or in�nitely conducting walls can provide some force, which pushes

the two plasmas towards each other and squeezes them. As we shall see, this external force

can accelerate the reconnection process, which allows us to call it the driving force. If there

are no external boundaries (walls or coils), that is, if Fext = 0, the reconnection is non-

driven, and the developing current sheet balances only the force of mutual attraction of the

two pinches.

We consider a situation where the toroidal magnetic �eld is produced only by the plasma

currents, so that there is no toroidal magnetic �eld in the vacuum region.

At the midplane, a very narrow current layer develops between the two spheromaks, and

the toroidal current in this layer provides the repulsive force, which balances the force of

mutual attraction between the two spheromaks and the external pushing force. This layer

is called the reconnection region, and its treatment requires resistive MHD, because of the

very high current density. It is in this layer that the reconnection occurs and poloidal and,

in the counterhelicity case, some of the toroidal magnetic �eld energy is converted into the
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plasma thermal and kinetic energy.

As the magnetic �eld lines merge, the plasma ows from region I into the reconnec-

tion layer, where it is joule heated. The resulting pressure gradient and magnetic tension

accelerate the plasma outward along the layer up to about the Alfv�en speed. Then, the

plasma ows into the boundary region between regions I and II. This boundary region is

expected to be very thin and we treat it as a singular magnetic surface. We call this surface

the separatrix, because it separates regions with di�erent topology of the poloidal magnetic

�eld.

In the cohelicity case, the motions of plasma are purely poloidal. In the counterhelicity

case, however, in addition to the poloidal motions, local toroidal ows are also produced,

by the slingshot e�ect of the merging of the oppositely directed toroidal �elds. Fig. 2 gives

us a full three-dimensional picture of this process. The pairs of cylinders in (b) and (c)

correspond to ux surfaces just prior to the reconnection. The cylinders in (b0) and (c0) are

the same ux surfaces just after the reconnection. It is seen that in (c0) part of the toroidal

�eld has been annihilated in the reconnection layer. Just after merging the toroidal lines

have a sharp kink which accelerates the plasma in the toroidal direction. This motion leads

to an Alfv�en wave propagating in the separatrix region. The bulk of the toroidal �eld energy

is converted into the energy of the Alfv�en wave.

For the conditions of the experiment the motions in the separatrix region are damped

out rapidly, compared to the rate of reconnection, so that this region is quite narrow. The

poloidal motions are damped by the symmetry of the situations since the two ows emerging

from the di�erent sides of the resistive layer ow along the separatrix and collide at the top

and bottom of it by symmetry. The resulting shock should damp these motions quickly. The

toroidal motions associated with the Alfv�en wave in the separatrix region are damped by

perpendicular viscosity. The damping of this wave is also rapid compared to the reconnection

rate. As a consequence, as reconnection proceeds, a reconnected surface moves deeper into

region II, but before it has moved very far, all the motions are damped. Therefore, motions

exist only in the very thin separatrix region between I and II.
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Any plasma pressure in region I or II should evolve adiabatically as the magnetic merging

continues. Also, both poloidal and toroidal uxes are frozen in the plasma in both these re-

gions, which allows us to call these two regions the ideal regions, and to describe them by the

ideal MHD formalism. However, in the transition through reconnection, the entropy of the

plasma should change, because the kinetic energy of the poloidal, and, in the counterhelicity

case, the toroidal motions is converted into heat.

In this paper we show how the amount of conversion of magnetic energy to heat can be

determined by the �rst law of thermodynamics. The work done by the external coils on the

spheromaks during any time interval must be equal to the change in the total energy of the

plasma in regions I, II, and in the vacuum.

Since there are no motions in regions I and II, these regions are in a magnetostatic

equilibrium which is totally determined by the amount of poloidal ux in each region, the

relation of the toroidal and poloidal uxes, and the relation of the pressure to the poloidal

ux. In region I these relations are given by ux freezing and the adiabatic evolution of the

pressure. Similarly, after the plasma enters region II, these relations are given by the same

conditions. The signi�cant change is produced by the transfer of poloidal ux from region

I to region II caused by reconnection. The amount of toroidal ux per unit of poloidal ux

that enters region II is discussed above for the co and counterhelicity cases. The initial value

of P=� on the freshly reconnected surface labeled by 	s (now entering region II) is given

by equating the change in energy between two subsequent equilibria, to the work done.

In the special case where the position of the bounding walls is �xed in time, the subse-

quent equilibrium at 	s + �	s is uniquely speci�ed by the energy conservation condition.

Hence, independent of what goes on in the reconnection layer, the entire sequence of equi-

libria in regions I and II can be determined.

It is clear that if our boundary conditions are more general than the �xed wall, but

only involve the amount of unreconnected ux 	s in their statement, then one can �nd self-

consistently the new position of the wall, the new pressure pro�le, and the new equilibrium

independently of time, or of the reconnection rate. Such boundary conditions clearly lead to
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a unique sequence of equilibria in the ideal regions. We designate such boundary conditions

as holonomic conditions in analogy with time independent constraints in mechanics [8]. In

our paper we present an example of holonomic conditions which is relevant to the experiment

and di�erent from the case of the �xed wall. We also discuss the holonomic and nonholonomic

conditions in general in Section V of this paper.

Under the holonomic conditions, the only signi�cant role of the reconnection region

is to specify the rate at which the plasma proceeds through the uniquely given sequence

of equilibria. This reconnection rate is determined by the boundary layer analysis of the

reconnection region. It turns out that this analysis depends on the length of the layer, and on

the variation of the outside magnetic �eld along the layer. These quantities are determined

at any given time by the solutions in the ideal regions I and II.

To summarize, in the holonomic case the total problem can be broken into two separate

analyses:

1) The global analysis of the ideal regions I and II. The unique sequence of magnetostatic

equilibria is speci�ed independently of the local physics of the reconnection region (e.g. the

nature of the resistivity or the internal structure of the layer).

2) The local analysis of the reconnection region itself which determines the reconnection

rate. This depends on the properties of the outer solution only just outside of the layer, as

well as on the local physics of the layer.

