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ABSTRACT

The velocity distribution functions of the newly born (t = 0) charged fusion products (protons

in DD and alpha particles in DT plasmas) of tokamak discharges can be approximated by a

monoenergetic ring distribution with a finite v|| such that v⊥  ≈  v||  ≈ Vj where (MjVj2/2) =

Ej, the directed birth energy of the charged fusion product species j of mass Mj.  As the time t

progresses these distribution functions will evolve into a Gaussian in velocity (i.e., a drifting

Maxwellian type) with thermal spreadings given by the perpendicular and parallel

temperatures T⊥ j(t) = T||j(t) with Tj(t) increasing as t increases and finally reaches an

isotropic saturation value of  T⊥ j(t ≈ τ j) = T||j(t ≈ τ j) = Tj(t ≈ τj) ≈ [MjT dE j/ (Mj+M) ]1/2,

where Td is the temperature of the background deuterium plasma ions, M is the mass of a triton

or a neutron for j = protons and alpha particles, respectively, and τ j ≈ τ sj /4 is the

thermalization time of the fusion product species j in the background deuterium plasma and τsj

is the slowing-down time.  For times t of the order of τ j their distributions can be approximated

by a Gaussian in their total energy (i.e., a Brysk type).  Then for times t ≥ τsj the velocity

distributions of these fusion products will relax towards their appropriate slowing-down

distributions.  Here we will examine the radiative stability of all these (i.e., a monoenergetic

ring, a Gaussian in velocity, a Gaussian in energy, and the slowing-down) distributions.

PACS Nos. 52.55 Pi, 52.35 Qz, 52.55 Fa, and 52.90 +z.

1.  INTRODUCTION



2

        Quantitative measurements of ion cyclotron emission (ICE) from energetic ions produced

by fusion reactions or neutral beam injection promises to be a useful diagnostic tool in the large

tokamak fusion devices that are entering the reactor regime of operation such as TFTR, JT-60,

and JET.  These energetic fusion products of the primary deuterium-deuterium (DD) reaction

are given by

                3He(0.82 MeV) + n(2.5 MeV)

D + D =                                                                                                                                      (1)

                  T(1.0 MeV) + p(3.0 MeV)

and the secondary reaction are given by

3He + D = p(14.7 MeV) + 4He(3.7 MeV)                                                                               (2)

T + D = 4He(3.6 MeV) + n(14.7 MeV).                                                                                   (3)

For the L and H mode1 operating conditions in both TFTR and JET, the equally spaced line

structured ion cyclotron harmonic emission occurs primarily from the fusion product 3.0 MeV

protons in the DD reaction dominated plasmas and from the fusion product  3.6 MeV 4He (i.e.,

the alpha particles) in the deuterium-tritium (DT) reaction dominated plasmas.  The basic

reason for this is that it is only the protons and the alpha particles that have large enough

energies so as to satisfy the condition λ j = k⊥ ρj > 1, a necessary condition for any charged

particle to emit equally intense electromagnetic (e.m.) radiation at all harmonics of its

cyclotron frequency ω = m ωcj < ωLH, where ωLH is the conventional lower hybrid frequency of

the background deuterium plasma and m is the harmonic number.  Here k⊥ is the component of

the wave vector that is perpendicular to the confining tokamak magnetic field  B ∝ R-1, ρj is the

appropriate Larmor radius of the charged fusion product ionic species, and R is the major
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radius of the torus.  Further, for these plasma conditions in TFTR and JET, the burnup fraction

of 1 MeV tritons is approximately 1%.  This implies that in DD reaction dominated plasmas, the

alpha particle density nα  ≈ 10-2np, and this, in turn, implies that in these DD plasmas about

1% contribution to the ICE power PICE will come from the alpha particles' cyclotron harmonic

emission while the main contribution to PICE of DD plasmas is from the protons' cyclotron

harmonic emission.  Also, since the two primary reactions of Eq. (1) occur with equal

probability, in these DD reaction dominated plasmas the fusion product protons, tritons,  3He,

and neutrons are all of equal number density [i.e., np = nt = nHe3 = nn] and, consequently,

there will be some cyclotron harmonic emission from tritons and 3He since their k⊥ ρj is only

marginally less than unity for these plasma conditions in TFTR and JET.  Again, since for these

plasma conditions in TFTR and JET the ratio of the cross-sections for the reaction DT to those

for the reaction DD is approximately equal to 102, in DT fusion reaction dominated plasmas the

main contribution to PICE is from alpha particles with about 1% contribution from the protons

while in the DD case the main contribution to PICE is from protons with about 1% contribution

from the alpha particles.

       Earlier experimental measurements of ICE from fusion products in L and H mode discharges

both in TFTR and JET and their theoretical interpretations in terms of Trubnikov "dressed test

particle cyclotron harmonic emission theory" in conjunction with Stringer's radial profile

analysis of fusion  products subject to the requirements of the Stix-Golant lower hybrid

accessibility condition have been presented elsewhere.2,3  These early measurements were in

the nature of a steady-state measurement.  However, the very recent experimental studies4 of

ICE have been made as a function of time in "supershot regimes"5,6 in TFTR when either

deuterium (D), tritium (T) or both (D-T) beams are injected into the background deuterium

plasma.  This time-behavior of ICE is somewhat of a transient in nature, but the total time

evolution study of ICE in TFTR yield the following experimental observations:4  (1)  ICE at the

harmonics of the cyclotron frequency of the fusion products species are observed immediately

after the beams are turned on (i.e., at the beam injection time t ≈ 0).  (2)  The time duration of
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these fusion product ICE peaks is 0 ≤ t ≤ τ ice ≈ 100 to 250 ms; while the fusion product alpha

particle slowing-down time from plasma edge to center is6 τsα  ≈ 130 to 650 ms.  (3)  For

times t > τice these fusion product ICE subsides and are now replaced by ICE at the harmonics of

the cyclotron frequency of the injected beam species and this (beam species) emission persists

until the beams are turned off.  (4)  In all cases the observed fundamental cyclotron frequency

corresponds to the value of the B field evaluated at the outer midplane plasma edge on the low

field side of the torus.

       We now wish to point out that according to the TRANSP code plasma analysis of reference 6,

the TFTR supershots edge background plasmas consists of about 50% deuterium ions and 50%

fully ionized carbon impurity ions.  The charge to mass ratio of these fully ionized carbon ions

is equal to that of the deuterium ions and thus their cyclotron frequencies are degenerate (i.e.,

ωcc = ωcd).  Also in this plasma edge region, the temperatures of the carbon impurity ions and

the deuterium ions are equal to each other.  That is, k⊥ ρ = k⊥ v⊥ /ωc of these fully ionized carbon

≈ (1/12)1/2 k⊥ ρ of deuterium.  Thus the damping of the fast Alfven waves at ω ≈ mωcα  ≈

mωcd ≈ mωcc in the DT reaction dominated discharges and at ω ≈ mωcp ≈ 2mωcd ≈ 2mωcc in

the DD reaction dominated discharges by the fully ionized carbon ≈ (1/12)m and (1/12)2m,

respectively, of that by deuterium.  Hence, for our purposes here, without any loss of

generality, we can take the entire background edge plasma as consisting of deuterium ions only

but with half the edge population, since for k ≈ k⊥ the damping contribution by carbon can be

neglected in comparison to that from deuterium.  Furthermore, this TRANSP code analysis

shows that the early time evolution of the fusion products velocity distribution function can be

approximated by a drifting Maxwellian with a fractional width (∆ E j/E j) = 2(∆ V j/V j)

increasing almost linearly with time, starting from the initial value of zero and reaching a

value of 0.5 in about two-third the slowing-down time at the plasma center.  Eventually for t ≈

τsj, this TRANSP code analysis indeed shows that the fusion products velocity distribution is the

usual slowing-down distribution.7  Also, according to this TRANSP code analysis one finds that

once this fractional width has increased beyond 0.3 it not very meaningful to approximate these
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distributions by a drifting Maxwellian types, since they are already well on their way toward

slowing-down type.

      It is our aim in this paper to examine whether or not one can have cyclotron harmonic fast

Alfven wave radiative instabilities for frequencies ω ≈ mωcj due to the newly born fusion

product species j during the early phase (for 0 ≤ t < τsj) of beam injection.  Such instabilities

can give rise to the experimentally observed unstable fusion product ICE in the early phase of

beam injection. Indeed, we will show that it is much easier for the fraction of  the fusion

products that are "marginally mirror-trapped" [i.e., "the trapped-passing boundary particles"

in the (v⊥ , v||)-plane] to drive this instability than those fractions that are fully trapped or

fully circulating.  There are two sources of free energy  to drive this instability, namely: one

coming from the (⊥ , ||)-temperature anisotropy, and the other coming from (the inverse

cyclotron damping due to) the fusion product's directed birth velocity along B (i.e., V||j).  For

these early times the fusion product velocity space distribution function fj(v) remains narrow

enough to drive the system unstable.   This cyclotron two-stream instability (or overstability)

is a consequence of the fact that the growth rate of the cyclotron harmonic fast Alfven waves due

to the newly born fusion products (via the inverse cyclotron damping) exceeds the damping rate

of these waves by the background deuterium plasma ions (via the coventional cyclotron

damping).  However, as time t progresses fj(v) broadens, first due to thermalization for 0 ≤ t

≤ τ j and then due to slowing down for τ j ≤ t < τsj, and eventually for t > τsj, fj(v) will totally

relax towards the appropriate slowing-down distribution for this fusion product species j.

When fj(v) broadens to sufficiently large value one finds that this instability is turned off,

thus quenching the fusion product ICE, and indeed we find that all slowing-down distributions

are totally stable for any emission and absorption of the cyclotron harmonic fast Alfven waves,

i.e., their net absorption does exceed their net induced emission.

