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A three-dimensional (3D) global gyrokinetic particle code in toroidal geometry has been

used for investigating the transport properties of ion temperature gradient (ITG) drift in-

stabilities in tokamak plasmas. Using the isotopes of hydrogen (H+), deuterium (D+) and

tritium (T+), it is found that, under otherwise identical conditions, there exists a trend for

favorable isotope scaling for the ion thermal di�usivity, i.e., �i decreases with mass. Such a

trend, which exists both at the saturation of the instability and also at the fully nonlinear

stage, can be understood from the resulting wavenumber and frequency spectra.
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I. INTRODUCTION

The agreement between the recent beam emission spectroscopy and microwave re
ectom-

etry measurements of the density 
uctuations for the supershot discharges in the Tokamak

Fusion Test Reactor (TFTR) [1,2] and the 3D gyrokinetic particle simulation of the ion

temperature gradient (ITG) drift instability [3] have not only shown the importance of mi-

croturbulence for tokamak con�nement but also pointed out the dominant role assumed by

the long wavelength (k?�i < 1) 
uctuations. In this paper, we report on the investigation

concerning the e�ects of these long wavelength modes on thermal transport. More speci�-

cally, we have used various hydrogenic isotopes (H+, D+, and T+) in the microturbulence

simulation to study the trend for mass scaling and, in turn, to obtain some physical insight

concerning the mechanisms responsible for anomalous transport.

Brie
y, our simulation results give a favorable mass dependence for �i. Although these

simulations have been carried out under most idealized conditions and do not contain all the

physics of realistic tokamak discharges, they do contain what we believe to be some of the

fundamental physics of tokamak plasmas. Therefore, it may not be a coincidence that our

mass scaling results are in qualitative agreement with the experimental trend observed in

most of the existing tokamaks operated under various con�nement scenario, from ohmic to

H-mode and supershot discharges. [4] It also seems to agree with the latest L-mode and the

ion cyclotron radio frequency (ICRF) heating experiments from TFTR. [5] Since the aim of

this paper is to understand the underlying physics for the isotope e�ects, we have chosen to

use a generic toroidal ITG model with no correspondence with any particular machine. In

the fully nonlinear stage of the simulation, two important physical characteristics related to

the favorable mass scaling have been identi�ed: the widths for both the radial wavenumber

spectra and the frequency spectra decrease with mass. The signi�cance of these observations

is that one cannot use the prevailing mixing length argument to describe the simulation

trend, instead the resonance broadening picture proposed by Dupree [6] seems to give a
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better �t.

II. SIMULATION MODEL AND PARAMETERS

In the simulation, we have used the �f scheme for particle pushing, [7,8] for which

the original equations of motion for the ion gyrocenters [9] in the gyrokinetic unit of �s(�
q
Te=Ti�i) and 
i(� cs=�s) and cs(�

q
Te=mi) without the nonlinear parallel acceleration

can be written as

_R � dR

dt
= U b̂� + �b̂ � (

mI

ZImi

)
@

@R
lnB + b̂� @�

@R
; (1)

_U � dU

dt
= �b̂� � � @

@R
lnB; (2)

and �=B � v2
?
=2B = const:, where b̂� = b̂+ (mI=ZImi)U b̂ � (b̂ � @=@R)b̂ and �(R) is the

�nite Larmor radius (FLR) modi�ed potential in unit of e=Te and can be calculated with

the usual 4-point average scheme, [10] and the subscript I denotes species of interest. The

\weight" of the particle is given by

_w � dw

dt
= �� @�

@R
� b̂ � r̂� ZITe

TI
U b̂� � @�

@R
; (3)

where � = �n� (3=2� v2=2v2tI)�TI is the background inhomogeneity resulting from multiple

spatial scale expansion and giving rise to a constant external drive (source) in the simulation

[10] and r̂ is the unit vector in the minor radius direction. The corresponding �f becomes

�f =
NX
j=1

wjS(R�Rj)�(�� �j)�(U � Uj); (4)

where S represents the shape factor for �nite-size particles and N is the total number of

particles in the simulation. Thus, we are solving the equation

(@=@t+ _R � @=@R+ _U@=@U)�f = _wfM (5)
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in the simulation, where the background Maxwellian fM is spatially homogeneous. With

the assumption that the electron response is adiabatic, i.e., �ne=n0 � �(x) (where n0 is the

average number density) and kk modes are negligible, the gyrokinetic Poisson equation in

the Fourier k space takes the form of

[1 + ZI (Te=TI)(1� �0(bI))]�(k) = �nI(k)=n0I; (6)

where ZIn0I = n0, �0 = I0(bI)exp(�bI), I0 is the modi�ed Bessel function and bI � (k?�I)
2.