Although this division of the whole problem into two separate ones does reduce the

problem considerably, we are still left with a very complicated problem that can only be

solved with any precision by a di�cult numerical simulation. However, for the conditions

of the experiment where the external force pushing the spheromaks together is strong, the

spheromaks are considerably attened. This allows us to simplify the geometry by taking

regions I and II approximately one-dimensional (see Fig. 3). The validity of the one-

dimensional approximation can be easily seen if one looks only at the line of symmetry

perpendicular to the reconnection layer. On this line the primary forces are those due

to magnetic pressure and gas pressure. Because of the attening the magnetic tension
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forces are considerably smaller. Thus, the equilibrium along this line is close to that of

a one-dimensional equilibrium, and the behavior along this line well represents the total

equilibrium as far as the rate of reconnection is concerned.

This one-dimensional problem is muchmore tractable than the complete two-dimensional

problem. The magnetostatic equilibrium depends on the external forcing magnetic �eld just

above and below the 1-D equilibrium, Bw. In general, Bw varies with time due to changes

in the geometry of the (now) \one-dimensional spheromaks" of our paper, and the changing

external conditions. The 1-D problem becomes much simpler in the case where Bw is a

constant in time. This turns out to be a reasonable approximation to the driven reconnection

experiment with constant external forcing, and is, in fact, a holonomic constraint. It is this

case that we present in this paper.

In Section II we set up the equilibrium problem in the ideal regions. In II-A we derive the

1-D approximation, and in II-B we give the initial equilibrium. In section III we determine

the general sequence of equilibria in the ideal regions. In III-A we derive the mass ux

function, and in III-B the toroidal ux function. In III-C we give the equilibrium in terms of

these ux functions and the yet unknown pressure function. In Section III-D we introduce

the \constant Bw"-approximation. In Section III-E we make use of these equilibrium results

and energy conservation to determine the pressure function, and, thus, the actual sequence

of equilibrium solutions through which the plasma progresses due to reconnection.

In Section IV we assume, for de�niteness, that the reconnection rate is given by the

physical model of Sweet-Parker. We show how it is modi�ed by the presence of the toroidal

�eld in the co and counterhelicity cases. In the framework of this model, we give the time

evolution of the plasma. In Section V we discuss the signi�cance of our results for general

reconnection problems, and in Section VI we draw our conclusions. In the Appendix, we

describe the conditions under which the assumption Bw = const is reasonable.
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II. MODEL OF THE IDEAL REGION.

First, let us consider the solution in the ideal regions I (unreconnected or individual ux)

and II (reconnected or common ux). Region I is symmetrical with respect to the magnetic

axis, and the whole picture is symmetrical with respect to the midplane. Because of this

overall symmetry with respect to the midplane, we can consider only the upper spheromak.

In each of regions I and II, plasma motions are slow (since the magnetic Reynolds number

Rm >> 1) compared with Alfv�en speed, therefore, the solution in these two regions can

be described by a sequence of magnetostatic equilibria with boundary conditions given by

external coils or walls. This sequence depends on one free parameter 	s, the amount of

unreconnected poloidal ux. This parameter de�nes how far the plasma has progressed

through the sequence of magnetostatic equilibria, and, thus, represents the slow evolution

in time associated with reconnection: 	s(t = 0) = 	tot is the total poloidal ux in plasma

of one spheromak, measured from its magnetic axis, and 	s(t = 1) = 0. The relationship

between 	s and time, that is the rate at which the global equilibrium states follow each

other, is called the reconnection rate, and is determined by the solution in the resistive

reconnection region (see Section IV).

We describe the equilibrium solutions by representing the plasma parameters, such as

pressure, density, poloidal and toroidal magnetic �elds, etc., as functions of 	 and 	s, where

poloidal ux 	, measured from the magnetic axis, plays a role of a coordinate, and 	s plays

a role of time variable. At any given moment of time (and, therefore, at any given value of

	s) the relationship between the space coordinate x and our new coordinate 	 is given by

~Bpol(	) = r	� ẑ; (1)

where ẑ is a unit vector in toroidal (z) direction.

So, at each moment of time, plasma in regions I and II can be described by a solution of

the MHD equilibrium equation:

~j � ~B = rP; (2)
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which, itself, is totally determined once the four ideal region functions:

PI(	); PII (	); �I(	); �II(	) (3)

{ the plasma pressure and toroidal ux in regions I and II as functions of 	 { are given.

These four functions are determined, in turn, by toroidal ux and energy conservation. For

holonomic boundary conditions this determination is independent of the reconnection rate

(see Section V).

A. One-Dimensional Approximation.

The general two-dimensional MHD equilibrium problem with a singular surface can be

di�cult, but it turns out that some major phenomena can be caught in the frameworks of

a simple one-dimensional model.

Let us consider a situation where each plasma pinch (initially with circular structure of

the ux surfaces), is squeezed in vertical (x) direction by external coils and by the force of

attraction with the other pinch. We shall call "strongly driven reconnection" the case when

the mutual force is small compared to both the external force, and the repulsive force from

the current layer. We consider only this case, so from now on the vertical size a of each

plasma is much smaller than its horizontal size L.

If L0 � L(t = 0) >> a0 � a(t = 0), then we can represent the ux surfaces by ellipses

or ovals (see Fig. 1a). In the middle of the process, that is, after some ux has been

reconnected, the structure of the magnetic ux surfaces is shown in Fig. 1b.

The magnetic tension is small along the vertical x-axis, so, by assuming L0 >> a0, and

L >> a (\driven reconnection"), we e�ectively make the problem one-dimensional. Thus,

to simplify the situation, we model the problem by a rectangular geometry (see Fig. 3).

We measure x-coordinate not from the midplane, but from the upper spheromak's magnetic

axis which itself moves vertically during the reconnection process towards the midplane.

In this 1-D geometry, the external coils are represented by the in�nitely conducting walls

at the distance xw from the magnetic axes, that is at x = xw and at x = �xw � 2a. We
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imagine these walls to be movable in order to control the external driving force. Region

I, which appears to be disconnected in the 1-D model, is, actually, connected to itself,

and region II (a < x < d, where d is the position of the plasma-vacuum boundary with

respect to the magnetic axis) is connected to its reection with respect to the midplane

- region [�a > (x + 2a) > �d]. The separatrix magnetic surface is e�ectively connected

to the reconnection region, because they are two parts of the same ux surface; during

the reconnection, the mass from the lower part of this surface is added to the upper part.

Similarly, in the cohelicity case, the toroidal uxes are added, but, in the counterhelicity

case, they cancel.