        The method of analysis used here is the well-established standard technique of the "master

equation approach" of non-equilibrium quantum statistical mechanics and is based on the

Einstein A and B coefficients and the principle of detailed balance.  In the literature other
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authors8-10 have analyzed this problem using the standard techniques of classical plasma

kinetic theory and/or plasma dispersion theory.  Coppi et.al, 8 Gorelenkov and Cheng9 have

examined the fast Alfven cyclotron instability (ACI) resulting from the resonant cyclotron

interaction of the marginally mirror-trapped fusion alphas with the collective eigenmodes of

the background deuterium tokamak plasma in the large aspect ratio limit.  Dendy et.al. 10 have

studied the magnetoacoustic cyclotron instability (MCI) resulting from this resonant cyclotron

interaction of the marginally trapped fusion alphas with the modes given by the local dispersion

relation for a uniform plasma with conditions comparable to those in the plasma edge.  All these

analysis8-10 are based on the classical kinetic and/or dispersion theory while our analysis

here is based on particle-orbit theory.  In general, the particle-orbit theory is much more of a

physical approach and provides a better insight into the fundamental physical processes

involved in a particular problem.  However, the kinetic description on the basis of the Vlasov

equation provides a much more rigorous treatment of complex problems which may not be

easily accessible to the analysis of the particle-orbit theory.  The equivalence of the particle-

orbit theory and the kinetic description on the basis of the Vlasov equation was first

demonstrated by Jeans and is usually referred to as the Jeans theorem in the astrophysical

l i terature.

      The paper is organized as follows:  In section 2 we present the various possible velocity

distribution functions for the fusion products of species j.  Here we follow their distributions

from their time of birth at t = 0 when they are monoenergetic, and then these monoenergetic

distributions thermalize towards approximately to the conventional drifting Maxwell-

Boltzmann type distributions in the time interval 0 ≤ t ≤ τ j, then for times t of the order of τ j

they change into a Brysk type distribution11 (i.e., a Gaussian in energies), and finally in the

time interval τ j ≤ t ≤ τsj they evolve towards the appropriate slowing-down distributions.

Here the thermalization time τ j ≈ τ sj/4 and τ sj is the slowing-down time.  Section 3

summarizes the  theoretically expected spatial (i.e., radial) distribution of the fusion products.

In section 4 we examine the conditions for radiative instabilities, i.e., the conditions under
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which the induced emission exceeds the absorption.  Indeed, we will show that the cyclotron

harmonic fast Alfven waves of frequency ω ≈ mωcd = mωcα  in the DT reaction dominated

plasmas and/or ω ≈ mωcp = 2mωcd in the DD reaction dominated plasmas are always damped by

the background deuterium plasma (via the coventional cyclotron damping); but they can be

driven unstable and made to grow by the newly born fusion products (i.e., protons in DD and

alpha particles in DT) by the inverse cyclotron damping (or equivalently, by the conventional

cyclotron overstability mechanism).  That is, we investigate the conditions under which the

growth rate γj coming from these fusion products exceeds the damping rate γd coming from the

background deuterium plasma, and thus giving rise to the unstable ICE. Section 5 deals with

some numerical estimates and comparison with the experimental observations.  Finally in

section 6 we present our conclusions and summary.

II.  FUSION PRODUCTS' VELOCITY DISTRIBUTION FUNCTIONS

       The velocity distribution function (at the time of birth) of these newly born fusion product

of species j in tokamak discharges can be well approximated by a monoenergetic ring

distribution with a finite v|| such that v⊥  ≈ v|| ≈ Vj where MjV j2/2 = Ej, the directed birth

energy of the fusion product species of mass Mj.  For example, for (DD plasmas), j = protons,

Ep = 3.0 MeV; and for (DT plasmas), j = alpha particles, Eα  = 3.6 MeV.  That is, at the time of

birth, the jth species velocity distribution function may be written

f j(v) = (4πV j2 ) - 1  δ (v - Vj) = fj( v ⊥ , v| |) ≈ fj ⊥ ( v ⊥ ) fj | |( v ||)

          = (2πVj)-1 δ (v⊥  - Vj) δ(v|| - Vj),                                                                         (4)

where we have adopted an approximate decomposition f(v) ≈ f⊥ (v⊥ ) f||(v||) so as to retain the

( ⊥ , ||) anisotropy.  That is, we have approximated a spherically symmetric thin shell

distribution by a cylinderically symmetric drifting thin ring distribution.  This monovelocity
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velocity space distribution of Eq. (4) is also equivalent to the monoenergetic energy

distribution fj(E) = δ(E - Ej) = fj(E ⊥ , E||) ≈ fj⊥ (E ⊥ )fj||(E ||) = δ(E ⊥  - Ej)  δ(E || - Ej) .

      However, as the time t progresses these fusion products' monoenergetic and/or monovelocity

distributions will develop  thermal spreadings given by the perpendicular and parallel

temperatures T⊥ j(t) and T||j(t), respectively.  These thermal spreadings T⊥ j(t) and T||j(t)

will keep on increasing as t increases and finally they will reach a common isotropic saturation

value of1 1  T⊥ j(t ≈ τ j) = T||j(t ≈ τ j) = Tj(t ≈ τ j) ≈ [MjT d E j/ (M j+M) ]1 /2 , where Td  is the

temperature of the background deuterium plasma ions, M is the mass of a triton or a neutron for

j = protons [see Eq. (1)] and j = alpha particles [see Eq. (3)], respectively, and τ j is the

thermalization time of the fusion product species j in the background deuterium plasma.  This

saturation value of the mean temperature in the center-of-mass system Tj(t ≈  τ j) is basically

a consequence of the conservation laws of energy and the fact that the net momentum in the

center-of-mass system is always zero.11  It may also be noted that Tj(t ≈ τ j) is essentially the

geometric mean of the fusion products birth energy and the background deuterium plasma

thermal energy [i.e., Tj(t ≈ τ j) ∝  √(TdEj)] weighted by the reduced mass factor [Mj/(Mj +

M)]1/2.  According to Brysk11 the distribution functions of the fusion products can be well

approximated by a Gaussian distribution in their energies, i.e.,

fj(E) = [2√ π κ T j(t ≈ τ j)]-1  exp {-(E - Ej)2 /4 [κ T j(t ≈ τ j)]2 }  for 0 ≤ E ≤ ∞ ,             (5)

where κ Tj(t ≈ τ j) << Ej.  An approximate (⊥ , ||)-decomposition of fj(E) of Eq. (5) may be

written as

fj(E) = fj( E ⊥ , E||) ≈ fj⊥ ( E ⊥ ) fj||( E ||)

          ≈ ( [2√π κT j(t ≈ τ j) ]- 1  exp {-(E⊥  - Ej)2 / [4κ T j(t ≈ τ j) ]2 })
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          ([2√π κT j(t ≈ τ j)]-1  exp{-(E|| - Ej)2 / [4κ T j(t ≈ τ j]2 }) ,                                (6)

where we have neglected the (⊥ , ||) cross-coupling term.  Since κTj << Ej, It may be noted that

in Eqs. (5) and (6) when Tj → 0, fj(E) →  δ(E - Ej) ≈ δ(E ⊥  - Ej) δ(E|| - Ej) ∝ δ (v - Vj) ≈

δ(v⊥  - Vj) δ(v|| - Vj) in agreement with Eq. (4) as it should.

      Furthermore,  for the sake of analytical simplicity and for the purpose of illustrating the

similarity to (and for comparing with) the familiar cyclotron-overstability terms of the

conventional hot plasma theory,12 we will also examine the perpendicular and parallel velocity

space distribution functions of these fusion products which can be represented by drifting

Maxwell-Boltzmann distributions with temperatures T⊥ j(t) and T||j(t), respectively, for

times t ≤ τ j.  That is, we will assume that for t ≤ τ j, f(v) may be written

f(v ) =  f(E⊥ , v||) =  [1 - Σ j η j]fd (E ⊥ , v||) + Σ j η jfj(E ⊥ , v||),                                         (7)

where the background deuterium plasma ion distribution is

fd (E ⊥ , v||) = fd ⊥ (E ⊥ ) fd||(v||) = (κ T ⊥ d)-1[exp(-E ⊥ /κ T ⊥ d) ]

                                                         [(Md/2πκT||d)1/2 exp{-Md(v|| - Vd)2/2κT||d}],    (8)

the jth fusion product ionic species distribution is

fj(E ⊥ , v||) = fj⊥ (E ⊥ ) fj||(v ||) = (κ T ⊥ j) −1  exp{-(E⊥  - Ej)/κ T ⊥ j}

                        (Mj/2πκT||j)1/2 exp{- (Mj/2κ T||j)[v|| - Vj]2},                                     (9)
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and the total fusion products' fractional population η  = Σ j ηj, where j = protons, alpha

particles, tritons and 3He.  Here for the fusion product species j, T⊥ j = T⊥ j(t), T||j = T||j(t),

the background deuterium plasma ions' parallel drift velocity is Vd (if any), and the fractional

population of the fusion product species j is η j = nj/n = nj/Σ in i = nj/(nd + Σ jn j) where n is

the total density of ionic species (i.e., the background deuterium plasma ions plus all the newly

born fusion product ions) in the plasma.  In Eq. (9), since T⊥ j and T||j are such that the  widths

(2κ Tj/Mj)1/2 << Vj, the Gaussian distribution  fj(v ⊥ , v||) of Eq. (9) reduces smoothly and

analytically continously to the monoenergetic distribution of Eq. (4) when Tj →  0.  One may

recall that, from a statistical thermodynamic point of view, the drifting Maxwell-Boltzmann

distributions of Eqs. (8) and (9) are the most probable ones that are likely to occur naturally

since, in general, these Gaussian type distributions are the ones that correspond to minimum

entropy production states.