�nI is the perturbed number density,
R
�fIdUd�, modi�ed by the FLR e�ects and can again

be calculated by the 4-point average scheme. [10] For simplicity, the self-generated ambipolar

�eld is ignored here, because its e�ect on the instability is small in a global code. [11] The

ion thermal di�usivity in the �f representation can be written as [10]

�I '
1

< �TI > + < �n >

NX
j=1

�U
2
j + 2�j

v2tI
wj

@�

@R
� b̂ � r̂

����
Rj

=3N; (7)

where < ::: > represents spatial average.

The simulation has been carried out on a 128x128x64 toroidal grid [a \square" torus

model in (x; y;�R0') coordinates [3]] with 4:2 � 106 ion gyrocenters (or particles), each

with a Gaussian shape for S, where the rms particle size is 1.2 grid spacing. Thus, there are

4 particles per cell in the simulation, more than those used in Ref. [3], and the associated

numerical convergence property has been studied in Ref. [12]. The toroidal and poloidal

magnetic �elds are given by Bt = B0=(1 + x=R0) and Bp = rB0=qR, respectively, where

q = q0 + [qa � q0](r=a)
2. The ion temperature gradient is represented by

�TI = �T i = (1=LT i0)sech
2[(r � r0)=Lw]; (8)

where the maximum is located at r0 and Lw is the width of the region with active drive.

In the gyrokinetic units of �sD and 
�1

D (i.e., �s and 
�1

i for the deuterium ions), the

other relevant simulation parameters are: a = 100, R0 = 1000, q0 = 1, qa = 3, Lw = 30,
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r0 = 55, Te=TI = 1, Ln(density scale length) � 1=�n = 1, and LT i0 = 100, �t = 30 and

ttot = 200; 000.

III. RESULTS AND INTERPRETATION

The time history of the ITG instability in terms of the gyrokinetic electrostatic �eld

energy, [10]
P

k[1 � �0(bi)](Te=Ti)je�=Tej2, for all three ion species is shown in Fig. 1(a).

[In the remainder of the paper, the subscript i denotes the species of interest.] It clearly

shows three di�erent stages of the evolution: (I) linear growth and nonlinear saturation

(
Dt = 0 � 3 � 104), (II) transition period (
Dt = 3 � 9 � 104) and (III) fully nonlinear

stage (
Dt = 9 � 20 � 104). The total energy conservation at the end of the run is about

10�4 of the initial kinetic energy, well within the acceptable limit. In the linear stage, which

is characterized by the dominance of a few most unstable modes, the trend for the mass

dependence of growth rates is consistent with the prediction of 
L � 1=
p
M by Dong et

al. [13] The nonlinear saturation level in Fig. 1(a) seems to track the linear growth and,

in turn, has similar mass dependence. This is followed by a transition period, where the

energy cascade to the longer wavelength modes takes place together with the remnant linear

growths of these modes, and the scaling trend seems to reverse. However, the original

trend of favorable mass dependence is again restored in the fully nonlinear stage, where the


uctuating �eld energy stays roughly constant. Figure 1(b) gives the ion thermal di�usivity

for all three ion species calculated from Eq. (7), where LT i � 1= < �T i > denotes spatial

average and can be calculated from Eq. (8). It has a mass dependence similar to that of the

�eld energy in all three stages of the development. The dominant peaks for �i in Fig. 1(b)

in stage I are related to the linear growth rates, 
L, of a few most unstable modes and their

associated saturation amplitude, j�j2. [The magnitude for �i for all three species roughly

agrees with the quasilinear estimate of 
L=k
2
r [18], when we substitute in the measured

values of linear growth from Fig. 1(b) and radial wavenumber from Fig. 2(a), which we will
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discuss later.] On the other hand, the fully nonlinear �i, which comes from the nonlinear

phase di�erence between the perturbed pressure and potential (along with the 
uctuation

amplitude), takes some time to achieve. Apparently, the nonlinear phase di�erence is much

smaller than 
L, resulting in a precipitous drop in �i in fully nonlinear state. Nevertheless,

Fig 1(b) gives �i ' 0:22(�sD=LT i)(cTe=eB) for the deuterium in the fully nonlinear state.