We describe the external pushing force in terms of the magnetic �eld in the vacuum

region. This �eld is purely poloidal, and, in our 1-D geometry, it is uniform:

Bvac(x; t) = Bw(t): (4)

In general, we expect our 1-D approximation of the ideal region to be applicable, when

a; a0 << L0 - "driven reconnection" regime, and xw << L0, which can be satis�ed by suitable

geometry of the vacuum chamber, if the radius of the cylindrical chamber is much larger

than its height. If L0 >> xw, then, L0 >> a0 is also satis�ed, because xw > a0. Therefore,

if we have a su�ciently "at" vacuum chamber, then L0 >> xw > a0, the reconnection

process in this chamber will be "strongly driven", and we can use our 1-D model. However,

even in the case where physical coils are further apart from each other than 2L0, we believe

that the vacuum �eld can be su�ciently well represented by walls that are much closer (at

least, as far as the reconnection process itself is concerned).

B. Initial equilibrium.

For de�niteness, let us choose a simple model for the initial equilibrium: let both the

plasma density � and the toroidal current density jz be uniform inside each plasma at t = 0:

� = �0 = const; and jz = const; (5)
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and let the initial equilibrium be force-free, P0 = 0, so that the poloidal �eld pinch force is

balanced by the toroidal �eld pressure.

Then, the poloidal ux as a function of x is

	(x; t = 0) = �0x
2; x < a0; (6)

where

�0 =
2�

c
jz: (7)

The initial poloidal magnetic �eld is

Bpol(t = 0) =
@	(x; t = 0)

@x
= 2�0x = 2

q
�0	 = Bw(t = 0)

s
	

	tot

; (8)

and the mass measured from the magnetic axis as a function of ux at t = 0 is:

M(	) = �0x = �0

q
	=�0: (9)

The toroidal �eld, which, in the case under consideration, is produced only by the

plasma's poloidal currents, provides the force balance with poloidal �eld pressure gradient.

Since the initial pressure is zero, we have:

B2

pol(x; t = 0) +B2

tor(x; t = 0) = const = B2

w(t = 0): (10)

Then, if we use Bw(t = 0) = Bpol(	tot; t = 0) = 2
p
�0	tot, we get:

B2

tor = 4�0(	tot �	) = B2

w(t = 0)(1� 	

	tot

): (11)

III. SOLUTION FOR THE IDEAL REGION, t > 0.

A. Mass conservation for t > 0.

In region I, 	 < 	s, magnetic �eld is frozen into the plasma, and mass as function of

ux is conserved:

10



�I(	 < 	s) = �0
Bpol(	 < 	s)

2
p
�0	

; (12)

where, of course, Bpol(	;	s) = @	(x;	s)=@x. (Thus, if the plasma compresses, � increases

as Bpol.)

When 	s = 	, that is at the moment of the reconnection of a particular ux surface,

mass from the destroyed part of this ux surface is added to the upper part of the same

surface (between regions I and II). Due to the symmetry of region I with respect to the

magnetic axis, the plasma density and magnetic �eld on the two parts of the surface before

reconnection are equal. Therefore, the amount of mass per ux on the upper part of the

ux surface (	 = 	s; x = a) is doubled. After the reconnection of the given ux surface,

the following evolution of plasma on this surface again obeys the frozen-in law. Then, in

region II, 	 > 	s, we have:

�II(	 > 	s) = �0
Bpol(	 > 	s)p

�0	
: (13)

B. Toroidal ux conservation.

Since the characteristic reconnection time is small compared with the magnetic di�usion

time, the toroidal magnetic ux �(	;	s) (measured from the magnetic axis) is conserved

separately in region I and in region II. Then our analysis of the toroidal �eld evolution

becomes similar to that of the density.

In region I, the result is:

Btor(	 < 	s) = Btor(	;	s = 	tot)
Bpol(	;	s)

Bpol(	;	tot)
;

or,

Btor(	 < 	s) =
q
B2
w(	s = 	tot)� 4�0	

Bpol(	;	s)

2
p
�0	

: (14)

Since 	s plays a role of time, from now on we treat Bw as a function of 	s.
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In region II, that is after the reconnection, the situations for the co and counterhelicity

di�er. In the counterhelicity case toroidal magnetic �eld is completely destroyed:

Bcounter
tor (	 > 	s) = 0: (15)

In the cohelicity case, the amount of toroidal ux containing on the given ux surface is

doubled after the reconnection of the symmetrical ux surface, because all the toroidal ux

from the destroyed part of the ux surface is added to the upper part of the same surface,

just as it was for the density. Therefore,

Bco
tor(	 > 	s) = 2 Btor(	;	tot)

Bpol(	;	s)

Bpol(	;	tot)
; (16)

or, to summarize,

Btor(	 < 	s) =
q
	tot=	� 1 Bpol(	;	s) (17)

Bco
tor(	 > 	s) = 2

q
	tot=	� 1 Bpol(	;	s) (18)

Bcounter
tor (	 > 	s) = 0: (19)

C. Magnetostatic equilibrium.

In our one-dimensional model, the condition of MHD equilibrium reduces to the vertical

pressure balance equation and is very simple:

P (	;	s) +
B2

pol(	;	s)

8�
+
B2

tor(	;	s)

8�
=

B2

w(	s)

8�
: (20)

If we know functions Btor(	;	s), and P (	;	s) in each of the two ideal regions, then

this equation is just an algebraic equation to determine Bpol(	;	s) = @	(x;	s)=@x.

In region I for both co and counterhelicity P = 0, and, thus, B2

tor + B2

pol = B2

w. As we

know, for 	 < 	s, B
2

tor = (	tot

	
� 1) B2

pol(	;	s), then, from the vertical pressure balance

equation,

Bpol(	;	s) = Bw(	s)
q
	=	tot: (21)
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In region II pressure balance (20) can be written in dimensionless form as:

�(	;	s) + b2(	;	s) + b2tor(	;	s) = 1; (22)

where

b � Bpol;II

Bw

; btor �
Btor;II

Bw

; � � 8�PII

B2
w

: (23)

We assume that the evolution of plasma on any particular ux surface is adiabatic during

the entire reconnection process except for the short period of time when this particular

surface is being reconnected. This means that evolution of plasma after the reconnection,

i.e. in region II, obeys the adiabatic condition:

PII (	;	s)

PII (	;	s = 	)
=
� �II(	;	s)

�II(	;	s = 	)

�
=
� Bpol;II(	;	s)

Bpol;II(	;	s = 	)

�
: (24)

D. Bw = const - approximation.

The vacuum magnetic �eld Bw as a function of time is essentially at our disposal. For the

purpose of illustration, we consider the so called "constant force" or "constant Bw" regime,

which means that the position of the wall is constantly adjusted during the reconnection

process (see the Appendix for details), so that Bw(t) = const. This assumption will allow

us to drastically simplify the mathematical procedures, making the problem much easier. In

fact, this boundary condition is holonomic, as we will see.