      We pointed out earlier that according to Brysk, due to the center-of-mass thermalization

with the background deuterium plasma, these initial δ function fusion products' velocity space

birth distribution functions will in time acquire thermal spreads of order Tj(t ≈ τ j).  However,

according to Rome, et. al. 7 these are only quasisteady state thermal spreadings of the velocity

distribution functions.  Then for times t > τsj, these fusion products' velocity distribution

functions will relax toward the corresponding slowing-down distribution functions of the form

                 (Aoj/vcj3 )[ 1 + (v/vcj)3 ]-1      for v ≤ Vj = (2Ej/M j)1 / 2

fj(v) =                                                                                                                                    (10)

                    0                                                   for v > Vj,

where vcj = (3 √π / 4)1 /3( Z eff  Me /M j)1 /3  ve , and Aoj = 3/{4π ln[1 +(Vj/vcj)3 ]} since

∫dvfj(v) = ∫4πv2 dvfj(v) = 1.  Here, ve = (2κTe/Me)1/2 is the electron thermal speed, Zeff =

(Σi niZi2/ Σi niZi) is the effective value of the ionic charge, and the slowing-down time  τsj(v)



1 1

of the fast charged test  ionic species j of speed v (by collisions with the background plasma

electrons, i.e., the field particles ) is given by13

τsj(v) = (ve2 v)/ [(1 + Mj/Me) AD ψ(v/ve)],                                                                  (12)

where the dynamical friction parameter  AD = 8π ne e4 Zj2 Ze2 lnΛ  / Mj2, the electronic Ze =

1, ψ(x) ≈ 2x/3√π for x << 1, and ψ(x) ≈ 1/2x2 for x >> 1. Also for these tokamak plasmas Vj

<< ve, and since Me << Mj, Eq. (12) yields that τsj ≈ (3 √π / 2) (Meve3 / MjAD) = (Mj/Me)

τe, where τe is the usual Spitzer electron collision time 14

      It should be noted that according to Rome et. al's.  result of Eq. (10), fj(v > Vj) = 0.

Obviously, this result cannot be exactly true since, due to their collisions with the background

plasma electrons, these monoenergetic charged ionic species of Eq. (4) will undoubtedly first

undergo a somewhat symmetric thermal spreading around their birth velocity Vj and first

evolve to a Gaussian in velocity as given approximately by Eq. (9), and at later times evolve to

the Brysk's Gaussian distribution in their energies with a somewhat symmetrical thermal

spreading around their birth energy Ej as given by Eq. (5).  That is, due to the energy or the

heat exchange between the fusion products and the background plasma electrons, these fusion

products initial monoenergetic distributions of Eq. (4) with Tj(t = 0) ≈ 0 will first undergo a

thermal spreading and evolve towards a distribution with a finite value of Tj(t > 0) > 0.

Consequently, there will be some particles with v > Vj and E > Ej as pointed out by Brysk and

given approximately by Eq. (5).  The thermalization time  τ j is also the heat or energy exchange

time  and is given by

τ j ≈ (Mj / 4Me) τe = (τsj/4).                                                                                              (12)

The fact that τsj is always larger than τ j as in Eq. (12) can be understood in the following way:

The slowing down time of a test particle of velocity u is usually defined as τs = - < u/(du/dt)>
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where du/dt is the change of velocity due to collisions with the field particles (which are

usually taken to have a Maxwellian distribution of velocities v) and the corresponding heat or

the energy exchange time of this test particle is usually defined as τ = - < E2/{d(∆E)2/dt} > = -

< ( M 2u4 /4) /[d{M2(v2  - u2 )2 /4}/dt]> ≈ - < u/4(du/dt)> = τ s /4 .

         Hence, for the sake of completeness, we wish to point out that according to Brysk, for

times t > τ j the Rome et. al's  slowing-down distribution of Eq. (10) has to be modified into the

piece-wise continous thermalized-slowing-down distribution  of the form

fj(v) = (Aoj '/vc j3 )[1 + (v/vc j )3 ]-1   for v ≤ Vj = (2Ej/ M j)1 /2  and

fj(E) = (Ao j '/vc j3 )[1 + (Vj/vc j )3 ]-1exp {-(E - Ej)2 /4 [κ T j(t ≈ τ j) ]2 }  for E ≥ Ej,  (13)

where

A o j ' = {(4π/3) ln[1 + (Vj/ vc j )3 ] + (2 π3 / 2 ) ( V j2 κ T j/ M jv c j3 ) [1 + (Vj/ vc j )3 ]- 1 } - 1

        = { Aoj-1 + (2 π3/2)(Vjv j2 /vcj3 ) [1 + (Vj/vcj)3 ]-1}-1 .                                   (14)

Here vj2  = 2κ Tj/Mj, fj is normalized so that ∫ (4πv2)dv fj(v) for 0 ≤ v ≤ Vj + ∫ dE fj(E) for

E j ≤ E ≤ ∞   = 1, and we have matched the two pieces of Eq. (13) so that fj(Ej) = (4πVj2

d V j/ d E j) f j( V j) = (4πV j/ M j) f j( V j) .

III.  SPATIAL DISTRIBUTION OF THE FUSION PRODUCTS

       Thus far we have examined the most probable zero-order forms of the velocity space

distribution functions of the fusion products.  In higher orders we must of course correct these

distributions so as to take full account of the toroidal magnetic field effects of the tokamak
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geometry of the fusion devices under study such as, for example, the magnetic mirror trapping

and the resulting loss cone distributions, etc.  We have seen that initially newly born fusion

products with approximately monoenergetic (velocity or energy) distributions, in the course of

time, tend to simultaneously thermalize and slow down and eventually reach a steady-state

distribution of the form given in Eq. (13).  It is now of interest to examine the most probable

spatial (and in particular the radial) distribution of these fusion products.

         According to Glasstone and Lovberg15 the rate of production of alpha particles in a DT  and

the protons in a DD plasma may be approximated as

n α (r) ≈ 3.7 x 10-12  (nd n t/T2/3) exp(-20/T1/3) cm-3 sec-1,

and

np(r) ≈ 2.3 x 10-14 (nd2/2 T2/3) exp (-19/T1/3) cm-3 sec-1,                                (15)

respectively, where T is the ion temperature in keV, nd, nt are the deuteron and triton densities

in cm-3, and the factor 1/2 in nd2/2 for DD instead of ndnt for DT is introduced so that the

interaction between identical nuclei should not be counted twice.  If we now assume that nd, nt,

and T all vary as [1 - (r/ap)2] where ap is the plasma radius, then Eq. (15) yield the radial

birth profiles nj(r) of fusion products in tokamak geometries as

n j(r) ≈ njo [1 - (r/ap )2 ]4 /3  exp{-20/[T0 (1 - r2 /ap 2 )]1 /3} ,                                    (16)

where the central density nj(0) = njo exp{-20/ T01/3}, and the central ion temperature T(0)

= T0.  For r < ap, Eq. (16) may be approximated as

n j(r) ≈ nj(0)[1 - (r/ap )2 ]4 /3  exp[-(20/3T0 1/3)(r /ap )2 ].                                        (17)
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Thus we see that the fusion products birth profiles [whose radial variation is dominated by the

exponential factors of Eqs. (16) and (17)] are centrally peaked on axis of the torus, i.e., the

maximum value η jmax = η j(r = 0).  However, accordinger to Stringer,16 for typical tokamak

parameter conditions, about half the fusion products are formed with pitch angles in velocity

space such that they are magnetically mirror traped (i.e., with v⊥  ≥ v||/√ε, where ε = ∆B/B ≈

r/R is the mirror ratio).  These trapped particles make radial excursions17 of up to ε1/2ρθ,

where ρθ = Mjv⊥ /qBθ is the Larmor radius in the poloidal field, and these excursions are very

much larger than the widths of the production profile.  Using Stringer's theory, very recent

numerical calculations for JET by Cottrell et. al.18 reveal a class of centrally born fusion

products (i.e., approximately 10% centrally born within a narrow range of pitch angles just

beyond the trapped-passing boundary) which make large radial excursions, sufficient to reach

the outer midplane edge where the experimentally observed ICE seems to originate.  Here, for

convenience, we will call them the "marginally mirror-trapped" or the "trapped-passing

boundary" particles, and for these particles v⊥  ≈ v||/ √ε, where ε ≈ ap/Rp for these boundary

particles that make radial banana drift excursions large enough to reach the outer midplane

plasma edge on the low field side of the torus, ap and Rp are the plasma minor and major radius,

respectively. It should be noted that these particles make drift excursions only  to the low field

side edge near the torus midplane, and they are also the ones with the fattest banana orbits.

IV.  CONDITIONS FOR RADIATIVE INSTABILITIES

       Let us first consider the cyclotron emission from a dressed test  charged particle  (i.e., of

charge q, mass M) in a static confining magnetic magnetic field B  = Bi||.  The field particles

are the ions and electrons of the background deuterium plasma.  We are interested in examining

the mth cyclotron harmonic emission from the charged fusion products of species j (i.e.,

primarily, protons of DD plasmas and alpha particles of DT plasmas) at and around frequencies

ω ≈ mωcj < ωLH, where ωLH is the lower hybrid frequency of the background deuterium plasma
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and ωc = qB/Mc.  For these range of frequencies (0 ≤ ω ≤ ωLH) the allowed electromagnetic

waves are the fast Alfven waves and our interest, in particular, is in the resonances of these

fast Alfven waves of the background deuterium plasma with the mth cyclotron harmonic of the

energetic fusion ion products ( such as the protons, alpha particles, tritons, and 3He).  Hence

the background index of refraction µ  (= K1/2, where K is the corresponding dielectric

coefficient) appropriate for dressing the bare particle emission  is that corresponding to the

fast Alfven waves and is given by

µ  = ck/ω = c/VA = [1 + (4πndMdc2/B2)]1/2,                                                                (18)

where VA is the Alfven wave phase velocity, Md is the mass of a deuteron, and nd is the number

density of the background deuterium plasma ions.  It is shown elsewhere2 that the Einstein

(quantum mechanical) spontaneous emission probability coefficient A(m) for such Trubnikov

cyclotron harmonic emission is

A(m) = (4π2q2/L3Khω) [v⊥ Jm '(λ )]2 δ(ω - mωc - k||v||)                                             (19)

for the emission of the extraordinary (X) mode near the mth harmonic, and

A(m) = (4π2q2/L3Khω) [(µ -1c cosθ - v||)Jm (λ )/sinθ]2  δ(ω - mωc - k||v ||)            (20 )

for the corresponding ordinary (O) mode emission, where λ  = k⊥ ρ = k⊥ v⊥ /ωc, Jm(λ ) is the

Bessel function of order m, Jm '(λ ) = dJm (λ )/dλ  = [Jm-1(λ ) - Jm+1(λ )]/2, θ is the angle

between k and B, and L3 is the plasma volume under study.  The O-mode emission is usually

very small in comparison with the corresponding X-mode emission and hence we will neglect it
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in this paper.  It should be noted that the dressing factor  K in Eqs. (19) and (20) comes from

an eigenmode Fourier analysis of the electromagnetic (e.m.) wave field energy density inside the

whole tokamak plasma, i.e., the volume under consideration.19  Hence,  µ and VA are to be taken

as the average values for the entire plasma column, regardless  of the location of the resonant

emitting layer.  This means that even if the resonant layer is in the scrape off region of the

plasma where the ion density nd is extremely low, we must use the average value of µ and K, and

not the locally evaluated value of µ ∝  nd1/2/B, for our emission calculations everywhere.