When we substitute the parameters for the TFTR perturbed supershot discharge analyzed

in Ref. [14], it gives �i ' 2:5m2=sec, which compares well with the experimental data taken

at the half radius. Thus, we believe our results are very reasonable comparing with our

present understanding both at saturation and in the fully nonlinear state. In the remainder

of the paper, we will focus on the understanding of the physics of these simulation results

and, particularly, the scaling trends in these regions.

To this end, let us �rst study the radial wavenumber spectra taken at the linear stage

just before the saturation as shown in Fig. 2(a). The dominant modes are m � 16; 13; 11 for

H+, D+, and T+, respectively, and are characterized by their ballooning structures. [3] This

is the period where kr is at its minimum. Using the full width half maximum (FWHM) as

the reference point, one can see the kr � 1=M1=4 dependence for the three species. This is

in agreement with the theoretical predictions for the long wavelength toroidal instabilities

that the radial structures are prescribed by the equilibrium pro�le [15] (i.e., Lw in our case)

and that, near the maximum gradient, the radial mode widths are proportional to �
1=2
i (�

M1=4). [16,17] However, near the time of saturation and shortly afterwards, there is a breakup

of these spatially coherent structures and the corresponding FWHM wavenumbers become

more than doubled. During the ensuing transition period, large amplitude oscillations in kr

take place between these two extremes. In the fully nonlinear state, the amplitude settles

to around �kr � 0:1��1sD for 0 � kr � 0:5��1sD and the time-averaged radial wavenumber

spectra during this period of time are shown in Fig. 2(b). Here, the mass dependence for

the FWHM wavenumber changes to kr � 1=M1=2 with kr�s � 0:3. In addition to the

active modes observed in the linear stage, lower poloidal harmonics of m � 12; 9; 7 for H+,
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D+, T+, respectively, have also been excited. The corresponding time-averaged k� and k�

spectra are shown in Figs. 3(a) and (b), respectively. Unlike the kr spectra, the poloidal

and toroidal wavenumbers don't oscillate much in time in the nonlinear stage. However, all

three spectra have the same property, i.e., kr�s, k��s(� 0:15) and k��s(� 0:6� 10�2) are all

nearly invariant. In other words,

k�s � const:

in the fully nonlinear stage for all three species, where �s �
p
M . Another interesting

diagnostic is the frequency spectra in the second half (nonlinear state) of the simulation.

Figure 4 shows the spatially averaged spectra along the weak �eld side of the midplane at

a �xed toroidal angle for H+, D+, and T+ plasmas. The results indicate that the nonlinear

frequency decreases with mass and, interestingly, so does the frequency spread, �!. This

important property is vital for the understanding of the observed scaling, which we will

discuss.

To fully understand the results presented here, one needs a self-consistent nonlinear

theory, which is beyond the scope of the present paper. Short of that, let us compare

them with some of the present understanding of turbulent transport, e.g., the mixing length

argument which gives the scaling of �i � 
L=k
2
?
. Since !�T i=
i = k��

2
s=LT i, one can argue

that 
L=
i � �s=LT i �
p
M , if k��s is invariant. This mass dependence is in agreement

with the calculation by Dong et al. [13], which also shows that most unstable toroidal ITG

modes occur at k��s � 0:5. Thus, we obtain the familiar expression of

�i � �s=LT i

(kr�s)2
cTe

ZeB
: (9)

Here, the use of the radial wavenumber kr for the di�usion can be justi�ed from the quasi-

linear theory (see, e.g., Ref. [18]). This scaling can also be obtained from a set of gyro
uid

equations based on a simpli�ed Eq. (5) with

_R � U b̂� � ŷ + b̂ � @�=@R;
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_U � 0;

_w � ��@�=@y � (Te=Ti)U b̂
� � @�=@R;

b̂� � b̂ � (U=R0)ŷ, and � � �n � (1 � U2=v2ti)�T i=2, where b̂ is in the toroidal direction

only. By keeping the �rst three velocity moments of the equation and ignoring the parallel

electric �eld, these equations give the same Connor-Taylor invariance property [19] as the

simple slab equations described in Ref. [18] and Eq. (9) is again a possible solution.