If the position of the wall is �xed (which is more likely for a real experimental situation),

the condition Bw = const is also valid, if

xw >> a0; (25)

because

Bw =
	vac

xw � d
; (26)

where d(t) � a0 is the changing position of the plasma-vacuum boundary, and 	vac is the

magnetic ux between this boundary and the wall. If xw >> d � a0, then Bw depends very

weakly on d, and hence on t.
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Since plasma pressure evolves adiabatically in regions I and II, and since Bw = const,

nothing changes with time in these regions, except for the position of the separatrix between

them. That is, in region I, the plasma pressure and magnetic �elds as functions of 	 remain

those of the initial equilibrium (the reason for this is that it is clearly impossible for the

plasma and magnetic �eld to expand adiabatically without changing the total pressure,

because the pressure of each of them would decrease). In region II, these functions are

determined by the transition conditions at 	 = 	s.

Let us take a closer look at these regions.

In region I, Eq. (21) means that poloidal magnetic �eld, and, therefore, the plasma

density and toroidal �eld remain unchanged throughout the reconnection process for both

co and counterhelicity cases:

Bpol(	 < 	s) = 2
q
�0	 (27)

�(	 < 	s) = �0 (28)

Btor(	 < 	s) = 2
q
�0(	tot �	): (29)

In region II, since Bw = const, the solution is:

b(	 > 	s) = b0(	) � b(	;	s = 	); (30)

btor(	 > 	s) = btor;0(	) � btor(	;	s = 	); (31)

and

�(	 > 	s) = �0(	) � �(	;	s = 	); (32)

(here, subscript 0 indicates the moment of reconnection of the ux surface labeled by 	,

i.e. 	s = 	). This means that the magnetic �eld, density, and pressure stay unchanged

in region II from the moment the given ux surface was reconnected until the end of the

process, just as in region I. Thus, the only change of pressure, density, and magnetic �elds

as functions of 	 occurs at the moment 	s = 	.

We see that in order to describe the equilibrium in region II, we need to �nd the three

functions b0(	), btor(	), and �0(	) { the normalized poloidal and toroidal magnetic �elds
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and pressure right after the reconnection. Therefore, we need three conditions for these three

unknowns, and these conditions can be found by making use of the pressure balance, and

two transition conditions at 	s = 	: toroidal ux conservation, and energy conservation.

Consider the reconnection of a very thin strip, or ux layer, [	1; 	1+�	] (see Fig. 4).

Let 2L be the length of this layer, �x and �x0 its width before and after the reconnection,

and let � � �x0=�x. This dimensionless parameter �(	1) is very important and represents

the compression of plasma as a function of 	1. Since the two regions of thickness �x are

compressed into one region of thickness �x0, the actual compression of the plasma is 2=�.

Let us de�ne the poloidal �eld B0 just prior to the reconnection as

B0(	1) = Bpol;I(	1;	s = 	1); (33)

and

�(	1) �
B0

Bw

=

s
	1

	tot

: (34)

Then,

Btor;I(	1) � Btor;I(	1;	s = 	1) =
p
1� �2Bw: (35)

By ux conservation, the poloidal �eld just after the reconnnection is

B0
0
(	1) � Bpol;II(	1;	s = 	1) =

B0

�
= Bw

�

�
; (36)

from which it follows that

b0(�) =
B0
0

Bw

=
�

�(�)
: (37)

Then, using formulas (18)-(19) for the toroidal ux conservation,

Bco
tor;II = 2

Btor;I

�
= 2

p
1 � �2

�
Bw => bcotor = 2

p
1� �2

�(�)
; (38)

and

Bcounter
tor;II = 0 => bcountertor = 0: (39)

With this new notation, we can rewrite the pressure balance equation in region II right

after the reconnection as follows:

15



1) Cohelicity case:

�0 +
�2

�2
+

4(1 � �2)

�2
= 1 (40)

2) Counterhelicity case:

�0 +
�2

�2
= 1 (41)

E. Energy Conservation.

We need to �nd an additional relationship between �0 and �. Physically, �0, that is,

the pressure right after the reconnection, comes from the heating due to the dissipation of

the motions in the separatrix region, as well as the compression produced by the external

pressure B2

w=8�. Rather than attempt to calculate the dissipation directly, which is very

di�cult, we simply make use of the fact that the change in total energy is only due to the

work done by the external forces.

Therefore, we shall use the energy conservation requirement in order to �nd the additional

relationship between �0(�) and �(�).

Let us compare the total energy of plasma and magnetic �eld in the region between the

midplane and the upper part of the 	1 + �	-surface before and after the reconnection of

this surface.

Here, when we talk about "just before or just after the reconnection of a given ux

surface" we imply that the time interval �t between these two moments is much shorter

than the total reconnection time �rec, but it is still much longer than the time of damping of

all of the MHD motions on this particular surface. Then, at the moments "just before" and

"just after" the reconnection of the given ux surface, this surface is in quasi-equilibriumwith

the neighboring surfaces, and its kinetic energy is negligible compared with the magnetic

and thermal energy. Between these two moments, however, part of the magnetic �eld energy

is temporarily converted into the kinetic energy of plasma moving with Alfv�en speed out of

the reconnection region in y-direction.

Let us de�ne, in Fig. 4a, region I*, 	 < 	1 (i.e. �a < x < a), as region I without the
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ux strip under consideration. This region is identical to region I in Fig. 4b. Similarly, let

us de�ne, in Fig. 4b, region II*, 	 > 	1 + �	, as region II without the ux strip under

consideration. This region is identical to region II in Fig. 4a.

Since Bw = const, region I* remains, as we already know, unchanged, it just sinks

down to the midplane, and becomes region I in Fig. 4b. Therefore, its energy before the

reconnection of the given ux layer is equal to its energy after the reconnection, and we can

omit it from our energy balance.

Thus, we only need to calculate the total energy in the very thin strip, or ux layer,

[	1;	1 + �	] before and after its reconnection, and the work done by the external forces.