Here, we are using a particle orbit analysis, and the global features of the background medium

enter via this dressing factor K.  In the usual kinetic dispersion theory analysis, the Alfven

wave dispersion ω = kVA comes naturally as an average global quantity for the eigenmodes of the

plasma column.  The A(m)'s of Eqs. (19) and (20) are the Einstein spontaneous emission

probabilities and are hence independent of the electromagnetic energy density ε(ω,k) =

hωN(ω,k)/L3, where N(ω,k) is the number of photons of frequency ω and wave vector k in the

box of volume L3 under study.  The Einstein B coefficients for describing the induced emission

and absorption are then proportional to these A(m)'s, and the probabilities of induced emission

and absorption are given by B(m)N(ω,k) for ω ≈ mωcj.  By the principle of detailed balance

the rate of increase of photons in the box of volume L3 is given by

dN(ω,k )/dt = [dN(ωk )/dt]sem - {[dN(ω,k )/dt]ab - [dN(ω,k )/dt]iem},                          (21)

where the suffixes sem, ab, and iem stand for spontaneous emission, absorption, and induced

emission, respectively.  One can show that

[dN(ω ≈ mωc,k )/dt]sem = ∫ dv⊥ (2πv ⊥ ) ∫ dv|| [L3nA(m)] f(v⊥ , v||) = < [L3nA(m)]>,     (22)

{[dN(ω ≈ mωc,k )/dt]ab - [dN(ω ≈ mωc,k )/dt]iem} =  ∫ dv⊥ (2πv ⊥ ) ∫ dv|| [L3nA(m)]
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                         {(mhωc/Mv ⊥ )(∂ /∂v ⊥ ) + (hk||/M)(∂ /∂v||)} f(v⊥ , v||) N(ω ≈ mωc,k )

              =  < [L3nA(m)] {(mhωc/Mv ⊥ )(∂ /∂v ⊥ ) + (hk||/M)(∂ /∂v||)} > N(ω ≈ mωc,k )

              = - 2γ(ω ≈ mωc,k) N(ω ≈ mωc,k),                                                                        (23)

where the angular brackets < ... > refer to the statistical average over f(v⊥ , v||), and γ is the

damping rate.  Thus it is seen from Eqs. (21) - (23) that the most general condition for linear

radiative instability is

dN(ω,k)/dt = < [L3nA(m)] > - 2γ(ω,k) N(ω,k) ≥ 0.                                                        (24)

This means that the most general condition for linear radiative instability requires that the

spontaneous emission exceeds the absorption minus  the stimulated emission.  However, in

classical plasma kinetic theory it is extremely difficult if not impossible to calculate this

spontaneous emission, and thus one usually assumes that the intensity or the energy density of

the radiation field in the box of volume L3 under consideration is large enough that one can

always neglect the spontaneous emission terms.  Then, for linear radiative instability in

classical plasma kinetic theory we only require that the induced emission exceeds the

absorption, i.e., γ(ω,k) ≤ 0.  That is,

-2γ = < [L3 nA(m)] {(mhωc /Mv ⊥ )(∂ /∂v ⊥ ) + (hk ||/M)(∂ /∂v ||)} >

     = < [L3nA(m)] {(mhωc)(∂ /∂Ε⊥ ) + (hk||/M)(∂ /∂v||)} >

     = < [L3nA(m)] {(mhωc)(����∂/∂E ⊥ ) + (hk||v||)(∂/∂E||)} >     ≥ 0.                                   (25)
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Here again the angular brackets refer to an average over the distribution functions.  It may be

pointed out that this damping rate γ of Eq. (25) is simply proportional to the anti-Hermitian

part of the hot plasma dielectric tensor20,12 appropriate to the total system (i.e., the

background deuterium plasma ions plus all the charged fusion products) under study.  Thus, Eq.

(25) represents the necessary and sufficient condition for "a kinetic or a causal instability."2

In the early literature other authors21 have examined the corresponding "hydrodynamic

instabilities"2 resulting from the Hermitian part of the hot plasma dielectric tensor via the

conventional dispersion relation.  This instability condition of Eq. (25) is sometimes referred

to as the cyclotron overstability condition in the classical plasma physics literature.12  Under

these conditions the system will behave as an ion cyclotron harmonic laser or maser for the fast

Alfven waves of frequency ω ≈ mωc and wave vector k.  As seen from Eq. (24), the energy

density of these unstable fast Alfven waves in the neighborhood of marginal stability is ε(ω,k)

= hωN( ω,k ) /L3  ≈ {(hω/L3 ) < [L3 nA(m)] > / 2γ(ω,k )}.  That is, in this linear instability

theory, the wave energy density in the neighborhood of marginal stability is inversely

proportional to the wave linear damping rate and diverges linearly as 1/γ.  For growing waves

the induced emission exceeds the absorption, i.e.,  γ ≤ 0, and the system behaves as a negative

temperature laser.  However, when γ ≤ 0, Eq. (24) is no longer adequate to determine the

radiative steady state value of ε(ω,k), and one must modify Eq. (24) so as to include all the

other nonlinear processes such as the nonlinear Landau or cyclotron damping, nonlinear mode

coupling, linear (i.e., parametric) and nonlinear decay interactions, linear and nonlinear mode

conversion and/or mode transformation, bounce frequency effects due to particle trapping,

Karplus-Schwinger nonlinear resonance broadening, Dupree's turbulent velocity-space

diffusion broadening, etc..2,22

        From Eqs. (4) - (10), one can show that [(mωc/Mv ⊥ )(∂ /∂v ⊥ ) + (k||/M)(∂ /∂v||)]f(v⊥ ,

v ||) = [mωc(∂ /∂E ⊥ ) + (k||/M) (����������∂/∂v||)]f(E ⊥ , v||) = [mωc(∂ /∂E ⊥ ) + (k||v||)(∂ /∂E||)]f(E ⊥ ,

E||) is equal to
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+ [ ( 1 / M j) (mωc j  + k||v ||)] (1/v)[∂ f j( v ) /∂ v] for Eq. (4)

- [2(E - Ej) ( m ωc j  + k||v ||) {2κ T j(t ≈ τ j) } - 2 ] fj(E) for Eq. (5),

- [{2(E⊥  - Ej) m ωcj  + 2(E|| - Ej)k ||v ||} {2κ T j(t ≈ τ j) } -2 ] fj(E) for Eq. (6),

- [(mωcd/κ T ⊥ d) + (k||v || - k||V d)/κ T ||d] fd (E ⊥ , v||) for Eq. (8),

- [(mωc j /κ T ⊥ j) + (k||v || - k||V j)/κ T ||j] fj( E ⊥ , v||) for Eq. (9),

- [(3/Mj){v/ (v3  + vcj3 ) } (mωcj  + k||v ||)] fj(v) for Eqs. (10) and (13) with v ≤ Vj,

and

-[2(E - Ej) (mωcj + k||v ||) {2κ T j(t ≈ τ j)}-2 ]fj(E) for Eq. (13) with E ≥ Ej,              (26)

respectively.  Here, since the emission probability coefficients A(m) of Eqs. (19) and (20) are

proportional to δ(ω - mωc - k||v||), taking the average value of Eq. (25) over the parallel

velocity distribution function will simply result in the selection of the value of Eq. (26) at the

value of v|| that is resonant with the jth species cyclotron phase velocity, i. e., v|| = Vjcph =

[ (ω  - mω c j ) / k | | ] .

         We recall that the cyclotron frequencies of the protons (ωcp), the deuterons (ωcd), alpha

particles (ωcα ), the tritons (ωct), and the helium-3s (ωcHe3) in a given B field are connected

by the relation ωcp = 2ωcd = 2ωcα  = 3ωct = (3/2)ωcHe3.  That is, when ω = mωcp, then ω =

2mωcd, ω = 2mωcα , ω = 3mωct, and 2ω = 3mωcHe3.  In other words, any given frequency can

be in simultaneous resonance with different cyclotron harmonics of all the fusion products (say

j = protons, alpha particles, tritons and 3He) and those of the parents (deuterons and tritons).
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Thus in Eq. (25), the contributions from the different fusion products and those of the parent

particles will in general have different signs (some positive and some negative coming from

different cyclotron harmonics that are resonant with the frequency under consideration).  If

their induced emission exceeds the absorption, their contribution to Eq. (25) is negative and

leads to the growth of the instability; while if their absorption exceeds the induced emission,

their contribution to Eq. (25) is positive and leads to the damping of the fast Alfven waves of

frequency ω under study.  For example, as seen from Eqs. (7) and (25), the newly born fusion

product alpha particles induced radiative instabilities will occur in the neighborhood of

frequencies ω ≈ mωcα  = mωcd, when the growth rate of these waves coming from the fusion

alphas exceeds the corresponding damping rate of these same waves coming from the background

deuterium plasma.  In essence the instability under study is a "two-stream cyclotron harmonic

instability or overstability" induced by the fast streaming newly born fusion products relative

to the stationary background deuterium plasma ions.  This is the simple physical picture of the

instability or the overstability mechanism which we are studying here.