On the other hand, Dupree in a series of papers in the 1960's �rst proposed the concept

of resonance broadening by stating that the wave-particle interaction can be modi�ed by

a broadening of the associated resonance denominator (! � k � v + i�!)�1 as a result of

an incoherent scattering of particle orbits by the waves. This enhanced scattering causes

nonlinear saturation of the instability and, in the fully nonlinear state, also causes anomalous

di�usion over the transverse wavelength through [6]

�! � k2
?
D: (10)

This scattering can be considered as an enhanced viscosity (and can exist when only one

single unstable mode is present; see, e.g., Ref. [20]). Equation (10) can also be viewed as the

nonlinear version of Eq. (9) in which the linear drive of �s=LT i is replaced by its nonlinear

counterpart, �!=
i.

Let us �rst compare the results for �i in Fig. 1(b) with Eq.(9). Based on the measured

mass dependence of kr � 1=M1=4 from Fig. 2(a) in the linear stage, the quasilinear �i

should be independent of mass at saturation. Instead, the simulation �i's give the ratios of

(1.35, 1.75, 1.3) for (H+=D+;H+=T+;D+=T+), which seem to have a 1=
p
M dependence.

The implication is that either the linear drive or the radial mode structure is modi�ed.

But, neither is true. Since the growth period in the simulation is rather short, particles

don't have su�cient time to sample the linear kr spectra and, therefore, the saturation
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level totally depends on the linear growth (i.e., �i � 
L � 1=
p
M ). On the other hand,

in the fully nonlinear stage of the simulation, where the simulation time is comparable to

or longer than the eddy turnover time, kr becomes important. [To see this, one can use

�i � (�x)2=(2�t) to estimate the average step size and compare it with the typical eddy

size from the kr spectra in Fig. 2.] Here, the time-averaged ratios for �i are (1.3, 1.8, 1.4) for

(H+=D+;H+=T+;D+=T+), which have similar dependence on mass as the quasilinear �i's

in the simulation. Substituting the results from Fig. 2(b) of kr � 1=
p
M (i.e., kr�s � const:)

into Eq. (9), one �nds �i �
p
M , which gives an opposite scaling. One obvious explanation is

that, in the fully nonlinear state, the linear drive becomes meaningless. One should then use

Eq. (10) instead, i.e., replacing the linear drive in Eq. (9) by a nonlinear one. Fig. 4 provides

just that and indicates that the 
uctuations are less coherent with higher frequencies for

lighter isotopes, i.e., �!=
i's are larger. (Note that there is nonlinear downward frequency

shift since !=
D ' 0:001 in the linear stage for all three species.) This in-coherency is

apparently related to the di�erences in 
uctuation amplitude of the electrostatic �eld energy

for the three isotopes as shown in Fig. 1(a), and is consistent with the prediction from the

E � B de-correlation (or trapping) rate of !EB=
i ' 4kr�sk��se�=Te in the fully nonlinear

stage. The broadening is further enhanced by the fact that the linearly unstable region

in k� is much broader for lighter isotopes, as shown in Fig. 1 of Ref. [13]. Therefore, a

global simulation code such as ours, which takes into account the spatial variation of the

temperature gradient, is best suited for capturing the relevant physics in these cases. The

comparison of �! in Fig. 4 can be carried out again by using FWHM. Noting that part of

�! comes from the fast Fourier transform (FFT) sampling error, 2�=ttot, one can show that

�!H=�!T � 5 and Eq. 10 [i.e., Eq. (9) with the nonlinear drive, �!=
i], gives �
H
i =�

T
i � 1:7

which is consistent with the simulation results of

�i � 1=
p
M:

To further explore the relationship between the mixing length argument and the reso-
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nance broadening estimate, let us now turn our attention to the interesting case of helium-4,

H2+
e4 , which has the same �s (ZHe=ZH = 2, mHe=mH = 4) as hydrogen. Simulations for

these two species have been carried out again using Eqs. (1) - (7) with the same number

(4:2 � 106) of particles as before, but with slightly di�erent initial conditions and shorter

simulation time. (It should be pointed out here that the proper concentration of helium-4

ions in relation to the background electrons to maintain quasineutrality has also been taken

into account.) The results are shown in Fig. 5. The time evolution for the two species has a

very similar feature for the �eld energy as well as for the ion thermal di�usivity, (and is also

similar to the results in Fig. 1). One may ascertain that both j�j2 and �i scale roughly as

1=Z in the fully nonlinear stage (
Dt = 10�15�104). To understand the implication of this

scaling for thermal di�usivity, let us start with the mixing length argument, �i � 
L=k
2
?
.