Before the reconnection of this ux layer plasma pressure in it is zero, so the total energy is

just equal to the magnetic energy:

Ebefore = 2 � 2L ��x
B2

pol +B2

tor

8�
= 4 L �x

B2

w

8�
: (42)

After the reconnection we have:

Eafter = 2 L �x0 [
B2

pol +B2

tor

8�
+

3

2
P ]: (43)

(Here we take  = 5=3.)

But the total pressure is constant and equal to B2

w=8�, so
B2

pol
+B2

tor

8�
+ 3

2
P = B2

w

8�
+ 1

2
P ,

then

Eafter = 2 L �x � � B2

w

8�
� [1 + 1

2
�0]: (44)

The ux strip under consideration changes its width by �x0 � 2�x, so that the work

done by the outer (i.e. 	 > 	1 +�	) ux surfaces is

W = 2L (2�x��x0)
B2

w

8�
; (45)

because the total pressure is B2

w=8�.

17



Then the energy conservation relation

Eafter = Ebefore +W (46)

gives us the simple relationship:

�0 =
4(2 � �)

�
: (47)

This formula is valid for both co and counterhelicity. It must be combined with the

pressure balance equations (40)-(41) to give us � and �0 as functions of � = B0=Bw =q
	=	tot.

For the cohelicity case we have:

�co(�) =
1

5
(4 +

q
16 + 5(4 � 3�2) ): (48)

For the counterhelicity case:

�counter(�) =
1

5
(4 +

p
16 + 5�2 ): (49)

Functions �(�) and �0(�) are presented in Figs. 5 and 6.

As we see, at the beginning of the process, � = 1,

�co(1) = �counter(1) =
1

5
(4 +

p
21) ' 1:7165::; (50)

and

�co
0
(1) = �counter

0
(1) ' 0:66::: (51)

As the reconnection advances, � increases in the cohelicity case, and, �nally,

�co(� = 0) = 2; and �co
0
(� = 0) = 0: (52)

In the counterhelicity case, � decreases with time, and

�counter(� = 0) = 1:6; and �counter
0

(� = 0) = 1: (53)

At this point we know everything about regions I and II. The solution in region I is

given by the initial con�guration ( formulas (27)-(29)). In region II, Bpol = b0(�)Bw, Btor =
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btor(�)Bw, and PII = �0(�)
B2
w

8�
are determined by Eqs. (37), (38)-(39), and (47), respectively.

All these equations involve � and �, and �(�) is given, for the co and counterhelicity cases,

by Eqs. (48)-(49). Thus, all the plasma parameters characterizing the MHD equilibria in

regions I and II are speci�ed in terms of �xed functions of � =
q
	=	tot. These functions

do not depend explicitly on the current value of 	s which changes as reconnection proceeds.

The only way 	s a�ects the equilibrium is in giving the extent in � for each region: the

range of �'s in region I (0 < � <
q
	s=	tot) decreases, and the range of �'s in region II

(
q
	s=	tot < � < 1) increases with time.

These equations give us the desired unique sequence of equilibria as a function of 	s. It

is clear that for di�erent reconnection rates we pass through identical sequence of equilibria.

The reason why this sequence is unique can be traced to our holonomic constraint Bw =

const. To show that it is holonomic, we present the following argument. At any particular

	s, for the reconnection of a small amount of ux �	, the displacement of the plasma-

vacuum boundary, and, therefore, of the position of the wall, is 2�x � �x0 = �x(2 � �)

(from the condition Bw = const and Eq. (26) it follows that xw(t) � d(t) is a constant).

Since we know �(�) in terms of our equilibrium calculation, we can then express our changing

boundary conditions (i.e. position of the wall) directly in terms of a particular dependence

xw(	s), which is completely independent of the reconnection rate (for more details, see the

Appendix).

IV. RECONNECTION RATE.

As we have mentioned before, the rate at which global MHD equilibria follow each other,

is determined by the local solution in the very thin reconnection layer.

The detailed physics of the reconnection layer is not the purpose of this study (for

good general reviews of various reconnection theories see [9]-[10]), so for the purpose of

illustration, we use a modi�cation of the simplest Sweet-Parker model for the reconnection

of an incompressible plasma [11,12]. This model contains the physics necessary for the
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demonstration of the inuence of the external forces on the reconnection rate, and of the

di�erence between co and counterhelicity cases. In this Section we return to the general 2-D

problem, but make use of some of the 1-D results of Section III.

According to usual 2-D Sweet - Parker theory [11]-[12], the reconnection rate for an

incompressible plasma can be described by

_	s = �VSPB0(	s); (54)

where B0(	s) is the poloidal magnetic �eld just outside the layer in region I, and the Sweet-

Parker reconnection velocity VSP is given by

VSP =

s
�u

L(	s)
(55)

Here, � = �c2

4�
, � is the resistivity, u is the speed of the plasma moving out of the layer in

the poloidal direction, and L(	s) is the layer length.

We emphasize the fact that the solution in the reconnection region depends on both local

parameters of the layer and on the global solution: both B0 and L are determined by the

ideal region solution.

One important e�ect we address here is the di�erence in the reconnection rates for co

and counterhelicity cases. One reason for this di�erence can be attributed to the di�erent

values of the outward velocities u, and can be described as follows.

In the center of the reconnection region, x = 0; y = 0 , at least, part of the magnetic

�eld is destroyed (in this section we measure x from the midplane). The magnetic energy

is converted into the plasma pressure by joule heating. The pressure P in the resistive

reconnection region is determined by the vertical pressure balance. The plasma is expelled

out of the reconnection region by both the pressure gradient and the magnetic tension. In

a simple 2-D case with no toroidal �eld, these two forces are in the same poloidal direction

(i.e. along horizontal y-axis), and result in the total acceleration of plasma up to the Alfv�en

speed:

u = VA � B0=
q
4��0; (56)
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where �0 is the plasma density (we treat plasma inside the reconnection layer as an incom-

pressible uid).

In the cohelicity case, since the plasma is incompressible, the toroidal magnetic �eld is

uniform. Therefore, it drops out of the uid equations, and the above formula for u is valid

with B0 = Bpol.

In the counterhelicity case, however, the situation is di�erent. From the pressure balance,

we have

P counter(0; 0) = (B2

0
+B2

tor)=8�; (57)

which is larger than P co(0; 0) = B2

0
=8� by the toroidal magnetic �eld pressure. The pressure

gradient is directed strictly along y-axis, but the magnetic tension force is directed along

the magnetic �eld, because toroidal �eld is destroyed in the reconnection region just as the

poloidal �eld is. The toroidal component of this magnetic tension force provides toroidal

acceleration up to some velocity vtor. This has been observed in the experiments [1-3].