        For the sake of analytical simplicity we will consider the emission from the fusion product

species, only one at a time.  Let us first consider a DD reaction dominated plasma.  Here the

background plasma is of deuterium ions and its velocity space distribution is a drifting

Maxwellian of Eq. (8).  Let us now choose to study the unstable ICE from the fusion product

protons and take their velocity space distribution as given by Eq. (9) with j = p for protons.

Then, since mωcp = 2mωcd, on making use of Eqs. (7) - (9), (19), and (26) in Eq. (25), we

obtain the radiative instability and/or the overstability condition for copious unstable ICE at ω

≈ mωcp as

{(1 - η p) [v⊥ dJ2 m '(λ d)]2 [ (2mωcd /κ T ⊥ d) + (ω - 2mωcd  - k||V d )/κ T ||d]} {|k|||-1fd||(v| |

= Vpcph)} + {η p [VpJm '(λ p)]2 [(mωcp/κ T ⊥ p) + (ω - mωcp - k||Vp)/κ T||p] }
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{|k|||-1fp||(V|| = Vpcph)}  ≤ 0,

where the proton and/or the deterium ion cyclotron phase velocity Vpcph = (ω - mωcp)/k|| ≈

Vdcph = (ω - 2mωcd)/k||, since mωcp = 2mωcd.  That is,

[η p /(1 - η p )] ≥ - [v⊥ d J2 m '(λ d ) /Vp Jm '(λ p )]2  [{|k|||-1 fd| | (v || = Vp c p h )}/{ |k|||-1 fp| | (v | |

= Vpcph)}] { [(mωcp/T ⊥ d) + (ω - mωcp - k||Vd)/T||d] / [(mωcp/T ⊥ p) + (ω - mωcp -

k||Vp)/T||p]} ≥ 0.                                                                                                               (27)

Note, that for marginal stability, one must take the equality sign of the first inequality of Eq.

(27) and, of course,  Eq. (27) must yield a corresponding positive definite marginal-stability

value for ηp.  If the right hand side of the first inequality of Eq. (27) comes out to be negative,

it simply means that one cannot have any radiative instability since the fast Alfven waves under

study are damped by both the newly born fusion products ions and the background deuterium

plasma ions.  Thus, the last inequality of Eq. (27) ensures that the requirements of this Eq.

(27) is a necessary and sufficient condition for the radiative instability.  Here we have used the

fact that bulk of the ICE is due to the emission in the extraordinary mode as given by Eq. (19).

There is always a very small contribution to the ICE power from the ordinary mode emission of

Eq. (20) and this will show up as a small double-humped structure  in the region very near the

peak of the observed ICE lines.2  Equation (27) gives the most general condition for unstable

ICE from the fusion product protons in the DD fusion reaction dominated plasmas.  It is clear

that the fractional proton density has to exceed a certain critical threshold value for this

unstable ICE to occur.  Here, there are two sources of free energy  that are driving this

instability, namely: one coming from the (⊥ , ||)-temperature anisotropy and the other coming

from the fusion product's directed birth velocity along the confining magnetic field (i.e., the
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inverse cyclotron damping). However, for example, if we now make the reasonable assumption

that T⊥ d = T||d = Td, then Eq. (27) yields the instability condition for copious ICE as

[η p /(1 - η p )] ≥ [v⊥ d J2 m '(λ d )/ V p Jm '(λ p )]2  [{|k|||-1 fd| |(v || = Vp c p h )} / {|k|||-1 fp| |(v | |

= Vpcph)}] (T||p/Td)(VA  - k||V d /k) / {(k||/k)[Vp  - Vpcph] -  (mωcpT ||p/kT ⊥ p)} ≥ 0, (28)

where VA = ω/k is the fast Alfven wave phase velocity.  Note that in Eq. (28) usually VA >>

k||Vd/k.  Hence for the instability to occur not only ηp has to exceed the threshold critical value

given by the right hand side of the first inequality sign of this Eq. (28) but also  the

denominator of this equation has to be a positive definite quantity, i.e., (k||/k) (Vp - Vpcph) ≥

(mωcp/k) (T||p/T ⊥ p) ≈ VA (T||p/T ⊥ p).  That is, for this instability to occur both η p and Vp

has to simultaneously exceed their respective critical threshold values.  Equation  (28) can also

be used to determine the range of k||/k for which the fast Alfven waves under study are

unstable.

      In a similar way, assuming that Vd = 0 and T⊥ d = T||d = Td, one can show that the

approximate instability condition for copious ICE at ω ≈ mωcp may be written

[η p /(1 - η p ) ≥ - ([v ⊥ dJ2 m '(λ d )]2 / ∂ { [VpJm '(λ p )]2 /Vp } / ∂V p ) (Mp /κ T d) [{fd||(v || =

Vpcph)} / {δ(Vpcph - gδVp)}] ≥ 0 for the distribution of Eq. (4) with gδ ≈ 1/3 for δ(v - Vj)

and gδ ≈ 1 for δ(v ⊥  - Vj)δ(v|| - Vj) ,

[η p/(1 - η p)] ≥ [v⊥ dJ2m '(λ d)/ geVpJm '(geλ p)]2 [{fd||(v|| = Vpcph)} / {fj(E ⊥  ≈ ge2E j, E| |

= MpVpcph2/2)}] (Tp/Td) / {[(Vp2 - Vpcph2)/2vp2] - ge2} ≥ 0  for the distribution of Eq.
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(5) with ge2 ≈ 1,

[η p /(1 - η p)] ≥ [v⊥ dJ2 m '(λ d)/(VpJm '(λ p)]2  [{fd||(v|| = Vpcph)} / {fp||(E || =

M pV pcph2 /2)}] (Tpω/Tdm ωcp) / {[(Vp2  - Vpcph2)/2vp2 ] [(ω/mωcp) - 1] - (1/√π)} ≥ 0

for the distribution of Eq. (6), and

[η p/(1 - η p)] ≥ - [v⊥ dJ2m '(λ d)/gsVpJm '(gsλ p)]2 [fd||(v|| = Vpcph)] (Mp/3πAopM d)

[vcp3 + (gs2Vp2 + Vpcph2)3/2]2 / [vd2gs2Vp2(gs2Vp2 + Vpcph2)1/2] ≥ 0, for the

distributions of Eqs. (10)and (13) with gs < 1 and Vpcph ≤ Vp,                                         (29)

where vp2 = 2κTp/Mp, vd2 = 2κTd/Md. Here, the numerical factors g are somewhat less than

unity.  The integrals over the perpendicular velocity and/or perpendicular energy in evaluating

the angular bracket of Eq. (25) for the distribution functions of Eqs. (5), (10) and (13) has to

be done numerically.  Physically, such a numerical integration will yield  < v⊥ > ≈ gVj, and < E⊥

> ≈ g2Ej, where g < 1.

       It is interesting to note from Eq. (29) that the right hand side of this equation is always

negative for the slowing-down distributions of Eqs. (10) and (13).  This implies that the

absorption always exceeds the induced emission and consequently the cyclotron harmonic fast

Alfven waves can never become unstable for these slowing-down distributions.  Further, by

comparing Eqs. (27) or (28) with Eq. (29), it is apparent that it is easier to make the fast

Alfven waves under study become unstable with the Brysk's type distributions of Eq. (5) than

with the drifting Maxwellian of Eq. (9).  However, it is interesting to note that when an
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approximate (⊥ , ||)-decomposition is made of this Brysk's distribution, the resulting (⊥ , ||)-

decoupled distribution of Eq. (6) cannot give rise to any radiative instability at all.  From now

on we will simply concentrate mostly on the drifting Maxwellian type distributions of Eqs. (8)

and (9), since they are the most probable ones from the point of view of statistical

thermodynamics (i.e., they correspond to the states of minimum entropy production).

        It is relatively easy to show that approximately the same instability conditions of Eqs.