Assuming (kr�s)
2 � (�s=LT i)

�, we can re-write Eq. (9) as

�i � (�s=LT i)
1��(cTe=ZeB): (11)

Thus, � = 0 or 1 gives rise to a gyro-Bohm or Bohm scaling, respectively. Because ��(�
�s=LT i) is the same for the two cases, thermal di�usivities for hydrogen and helium-4,

according to this estimate, should scale only like 1=Z for arbitrary �. This is in rough

agreement with the simulation results and it seems to be due to the fact the scaling here

is independent of �s=LT i. Nevertheless, this is a very special case where the mixing length

argument is actually applicable. But, in general, this is not true when �s=LT i scaling is

involved, as we have demonstrated earlier. As for resonance broadening, Eq. (10) for

kr�s � const: gives

�i �
�!


i

cTe

ZeB
=

�!


H

A

Z2

cTe

eB
;

where A is the atomic mass number and A=Z2 = 1 in this case. Thus, �i depends only on

nonlinear frequency shift. The measured nonlinear frequency broadening for H2+
e4 is indeed

smaller and, in turn, gives a smaller �i for helium-4. Therefore, this scaling is also consistent
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with the simulation results in Fig. 5(b). It should also be mentioned here that, since the

amplitude for the potential 
uctuation, j�j, is smaller for helium-4 than for hydrogen as

indicated by Fig. 5(a), it is not surprising that the corresponding �! for helium-4 is smaller

than the nonlinear frequency spread for hydrogen.

IV. CONCLUSION AND DISCUSSION

In this paper, we have demonstrated the existence of favorable isotope scaling for ion

temperature gradient drift instabilities using a three-dimensional global gyrokinetic particle

code. [3] We have also compared our results in the fully nonlinear stage of the development

with the mixing length argument and with the resonance broadening estimate. It is found

that the mixing length argument, Eqs. (9) and (11), is inadequate for predicting such a

scaling, apparently because the argument is based on the linear drive prescribed only by

local parameters. On the other hand, resonance broadening estimate based on the nonlinear

frequency spread, �!, seems to describe accurately the scaling of �i in the fully nonlinear

stage of the simulation. This, we believe, is because such an estimate is better for capturing

the global nature of the ITG turbulence. Speci�cally, we have found that a lighter isotope

involves more unstable modes with a higher level of 
uctuation than that of a heavier one.

The higher 
uctuation, in turn, gives rise to a larger nonlinear frequency broadening due

to E � B detrapping. The stability diagram of Fig. 1 in Ref. [13] indicates that H+ not

only has higher growth rates but also has more unstable modes than D+ and this is also

true for D+ in comparison with T+. This linear property apparently manifests itself in our

nonlinear results as well. Our global code is also capable of capturing the physics associated

with the spatial variation of the temperature gradient. Furthermore, we have found that

k�s ' const: in the fully nonlinear stage of the simulation in all three (r; �; �) dimensions.

Thus, the wavelengths for the perturbation scale with the gyroradius of the species rather

than with the minor radius a. This desirable feature is usually associated with the gyro-
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Bohm scaling, as we have mentioned earlier. From Dupree's resonance broadening picture,

Eq. (10), [6] we argue that these properties of kr�s and �! can give us the favorable isotope

scaling. To identify the non-local dimensionless parameters which characterize this type of

resonance broadening scaling is an important task for us all in the future. Most of all, we

need a sound theoretical understanding of microturbulence.
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FIGURES

FIG. 1. Time evolution for the ITG instability for the three hydrogenic isotopes in terms of

the electrostatic �eld energy (a) and the ion thermal di�usivity (b), where subscript D denotes

deuterium.
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FIG. 2. The linear radial wavenumber kr spectra (a) and the time-averaged kr spectra in the

fully nonlinear state (b), where subscript D denotes deuterium.
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FIG. 3. The time-averaged poloidal k� spectra (a) and toroidal k� spectra (b) in the fully

nonlinear state, where �s is mass dependent.
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FIG. 4. Spatially-averaged frequency spectra along the weak magnetic �eld side of the midplane

for the three hydrogenic isotopes, where subscript D denotes deuterium.
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FIG. 5. Time evolution for the ITG instability for hydrogen and helium-4 in terms of �eld

energy (a) and the ion thermal di�usivity (b), where subscript D denotes deuterium.
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