Then, we can write:

v2tor + u2counter = V 2

Aw; (58)

where VAw = Bwp
4��0

- is Alfv�en speed de�ned in terms of total magnetic �eld just outside the

reconnection region, Bw =
q
B2
tor +B2

0.

Now, an important question arises: what is the relative importance of the magnetic

curvature acceleration compared with the acceleration due to the pressure gradient? To

answer this question, we would have to look deeper into the details of the reconnection

region (i.e. current layer), but, since this is not the primary subject of this paper, let us just

assign some values �p and �m to the "relative importance" of acceleration due to pressure

gradient and due to magnetic tension, respectively, �p + �m = 1. Then we can write:

u2counter = V 2

Aw(�p + �2�m); (59)

and,

v2tor = V 2

Aw(1 � �2)�m; (60)
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where � = B0=Bw, as usual.

We can also rewrite the expression for uco in these terms: P co(0; 0) = B2

0
=8� = �2B2

w=8�,

then:

u2co = V 2

Aw�
2(�p + �m) = V 2

A : (61)

The di�erence between co and counterhelicity is now clear. The magnetic tension part

of acceleration in y-direction is provided, in both cases, by the poloidal �eld only: the

V 2

Aw�
2�m - term is the same in formulas (59) and (61), but the pressure gradient acceleration

in the counterhelicity case is greater than in the cohelicity case. This is because, in the

counterhelicity case, the total magnetic �eld energy B2

w=8� is converted into the plasma

pressure in the reconnection region, whereas, in the cohelicity case, the toroidal magnetic

�eld remains unchanged and uniform, and the plasma pressure in the reconnection region is

equal to the poloidal �eld pressure just outside the layer.

Since at the beginning of the process the toroidal �eld is relatively weak, this di�erence

is not important for small t. However, as reconnection advances, the toroidal �eld becomes

stronger, the poloidal �eld becomes weaker, and this di�erence becomes very important.

Using the above expressions (59) and (61) we can now calculate the reconnection rate for

co and counterhelicity cases, based on these simple Sweet-Parker-like arguments. Expression

(55) is valid for both co and counterhelicity cases. The di�erence between the two cases

comes from the di�erent dependence of u on 	s.

In (54)-(55), B0 and L must be determined by the ideal region solution. From (27),

B0(	s) = Bpol(	 = 	s) = 2
q
�0	s; (62)

As for the length of the layer, 2L, it is not really determined in the 1-D analysis of

Section III. In the real 2-D problem this length changes with time, and, hence, it depends

on 	s. At any moment of time, we can evaluate the length of the reconnection region as

being approximately equal to the length of the ux surface currently being reconnected.

Assuming that all ux surfaces have the same shape (but di�erent sizes), we can write

the relationship between the length (i.e. size in y-direction) and the height (i.e. size in
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x-direction) of a ux surface:

2L(	)

2x(	)
=

L0

a0
= const; (63)

independent of 	s.

Then, the length of the ux surface 	s, and, therefore, of the reconnection layer, is given

by:

L(	s) = L0

s
	s

	tot

: (64)

(Here we used Eq. (6) for x(	).)

Substituting Eqs. (59) and (61) for u in the co and counterhelicity cases, and formu-

las (62) and (64) into the general expression for _	s, we get simple �rst order di�erential

equations for 	s(t):

_	co
s = �B3=2

w

s
�

L0

p
4��0

(
	s

	tot

)1=2; (65)

and,

_	counter
s = �B3=2

w

s
�

L0

p
4��0

(
	s

	tot

)1=4; (66)

with initial condition 	s(t = 0) = 	tot. (Since the values of �p and �m are uncertain, we

take, for simplicity, �p = 1, �m = 0.)

The solution of these equations gives us the relationships between 	s, the amount of

unreconnected ux, and time t for the co and the counterhelicity cases:

	co
s (t) = 	tot[1� t=� ]2; (67)

	counter
s (t) = 	tot[1�

3

2

t

�
]4=3; (68)

where

� =

vuut8L0

p
��0	2

tot

�B3
w

=

s
L0

p
��0a

3

0

�	tot

=

s
2L0

p
��0a

2

0

�Bw

(69)

is the characteristic reconnection time. Functions (67) and (68) are represented in Fig. 7.

Now, the external force F (per unit area) driving the two spheromaks together is

F � B2

w

8�
; (70)

23



and we see that ( for �xed values of �0, 	tot, �, and L0) the reconnection rate  � 1=� varies

with F as

 � F 3=4: (71)

This is in a qualitative agreement with the experiments [1-3].

A typical set of parameters relevant for the experiments [1-3] is: T = 10eV , Bw = 103G,

n = 1014cm�3, and L0 = a0 = 10cm, therefore, it is convinient to write Eq. (69) in the

following form:

� ' 12�sec (
T

10eV
)3=4 (

Bw

1kG
)�1=2 (

n

1014cm�3 )
1=4 (

L0

10cm
)1=2 (

a0

10cm
): (72)

As we see, the total reconnection time for the counterhelicity case is somewhat shorter

than the total reconnection time for the cohelicity case, and the di�erence in rates is largest

toward the end of the process. These results also agree with the experiments [1-3].

In this Section we have assumed the Sweet-Parker model for the reconnection region.

Employing the same parameters B0 and L derived from the ideal region solution, other

reconnection models (such as [13]-[17]) could have been assumed.

V. GENERAL ASPECTS OF RECONNECTION.

We have employed a one-dimensional approximation to understand the physics of the

magnetic reconnection experiments. Although this approximation is an oversimpli�cation

which is not expected to yield great precision, it has many ingredients in common with a

more general approach to reconnection. To demonstrate this, let us review our problem in

a more general context.

As reconnection progresses, the global region passes through a sequence of equilibria. In

our 1-D case, the equilibria are speci�ed in terms of the position of the wall with respect to

the midplane Xw = xw+a, the amount of unreconnected ux 	s, the pressure as a function

of 	, P (	), and the toroidal �eld as a function of 	, Btor(	). Since these functions evolve as

we go from one equilibrium to another, we can label the members of the sequence by 	s, so
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that the whole sequence of equilibria is determined as long as functions Xw(	s), P (	;	s),

and Btor(	;	s) are known.