(27) - (29) apply for copious ICE from any of the fusion product species j in both the DD and

the DT reaction dominated plasmas with ηp, λp = k⊥ Vp/ωcp, Tp, and Vp replaced by the

appropriate values of η j, λ j, Tj, and Vj, respectively, for the species j ( = protons, or alpha

particles, or tritons, or He-3s).  For example, for unstable alpha particle ICE from the DT

fusion reaction dominated plasmas, Eqs. (27) and (28) become

[η α /(1 - η α )] ≥ - [v⊥ d Jm '(λ d )/ Vα Jm '(λ α )]2  [{|k|||-1 fd| |(v || = Vα c p h )} /

{ |k|||-1fα ||(v || = Vα cph)}] {[mωcα (T ⊥ d-1 - T||d-1) + (ω - k||V d )/T||d] / [mωcα (T ⊥ �α - 1

- T||α -1) + (ω - k||Vα )/T||α ]} ≥ 0,                                                                                  (30)

and

[η α /(1 - η α )] ≥ [v⊥ d Jm '(λ d )/ Vα Jm '(λ α )]2  [{|k|||-1 fd| | (v || = Vα c p h )} / {|k|||-1 fα ||(v | |

= Vα cph)}](T||α /Td)(VA  - k||V d/k) / {(k||/k)[Vα  - Vα cph] - (mωcα T ||α /kT ⊥ �α )} ≥ 0, (31)

respectively, where we have used the fact that ωcd = ωcα , and Eq. (31) applies only when there

is a complete (⊥ , ||)-isotropy in the temperature of the background deuterium plasma.  Again

from Eq. (31) one can determine the range of k||/k for which the cyclotron harmonic fast

Alfven waves of frequency ω ≈ ωcα  = ωcd are unstable when T⊥ d = T||d = Td and Vd = 0.  It is
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interesting and physically instructive to examine the k|| →  0 limit of Eq. (30).  In this limit

{ |k|||-1 fd||(v || = Vα cph )} ≈ {|k|||-1 fα ||(v || = Vα cph )} → δ(ω - mωcα ).  Thus for k|| ≈ 0,

Eq. (30) becomes

[η α /(1 - η α )] ≥ - [v⊥ dJm '(λ d )/ Vα Jm '(λ α )]2  (T||α /T ||d) {[(T||d / T⊥ d ) - 1 +

                                 (ω/mωcα )] / [(T||α / T⊥ �α ) - 1 + (ω/mωcα )]} ≥ 0.                         (32)

It is clear from Eq. (32) that if its right hand side is positive definite then k|| ≈ 0 cyclotron

harmonic fast Alfven waves will be unstable for sufficiently large values of the fusion product

alpha particle fractional density η α .  From Eq. (32) we find that [η α /(1 - η α )] ≥ 0 if either

ω/mωcα  ≤ 1 - T||d/T⊥ d (which in turn implies that ω ≤ mωcα  and T⊥ d ≥ T||d) or ω/mωcα  ≤ 1

- T||α /T⊥ �α  (which in turn implies that ω ≤ mωcα and T⊥ �α  ≥ T||α ).  Thus, from Eqs. (30) -

(32) we find that with sufficient values of the temperature anisotropy and with sufficient

values of the fusion products birth drift velocities along the confining magnetic field, one can in

principle have unstable ICE from these charged fusion products.  Of course, simultaneously,

their fractional density ηα  should also exceed the corresponding threshold value.

      It should be noted from Eqs. (19) and (20) that the fundamental emission probability

coefficient A(m) ∝ δ (ω - mωc - k||v ||).  That is, the particle-wave resonance interaction

occurs only when the charged ionic species parallel velocity v|| exactly matches the fast Alfven

wave cyclotron phase velocity Vcph = (ω - mωc)/k||.  Thus, in the radiative instability

condition of Eq. (25), it is only the term that is proportional to the slope of the parallel

velocity distribution function (i.e., the term ∝  k||v|| �∂/∂E||) whose sign will depend on the sign

of (ω - mωc).  There is, however, no particle-wave resonance interaction anywhere in the

perpendicular velocity space, and consequently the result of Eq. (25) is not at all sensitive to

the sign of the slope of the perpendicular velocity space distribution function anywhere; and

indeed by performing a simple partial integration over dE⊥  one can easily show that the
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instability condition of Eq. (25) depends only on the various perpendicular velocity (or

perpendicular energy) moments of the distribution function (i.e., in dimensionless parameter

it is proportional to T⊥ /T ||).  Hence, in particular, any perpendicular velocity space

distribution however anisotropic (say, for example, Tx ≠ Ty) and non-monotonic it may be in

any range of values of v⊥ , it certainly cannot provide the necessary free energy to drive the

cyclotron harmonic fast Alfven waves under study to become unstable since there exists no

perpendicular velocity at which a particle-wave resonance can occur, i.e., there is no coupling

whatsoever between the waves and the particles' perpendicular velocity distribution function

anywhere in the range 0 ≤ v⊥  ≤ ∝.   However, we should point out that in Eqs. (19) and (20) we

have neglected the effects of magnetic curvature drifts.  Since the δ functions of these equations

are a consequence of the total energy and only the parallel (but not the perpendicular)

momentum conservation, it is relatively easy to show8,2 that taking account of the magnetic

curvature drifts in these equations will result in the replacement of δ(ω - mωc - k||v||) by

δ(ω - mωc  - k||v || - ωm c d ), where ωm c d  = k .vm c d  = k⊥ vm c d  = k⊥ (cκ T ||/qBR) is the

magnetic curvature drift frequency corresponding to the magnetic curvature drift velocity

vmcd.  That is, taking account of the effects of magnetic curvature drifts in our radiative

instability analysis of ICE will simply result in the replacement of ω by (ω - ωmcd) in Eqs.

(27), (29), and (32), or equivalently, the approximate frequencies of the ICE lines are given

by ω ≈ mωcj + ωmcd; i.e., all the cyclotron harmonic emission lines have their frequencies

upshifted by the constant amount equal to ωmcd.  Since, ωmcd = k⊥ (2κT||/M) (qB/Mc)- 1

(1/2R) = k⊥ vt2 /2ωcR = (k⊥ ρ) (ρ /2R)ωc  << ωc, this constant frequency-upshift due to

magnetic curvature drift effects is negligibly small.  The diamagnetic drift frequency rotation of

the plasma ω∗  = k⊥ (cκ T/qBLn) occurs only in one direction (either right or left handed

depending on the sign of the charge) and these effects do not affect the δ functions of Eqs. (19)

and (20).  Here, Ln = d(ln n)/dr is the density gradient scale length.  The diamagnetic effects

alter the equilibrium distribution function via the guiding center perpendicular canonical

momentum.8,2  Since our radiative instability condition of Eq. (25) depends only on the



2 7

various perpendicular velocity or perpendicular energy moments of the distribution function

and, in particular, is very insensitive to the shape and slope of the perpendicular velocity

distribution, it appears that these diamagnetic effects will not alter our instability conditions in

any significant way.

     In tokamak geometries a certain fraction of the contained charged particles will be

magnetically trapped between the mirrors (since the magnetic moment of the particle is an

adiabatic invariant).  Indeed, the charged particles with v⊥  ≥ v||/√ε are magnetically mirror

trapped, and in the banana regime the fraction of particles that are magnetically trapped ≈ √ε,

where ε ≈ ∆B/B ≈ r/R for tokamaks is a measure of the mirror ratio.  We stated earlier that

for our present tokamak operating conditions approximately 10% of the centrally born fusion

products within a narrow range of pitch angles just near the trapped-passing boundary (i.e.,

those with v⊥  ≈  v||/√ε) make large radial banana excursions sufficient to reach the outer

midplane edge where the experimentally observed ICE seems to originate.  These "trapped-

passing boundary particles" are the ones with the fattest banana orbits, and consequently, are

able to make these large radial excursions to reach the outer midplane plasma edge.  For these

"trapped-passing boundary particles" since the birth energy Ej = MjV j2 /2 = Mj (ε  +

1 )V ⊥ bj2 /2, V⊥ bj = Vj/√ (1 + ε) and V||bj = Vj/√ (1 + ε-1).  Further, since v⊥ ≈  v||/√ε , it

seems reasonable to take εT ⊥ bj ≈ T||bj for these particles.  Thus for 0 ≤ t < τsj one can

approximate these trapped-passing boundary alphas parallel velocity space distribution

function by a drifting Maxwellian of the form

f| |b j ( v ||, t) ≈ [Mj/2π κT ||bj( t) ]1 / 2  exp{-[Mj/2κ T ||bj(t)] [v|| - V| |bj ]2 }.                (33)

It may be noted that when t →  0, T||bj(t) →  0, and f||bj(v||, t) → δ(v|| - V||bj) as it should.

See Eq. (4).  Thus the drifting Maxwellian is a very natural evolution of an initially

monoenergetic (or equivalently, an initially monovelocity) distribution during the period of

thermalization of these newly born fusion products with the background deuterium plasma, i.e.,
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for times 0 ≤ t < τ j.  It may be pointed out that because of the relation √ε v⊥ ≈ v||, this parallel

velocity distribution of Eq. (33) suffices to generate the perpendicular velocity distribution,

and consequently, the entire distribution fbj(v⊥ , v||) ∝  f||bj(v||).  This is true only for these

trapped-passing boundary particles whose v⊥  ≈ v||/√ε .  Then in Eq. (25), the linear

differential operator

M -1 { (mωc /v ⊥ )(∂ /∂v ⊥ ) + k||(∂ /∂v ||)} = M-1 {(εm ωc /v||) + k||} (∂ /∂v ||).                (34)

       If we now assert that only these "marginally mirror-trapped portion" of the centrally born

fusion products are solely responsible for the experimentally observed ICE by a localized

interaction of these fusion products at the outer midplane edge with the background deuterium

plasma found there,8-10,23  then on making use of Eqs.  (8), (33) and (34) in Eq. (25), the

necessary and sufficient condition for the radiative instability due to these marginally trapped

alpha particles (which are very near the trapped-passing boundary so that their √ε v⊥  ≈  v||)

may be written

[(bη α /a)/{(1 - (bη α /a)}] ≥ - [v⊥ deJm '(λ de )/V ⊥ bα Jm '(λ bα )]2  [{|k|||-1 fd||(v || = Vα cph) }

/ {|k|||-1 f| |bα (v|| = Vα cph)}]([mωcα (T ⊥ de -1 - T| |de-1) + (ω - k||V de )T| |de-1] /

[(εm ωcα  + ω - mωcα ) (1 - V||bα /Vα cph)T||bα -1]) ≥ 0,                                             (35)

where λbα  = k⊥ V ⊥� bα /ωcα  = k⊥ Vα /√(1 + ε)ωcα  = λα /√(1 + ε), and V||bα  = Vα /√( 1 + ε-1).