We have given a prescription for how to advance the toroidal �eld and pressure functions

with 	s (as reconnection progresses). Namely, the evolution of Btor obeys the frozen-in law

in the ideal region, and the change at the reconnection point is obtained by simply adding

or canceling toroidal uxes. P (	;	s) changes adiabatically away from the reconnection

region, and on the newly reconnected surface it is chosen according to the 1st law of ther-

modynamics. That is the work done by the change in the wall position, �W = 2L ��Xw
B2
w

8�
,

is equal to the di�erence of the total energies just before and after the reconnection of the

given ux layer (in fact, this is the work done upon only one of the two spheromaks, so that

the total work is twice this amount).

Now the question is how to incorporate the possible evolution of the boundary conditions

into the whole picture. In this paper, we chose, for illustration, a particular evolution of the

boundary conditions, namely, \constant force" Bw = const. This regime requires continuous

adjusting of the position of the wall which can be expressed by the particular dependence of

Xw(	s), given by expressions (A5)-(A6) from the Appendix. Because of this, we are able to

specify the functions characterizing the equilibrium, i.e. Xw(	s), P (	;	s), and Btor(	;	s)

independently of the reconnection rate, and, therefore, of the local physical processes in

the reconnection region. These processes include, for example, the nature of the resistivity

(Spitzer or anomalous), FLR-e�ects, and the internal structure of the reconnection layer

(i.e. that of Sweet-Parker [11]-[12], or of Petschek [13]). This enables us to completely break

the problem into two separate problems, a global, and a local one. Thus, for example, if

the resistivity in the reconnection region were anomalous, we would go through exactly the

same sequence of global equilibria as we would if the resistivity were Spitzer (only the rate

would be di�erent), and the same is true for Sweet-Parker vs. Petschek. In general, this

break up is possible whenever the boundary conditions are tied explicitly to 	s in any way,

for example, if Xw is a constant in time (position of the wall is �xed).

On the other hand, if the boundary conditions are nonholonomic, i.e. Xw is given as
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a general function of time, the break up is not possible, since the work done is no longer

uniquely expressible independently of the reconnection rate. The sequence of global equi-

libria would depend strongly on the local physics of the reconnection layer.

Let us try to understand how we would derive the sequence of global equilibria in this

nonholonomic case, given all the information we need about the reconnection region. After

we specify the physics of the layer, the reconnection rate _	s could be expressed as a function

of several global parameters such as the magnetic �eld just outside the layer B0, and the

length of the layer L, i.e. _	s = f(L;B0). The particular form of the function f depends on

the resistivity in the layer and its internal structure, and, thus, contains all the information

we need to know about the reconnection layer. With this function, it is possible to couple

Xw and 	s and consequently �nd the sequence of global equilibria, because L and B0 are

given by the solution of the global equilibrium problem. Now, if f(L;B0) were given, for

example, by the Sweet-Parker theory, the resulting sequence of equilibria would be quite

di�erent from the sequence obtained if f(L;B0) were given by the Petschek theory. The

reason for this is that for any given value of �	s, the change in the position of the wall,

�Xw = 1

f(L;B0)

dXw

dt
�	s, would be much smaller in the Petschek case, since the reconnection

rate is faster. The di�erence in �Xw would result in the di�erence in the work done, and

therefore, the pressure and current pro�les would be completely di�erent. This, in turn,

would result in di�erent values of B0 and L, thus making the di�erence between the two

cases even more extreme.

Thus, as far as the time evolution of the system is concerned, there are two aspects of

the problem:

(1) the variation of the boundary conditions with time.

(2) the amount of reconnection that occurs in time.

In our simple one-dimensional model (1) is represented by only one controlling parameter

Xw, and (2) by only one parameter 	s(t). Of course, any realistic 2-D or 3-D problem is much

more complicated, and Xw and 	s become continua of conditions which would represent a

more general formalism. (For example, in the case of the solar corona, the adequate analog
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of Xw is the mapping of the footpoints on the solar surface.) However, the physical essence

of reconnection problems does seem to be captured by these two parameters of our simpli�ed

analysis.

The time evolution of a reconnecting system with changing boundary conditions can

be expressed by a trajectory in (	s;Xw)-space. In Fig. 8, we present trajectories for two

particular cases of holonomic boundary conditions. Trajectory (a) corresponds to Xw =

const, and trajectories (b) and (b0) correspond to Bw = const in the co and counterhelicity

cases, respectively. Here, Bw and Xw are related by

Bw =
	vac

Xw(	s)� d(	s) � a(	s)
: (73)

(The amount of poloidal ux in the vacuum region, 	vac, is constant.)

In a rather broad class of cases, includingXw = const and Bw = const, the amount of re-

connected ux itself regulates the evolution of the boundary conditions. In these holonomic

cases, the trajectory Xw(	s), and, therefore, the whole sequence of magnetostatic equilib-

ria in the ideal region, can be found explicitly without any knowledge about the physical

processes in the reconnection layer. This, in a way, is analogous to shocks in hydrodynam-

ics where the connection between upstream and downstream regions is independent of the

physics inside the shock.

On the other hand, in many cases the time evolution of the boundary conditions can be

arbitrary and totally independent of the amount of reconnected ux. Then, Xw can only be

given externally as a particular function of time. For example, in the case of solar corona,

the adequate analog of xw is be the position of the footpoints, and, since the motion of the

footpoints is not a�ected by the reconnection process above the solar surface, it is equivalent

to giving the evolution of the boundary conditions in terms of the dependence Xw(t), not

Xw(	s).

In these nonholonomic cases, in order to �nd Xw(	s), and, therefore, the whole sequence

of equilibria, it it essential to know the ratio between Xw and _	s. That is, we need to know

the actual reconnection rate as the function f(L;B0), which means that the sequence of
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equilibria depends strongly on the nature of the resistivity and on the physical internal

structure of the reconnection region.

The above remarks about one-dimensional equilibria also apply to two-dimensional equi-

libria. The only major di�erence is that Xw is now a function of poloidal angle �. As in

the 1-D case, in the case of two dimensions each particular equilibrium is uniquely deter-

mined by the boundary conditions (represented now by Xw(�)), and by essentially the same

two one-dimensional functions of 	, the plasma pressure P (	), and the toroidal ux �(	).

Again, if the conditions determining the evolution of the boundary are holonomic, so that

one can specify the work done as 	s changes independently of the reconnection rate, then

the sequence of 2-D equilibria is also independent of the reconnection rate. If the evolution

of the boundary conditions is nonholonomic and given externally as a function of time (and

�!), then, in order to �nd the sequence of equilibria, one needs to know the reconnection

rate as a particular function of B0 and L.

The generalization to 3-D geometry is, apparently, more complicated, and we are uncer-

tain whether analogous results can be obtained.

VI. CONCLUSIONS.

The goal of this paper was to develop a theoretical framework to understand the physics of

the MRX experiment. We found that this can be done by means of a simple one-dimensional

model which is both tractable and leads to some valuable insights into the experiment.

We believe that some basic features of the merging process of two spheromaks, like

dependence of the reconnection rate on the external forces, and the di�erence between co

and counterhelicity cases, can be understood on the basis of a simple resistive MHD model.

The whole problem can be broken up into two separate problems:

- global solution for the ideal region,

- local solution for the resistive reconnection layer.

Under certain boundary conditions which we call holonomic (Bw = const is one example
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of such boundary conditions), plasma behavior in the ideal regions can be described by a

sequence of magnetostatic equilibria, each of them being independent of the local physics

of the reconnection layer (e.g. anomalous resistivity, FLR-e�ects, or the internal structure

of the layer). That is, at any given moment of time, the structure of the MHD equilibrium,

i.e. the pressure and current pro�les, does not depend on the details of the resistive region

solution. However, the reconnection rate at which the global equilibrium states follow each

other, is determined by the resistive reconnection region.

The local solution in the reconnection layer depends both on the local physics and on

the global solution in terms of the magnetic �eld B0 and the length of the layer L.

We found that

- the reconnection should be somewhat faster for the counterhelicity case;

- assuming the Sweet-Parker model for the reconnection layer, the reconnection rate is

proportional to the external pushing force F to the 3/4-power (for �xed values of the total

poloidal ux 	tot, and horizontal size L0).

Both these results are found to be in a qualitative agreement with the experiments.

APPENDIX: VALIDITY OF THE Bw = const - APPROXIMATION.

Now, let us investigate the question of how good is the Bw = const - approximation? i.e.

how far do we have to move the wall in order to keep Bw �xed?

Since Bw and the position of the wall xw are related via

Bw =
	vac

xw(	s)� d(	s)
; (A1)

the required ( for Bw = const ) change in xw is equal to the change in d.

Initially, the distance d between the magnetic axis and the plasma-vacuum boundary

is d(	s = 	tot) = a0. With time, d changes: if a ux layer of width �x is reconnected,

its width after the reconnection is �x0 = �(�)�x, and the corresponding change in d, and,

therefore, in xw, can be written as �x0 ��x = (�(�)� 1)�x.
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Then, the total change in d as function of 	s is �d(	s) � d(	s)� a0 =
R x=a0
x=a(	s)

(�(�)�

1)dx. But � = B0=Bw = a=a0, then

�xw(	s) = �d(	s) � d(	s)� a0 = a0

Z �=1

�(	s)

(�(�)� 1) d�: (A2)

We, however, are more interested in the real displacement (i.e. the displacement in

the laboratory frame) of the wall, and, hence, of the plasma-vacuum boundary, which are

di�erent from (A2), because the magnetic axis itself is moving. Let D(	s) be the distance

between the midplane and the plasma-vacuum boundary, i.e. D(	s) = a(	s) + d(	s), and

let Xw be the position of the boundary with respect to the midplane, i.e. Xw = xw + a.

Then, our Bw = const condition requires that

�Xw(	s) = �D(	s): (A3)

Then, similar to Eq. (A2), we can write:

�Xw(	s) = �D(	s) � D(	s)�D(	tot) = a0

Z �=1

�(	s)

(�(�)� 2) d�: (A4)

Since �(�) < 2 all the time, �Xw;�D < 0, which means that the boundary moves

downward, so that external forces (the wall) perform work upon the plasma.

The integral in (A4) can be easily calculated for both co, and counterhelicity cases:

�Xco
w (	s) = �Dco(	s) = a0[�1:2� +

1

10
(�
p
36 � 15�2 +

36p
15
arcsin

p
15�

6
)]j1�; (A5)

and

�Xcounter
w (	s) = �Dcounter(	s) = a0[�1:2� +

1

10
(�
p
16 + 5�2+

16p
5
log(

p
5� +

p
16 + 5�2))]j1�; (A6)

The total displacements of the wall and of the plasma-vacuum boundary in the co and

counterhelicity cases are

�Xco
w;tot = �Dco

tot = �Dco(� = 0) ' �0:1a0; (A7)
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and

�Xco
w;tot = �Dcounter

tot = �Dcounter(� = 0) ' �0:36a0: (A8)

As we see, the displacement of the plasma-vacuum boundary (and, therefore, the required

displacement of the wall) can be considered small compared to a0, and hence Bw = const

can be a reasonable approximation even for the situation when the position of the wall is

�xed.
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F I G U R E C A P T I O N S.

FIG. 1a. Schematic drawing of the two merging spheromaks at t = 0.

FIG. 1b. Schematic drawing of the two merging spheromaks at t > 0. Region I is the

unreconnected ux region, and region II is the common ux region.

FIG. 2. 3-D structure of the magnetic �eld lines for the co and counterhelicity cases.

FIG. 3. Transition from 2-D geometry to 1-D geometry.

FIG. 4. Illustration for the calculation of the energy change and the work done.

FIG. 5. Plot of the compression factor � at the instant of reconnection as a function of 	s

for the cohelicity and counterhelicity cases. Arrows indicate the direction of the evolution

of the reconnection. The actual compression of plasma is 2=�.

FIG. 6. The normalized pressure in region II �(	). At the end of the process, the portion

of the magnetic energy converted into the plasma thermal energy goes to 0 in the cohelicity

case, and to 1 in the counterhelicity case.

FIG. 7. Common ux ratio � � 	com

	tot

= 1 � 	s

	tot

as a function of time t. As we see, in

the counterhelicity case, the reconnection goes somewhat faster at the end of the process,

though the beginning is the same.

FIG. 8. Trajectories in the (	s;Xw)-space for several di�erent regimes of the evolution

of the boundary conditions: trajectory (a) corresponds to Xw = const, and trajectories (b)

and (b0) correspond to Bw = const in the co and counterhelicity cases, respectively. �Xw

is the actual displacement of the wall.
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