Here we have assumed that in this plasma edge region ni(r ≈ ap) ≈ ani(r ≈ 0) and nα (r ≈ ap) ≈

bnα (r ≈ 0), i.e., η α (r ≈ ap) ≈ [bη α (r ≈ 0)/a], i.e., η α e ≈ (bη α /a), and the suffix e stands for

the values in this outer midplane plasma edge region.  If we further set T⊥ de = T||de = Tde and

Vde = 0 for the background deuterium plasma, then Eq. (35) may be rewritten as
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{η α /[(a/b) - η α ]} ≥ [v⊥ deJm '(λ de)/V ⊥ � bα Jm '(λ bα )]2  (T||bα /T| |de) [{|k|||-1fd||(v|| =

V α cph)} / {|k|||-1f||bα (v|| = Vα cph)}] / ε{ [Vα /Vα cph√ (1 + ε-1)] - 1} ≥ 0                 (36)

The physical meaning of the fast Alfven wave radiative instability conditions of Eqs. (35) and

(36) is as follows:  The fraction b ≈ 0.1 (i.e.,10%) of the newly born fusion product alpha

particles which are marginally trapped with v⊥ ≈ v|| / √ε  ≈ v||(Rp/ap)1/2 make banana

excursion orbits sufficient to reach the outer midplane plasma edge on the low field side of the

torus and for these particles the induced emission of the cyclotron harmonic fast Alfven wave of

frequency ω ≈ mωcα  exceeds their absorption, and consequently, leads to the growth of these

waves; while for this edge region background deuterium plasma the absorption exceeds the

induced emission of these waves of frequency ω ≈ mωcα ≈ mωcd and thus leading to the damping

of these waves.  The instability condition of Eqs. (35) and (36) simply states that the growth

due to the fusion products exceeds the damping coming from the background deuterium plasma.

This simple physical picture is made possible only because the alpha particle and the deuteron

cyclotron frequencies are degenerate, i.e., mωcα  = mωcd for all the harmonics m.  For the

proton cyclotron harmonic emission in the background deuterium plasma this degeneracy is

such that mωcp = 2mωcd, and for such ICE from DD reaction dominated plasmas, Eq. (36)

becomes

{η p /[(a/b) - η p )] ≥ [v⊥ deJ2 m '(λ de )√ (1 + ε) /VpJm '(λ bp )]2 (T | |bp/T| |de) [{ |k|||-1 fd||(v | |

= Vpcph)} / {|k|||-1f| |bp(v|| = Vpcph)}] / ε{ [Vp /Vpcph√ (1 + ε-1)] - 1} ≥ 0.             (37)

V.  SOME NUMERICAL ESTIMATES AND RELEVANT DISCUSSIONS
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       We now wish to make some approximate numerical estimates of the fusion products induced

cyclotron harmonic fast Alfven wave radiative instability conditions for the typical tokamak

parameters found in TFTR.  We take the following DT reaction dominated "supershot" plasma

parameter conditions at t ≈  200 ms after the heating (tritium) beam injection in TFTR:5,6

       The background "supershot" plasma is of deuterium ions with the density ne = ni ≈ nd ≈ 5 x

1013 cm-3; T⊥ e ≈ T||e ≈ 9 keV, T⊥ d ≈ T||d = Td ≈ 25 keV (and hence vd ≈ 1.54 x 108 cm/s);

the directed energy Eα  = MαVα2/2  of the newly born fusion alphas is Eα  ≈ 3.6 Mev (i.e., their

birth velocity Vα  ≈ 1.3 x 109 cm/s) for these DT reaction dominated plasmas; according to

Brysk11  the amount of thermal spread κ T α (t ≈ τ α ) ≈ [Mα T dE α / (Mα  + Mn)]1/2 in the

directed birth energy of fusion alphas is Tα  ≈ 270 keV; the tokamak major radius R0 ≈ 2.65 m,

the plasma major radius Rp ≈ 2.45 m, the plasma minor radius ap ≈ 80 cm, the minor radius

of the vacuum vessel a0 ≈ 1.2 m, the critical major radius of the resonant cyclotron layer from

which the experimentally observed ICE seems to originate Rc ≈ Rp + ap ≈ 3.25 m (since the

observed ωcα /2π = ωcd/2π ≈ 27.5 MHz); at the plasma radius ap, ne ≈ ni ≈ 1 x 1012 cm-3,

Te ≈ Ti ≈ 1 keV in this "supershot regime", and in the scrape-off plasma the density and

temperature profiles are approximately exponential with an e-folding length of about 2 - 3 cm;

the confining magnetic field B ≈ 4.45 T = 4.45 x 104 G at R = R0; the approximate fractional

population ηα  ≈ 3 x 10-3 for these DT fusion reaction dominated TFTR plasmas;5 the plasma

dielectric coefficient for Alfven waves is K = µ2 ≈ 4πndMdc2/B2 ≈ 820, i.e., the Alfven wave

index of refraction µ ≈ 28.6 and the Alfven wave phase velocity VA = ω/k = c/µ ≈ 1.05 x 109

cm/s, i.e., Vα /VA ≈ 1.25; if we now assume that k ≈ k⊥  (since the intensity of all the observed

harmonic ICE are roughly the same), then λd ≈ kvd/ωcd = mkvd/mωcd ≈ mvd/VA ≈ 0.15m, at

the plasma edge λde ≈ 0.15m/5 ≈ 0.03m since Td (r = 0)/ [Td(r = ap) = Tde] ≈ 25 keV/1 keV

= 25,  and similarly λ α  ≈ 1.25m, and a = ni(r = ap ) / ni(r = 0) ≈ 0.02, b ≈ 0.1; for the

trapped-passing boundary alphas  ε ≈ ap/Rp ≈ 0.327, λbα  ≈ λα /√(1 + ε) ≈ 1.09m.  Also for

sufficiently small k|| (since k ≈ k⊥ ) {|k|||-1fd||(v|| = Vα cph)} ≈ {|k|||-1f||bα (v|| = Vα cph) }
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≈ δ(ω - mωcα ).  For these conditions the alpha particle's slowing-down time τsα  from the

plasma center to edge is6 τsα  ≈ 650 to 130 ms.

        For the background deuterium plasma, λd ≈ 0.15m << 1 and λde ≈ 0.03m << 1 for the

harmonics of interest to us, and thus  λdJm'(λd) ≈ (λd / 2)m/ (m - 1)!, and the damping of the

cyclotron harmonic fast Alfven waves under study in Eqs. (30) - (32), (35) and (36) which

is proportional to {(1 - η α ) [λ d Jm '(λ d )]2 } for the bulk plasma ineraction and/or {(1 -

bηα /a)[λdeJm'(λde)]2} for the edge plasma interaction decreases rapidly as λd2m and/or

λde2m with increasing harmonic number m; while for the newly born fusion alpha particles λα

≈ 1.25m > 1 and λbα  = λα /√(1 + ε) ≈ 1.09m > 1 for k ≈ k⊥ , and hence the growth of these fast

Alfven waves in these equations which is proportional to {η α  [λ α Jm '(λ α )]2} for the bulk

plasma interaction and/or {(bη α /a)[λ bα Jm '(λ bα )]2 } for the edge plasma interaction is

roughly a constant value independent of the harmonic number m for a given ηα .  Thus the rapid

decrease of the factor Yα m  = [λ dJm '(λ d)/λ α Jm '(λ α )]2  in Eqs. (30) - (32) and Ym b α  =

[λdeJm'(λde)/λbαJm'(λbα )]2 in Eqs. (35)  and (36) with increasing harmonic number m for

the alpha particles is mainly due to the rapid decrease in the cyclotron damping of the fast

Alfven waves  by the background deuterium plasma, while the growth rate of these waves is

roughly the same value for all m at a given value of ηα .  Thus, if one can satisfy the instability

conditions of Eqs. (30) - (32), (35) and (36) for m = 1, then they will be automatically

satisfied for all the higher harmonics m > 1.

       Before proceeding to examine the radiative instability conditions of Eqs. (30) - (32),

(35), and (36), it is physically instructive to first understand the behavior of the cyclotron

phase velocity Vjcph = (ω - mωcj)/k|| = ∆ω/k||.  For k|| > 0, Vjcph < 0 for ω < mωcj, Vjcph >

0 for ω > mωcj; and for k|| < 0, Vjcph > 0 for ω < mωcj, Vjcph < 0 for ω > mωcj; and for k|| ≠

0, |Vjcph| takes very large values when |∆ω| >> k||, it takes very small values when |∆ω| <<

k||, and is zero for ∆ω = 0.  That is, Vjcph can take any value, positive or negative, arbitrarily

small or large, anywhere in the range -∞  ≤ Vjcph ≤ ∞.   However, for k|| = 0 and ∆ω = 0

(simultaneously), Vjcph is indeterminate within the framework of the conventional
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nonrelativistic theories24 (i.e., the nonrelativistic quantum particle orbit theory used here20

or, equivalently, the conventional classical hot plasma theory12).  For example, if we let k|| →

0 first and then let ω → mωcj, we find that |Vjcph| → ∝  ; while if we let ω → mωcj first and

then let k|| → 0, we find that |Vjcph| → 0.  Thus in the simultaneous dual limit of k|| → 0 and ω

→  mωcj, Vjcph is indeterminate.24 Presumably, one may have to do a fully relativistic

analysis in order to resolve this indeterminate nature of Vjcph in this dual limit.  However, for

some of our purposes we need only (k||/k )V jcph.  It is relatively easy to show that

|(k||/k)Vjcph| << |(ω/k)| = |VA |, since |∆ ω| << |ω|.  Since mωcα  = mωcd, Vα cph = (ω -

m ωcα )/k|| = (ω - mωcd)/k|| = Vdcph , one can show that the dominant wave-particle

interaction occurs for this degenerate resonance (i.e., mωcα  = mωcd) radiative instability

under study when Vα c p h  ≈ Vd c p h  ≈ vd  = (2κ T d / M d )1 /2 , since the ratio [Vdcph /

(2κTd/Md)1/2] is the usual argument of the familiar dispersion function of the background

deuterium plasma.12

         Let us first examine the instability condition of Eq. (31).  The necessary condition for ηα

> 0 implies that (k||/k)(Vα  - Vα cph) > (mωcα /k) (T||α /T ⊥ �α ), i.e., k||/k > VA/Vα  since for

TFTR conditions T||α ≈ T⊥�α , ω ≈ mωcα, and Vα - Vαcph ≈ Vα >> Vαcph ≈ vd for dominant wave-

particle interaction.  Hence for the instability of Eq. (31) to occur we need k||/k > 1/1.25 =

0.8.  However, since the observed ICE is comprised of all harmonics of almost equal intensity we

must have k⊥ ρα  > 1 which can only be satisfied with k ≈ k⊥ .  Thus for the present TFTR

conditions it is not possible to satisfy the instability condition of Eq. (31).  Further, since for

our TFTR conditions T||α  ≈ T⊥�α  and T||d ≈ T⊥ d, the right hand side of the first inequality of Eq.

(32) is a negative quantity, and hence there is no instability.  Thus the bulk of the newly born

fusion alphas which are fully mirror-trapped or fully circulating cannot excite radiative

instabilities inside the main body of the plasma for our present TFTR conditions.

        Let us now examine whether or not it is possible to excite these radiative instabilities by

the small fraction (i.e., b ≈ 0.1) of the centrally newly born fusion alphas that have a narrow

range of pitch angles just near the trapped-passing boundary, and these "boundary alphas" make
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large radial excursions sufficient to reach the outer midplane edge where the experimentally

observed ICE seems to originate.  Since we have isotropic temperature conditions in TFTR we

have to use the "boundary alphas instability condition" of Eq. (36).  For ηα  of Eq. (36) to yield

a positive value, the necessary condition for the edge radiative instability is Vα  > √( 1 + ε-1)

(2κ Tde/Md)1/2 ≈ 2 (2κ Tde/Md)1/2 = 2vde  ≈ 2 vd /5.  Since Vα  >> vd , this necessary

condition for edge radiative instability to be excited by these "boundary alphas" is well satisfied

for the present TFTR conditions.  Ymbα  < Y1bα  ≈ (λde / λbα )2 ≈ 7.6 x 10-4.  As we stated

earlier, since half the edge population of the TFTR "supershot plasmas" is fully ionized carbon,

then the second condition of Eq. (36) for sufficiency to induce this edge radiative instability

become η α  ≥  (0.015)2(m-1)  x 0.23 x 10-3 [κ T ||bα (t)/κ T de ] / {(1/2)(Eα /κ T de)1/2 - 1}

≈ (0.015 )2 (m-1)  x 2.8 x !0-2 [κ T ||bα ( t) /Eα ].  Initially, at t = 0, the fusion alphas are

born monoenergetic and hence T||bα (t = 0) ≈ 0 { and indeed up to times t such that [κT||bα (t)/

E α ] ≤ 0.11} this instability condition is satisfied for all the harmonics m.  But when

[κT||bα (t)/ Eα ] > 0.11, this condition cannot be satisfied for m = 1, but is again satisfied for m

≥ 2.  As we stated earlier from the TRANSP code plasma analysis of reference 6, we find that

[κ T||bα (t) / Eα ] ≈ 0.11 when t ≈ 90 ms.  We should point out that strictly speaking the

observed alpha particle ICE seems to originate at 4 to 5 cm beyond the limitter in the scrape-off

layer.  In this scrape-off layer both the density and temperature are e-folding down rapidly to

lower values, and hence the actual edge values nde and Tde could be much lower than the values

used here.  This will raise the actual value of [κ T||bα (t) / Eα ] at which the instability is

quenched, and thus will raise the theoretically expected value of τ ice accordingly.  The alpha

particle slowing-down time from the plasma center to edge6 τsα  ≈ 650 to 130 ms.  Thus,

theoretically we expect this radiative instability, and consequently. the associated alpha particle

ICE to be quenched for times t > τsα  ≈ 130 to 650 ms, since these trapped-passing boundary

alpha particles making their fattest banana orbits spend part of their time near the plasma

center and another part near the plasma edge.
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VI.  CONCLUSIONS AND SUMMARY

       In summary, we have presented a comprehensive analysis of the ion cyclotron emission due

to the newly born fusion products induced cyclotron harmonic fast Alfven wave radiative

instabilities in tokamaks.  In essence the radiative instabilities occur only when the induced

emission exceeds the absorption.  We find that for the background deuterium plasma the

absorption always exceeds the induced emission of these cyclotron harmonic fast Alfven waves of

frequency ω ≈ mωcd = mωcα  in the DT reaction dominated plasmas and/or ω ≈ mωcp = 2mωcd

in the DD reaction dominated plasmas.  That is, these waves are always damped by the

background deuterium plasma, and their damping rate γd is proportional to nd[v⊥ dJm'(λd)]2.

For the newly born fusion product species j, we find that the induced emission can exceed the

absorption when their directed parallel birth velocity Vj is sufficiently large so that k||Vj/k >

VA = ω/k, the fast Alfven wave phase velocity (i.e., the conditions appropriate for inverse

cyclotron damping where the free energy comes from the directed birth energy of MjVj2/2)

and/or when their exist a sufficiently large (⊥ , ||)-temperature anisotropy for these fusion

products in such a direction where T|| is sufficiently smaller than T⊥ (i.e., conditions

appropriate for cyclotron overstability where the necessary free energy  comes from the

existing temperature anisotropy).  Under these conditions the waves under study are made to

grow by these newly born fusion products of species j, and their gowth rate γj is proportional

to nj[VjJm '(λ j)]2.  Thus the condition for the radiative instability is (γj - γd) ≥ 0.  Here γj is

the inverse cyclotron damping due to the fusion product species j, and γd is the conventional

cyclotron damping due to the background deuterium plasma ions.  It is worth remembering that

these γ's have terms of the form [(mωc/T ⊥ ) + (ω - mωc - k||V j)/T||] = ωT ||-1[(T||T ⊥ -1 -

1) - {(k||/k) (V j/VA ) - 1}] for ω ≈ mωc .  Note first that the smaller the value of T|| the

larger is the value of the growth rate γ, and second that the term (T||T ⊥ -1 - 1) in the square

bracket is the free energy driving term due to the temperature anisotropy, and the term
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{(k||/k)(Vj/VA) - 1} in this square bracket is the paralell drift free energy driving term for

the radiative instability.

        In general, we find that for the present TFTR plasma conditions, the newly born fusion

products which are fully trapped or fully circulating will not be able to induce cyclotron

harmonic fast Alfven wave radiative instabilities within the main body of the plasma.  This is

primarily due to the fact that there is neither not enough temperature anisotropy nor enough

birth velocity to satisfy the condition (k||V j/k) > VA.  However, we find that the radiative

instability condition due to the marginally mirror-trapped 10% of the fusion products which

are very near the trapped-passing boundary so that their v⊥  ≈ v||/√ε is easily satisfied for the

present TFTR conditions.  This is primarily due to the fact that at these early times these

"boundary alphas" velocity space distribution functions attain only very narrow (possibly

anisotropic) thermal spreads T⊥ bj(t) and T||bj(t) and their birth velocities Vj highly exceed

the cyclotron phase velocities Vjcph.  Thus the inverse cyclotron damping γj due to these

trapped-passing boundary fusion products highly exceeds the conventional cyclotron damping γd

due to the background deuterium edge plasma ions.   If the observed ICE is indeed a consequence

of this radiative instability due solely to these marginally mirror-trapped particles,8-10,23

then this may explain why the experimentally observed ICE seems to originate from a very

narrow region near the outer midplane plasma edge on the low-field side of the torus.

        However, as the time t progresses not only Tbj(t) increases but also due to collisions

T ⊥ bj(t) →  T||bj(t), i.e., the collision induced thermal spreading of the fusion products also

isotropizes; and both these processes tend to weaken the two sources of free energy that was

driving this radiative instability at early times.  Thus when these fusion products distributions

become sufficiently broad and isotropic, the two sources of free energy become sufficiently

weak so that γj becomes less than γd, and the instability is quenched.  Of course, eventually

these fusion product distribution functions must reach the slowing-down distribution7 of Eq.

(10).  However, the upper velocity truncation in the conventional slowing-down distribution of

Rome, et.al.7 is obviously rather nonphysical, and one can and should patch it up at this upper
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end to take account of the thermalization broadening in a manner shown in Eq. (13) or in any

other equivalent manner.  Finally, we find that such slowing-down distributions are always

very stable for radiative equilibrium and hence cannot yield the observed unstable ICE.  Thus

the initially unstable ICE will be eventually quenched in times t less than the slowing-down

time τsj.  That is, 0 ≤ τ ice < τsj. These theoretical predictions are consistent with the recent

experimental observations of ICE in4 TFTR.

        Finally, we should emphasize that we have not done any nonlinear calculation of the

saturated level of emission.  However, for these fusion alphas λ α  = k⊥ ρα  > 1 for all the

harmonics.  It therefore follows that the linear growth rates γm of Eq. (25) for ω ≈ mωcα  due

to these fusion alphas will be roughly the same value for all the harmonics m.  If the nonlinear

saturated levels are proportional to the linear growth rates, then the experimentally observed

equal amplitude harmonic ICE is consistent with our theoretical expectations.  For example, if

the nonlinear mode coupling is the dominant nonlinear saturation mechanism, then it is shown

elsewhere25,8  the saturated wave energy ε∞(ω ≈ mωcα ,k) at t → ∞ satisfies an equation of the

type

2γ(ω,k) ε(ω,k) - Ck [ε(ω,k)]2 ≈ 0,                                                                                  (38)

where Ck is the appropriate modecoupling coefficient.  It is then reasonable to argue that the

experimentally observed ICE which is proportional to this nonlinear saturated level of wave

energy ε∞ (ω ≈ mωcα ,k) ≈ 2γ(ω ≈ mωcα ,k)/Ck is proportional to the concentration of alpha

particles and, hence, to the rate of neutron emission.  That is, in such cases the nonlinear

saturated level of ICE is proportional to their linear growth rates, in agreement with the recent

experimental observations in TFTR.
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