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Equilibrium issues encountered in the design of the
National Compact Stellarator Experiment (NCSX) are
discussed, focusing particularly on equilibrium mag-
netic islands. Significant improvements have been made
to the VMEC equilibrium code to deal with numerical
challenges at the low aspect ratios characterizing the
NCSX design. Modifications to the PIES code have in-
creased its speed, allowing routine evaluation of flux
surfaces for candidate configurations. An optimizer has
been built around the PIES code for healing magnetic
islands, modifying the coil shapes to suppress resonant
components of the magnetic field while preserving de-
sired physics and engineering properties. The modified
coils produce improved flux surface quality for a range
of configurations. Neoclassical effects, which are not in-
cluded in the PIES calculations, are estimated using a
cylindrical model and are found to further reduce island
widths significantly.
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I. INTRODUCTION

As the aspect ratio of stellarators decreases, the
strength of the three-dimensional ~3-D! geometric cou-
pling effects increases, and the computational difficulty
of magnetohydrodynamic ~MHD! equilibrium calcula-
tions increases correspondingly, as does the tendency to
lose flux surfaces. This paper discusses equilibrium is-
sues encountered in the design of the National Compact

Stellarator Experiment ~NCSX!, focusing particularly on
the issues of magnetic island formation and healing of
magnetic islands.

The VMEC equilibrium code has been used for the
routine generation of 3-D equilibria for stability and trans-
port studies for NCSX, and it has been incorporated in an
optimizer for generating candidate NCSX configurations
and assessing coil set flexibility. VMEC uses a magnetic
field representation that assumes good flux surfaces, and
flux surface issues have been addressed using the PIES
code. An optimizer has been built around the PIES code
for modifying coil designs to produce magnetic fields
with good flux surfaces while preserving other desired
physics properties of the plasma configuration, and pre-
serving desired engineering properties of the coils. Im-
provements have been made to both the VMEC and PIES
codes in response to the needs of the NCSX study.

The VMEC code and VMEC code improvements are
described in Sec. II. Section III describes the PIES code
and PIES code improvements. Section IV discusses the
evaluation of flux surfaces for candidate configurations
generated by the optimizer. Flux surfaces are destroyed
by resonant fields, and Section V describes how the res-
onant fields in PIES are calculated using quadratic flux–
minimizing surfaces. Once calculated, the resonant fields
can be eliminated. Section VI describes a method that has
been used to make small modifications to the fixed-
boundary NCSX configuration to remove residual mag-
netic islands. This procedure is adapted to free-boundary
equilibria, and Sec. VII describes a procedure based on
the PIES code to modify the coil design to remove res-
onant Fourier components generated by the discrete coils
that cause flux surface breakup. This procedure is called
island healing, and the coil set thus obtained is called the
~M45h! healed coil set. Section VIII describes several
calculations with the healed coils whose purpose is to
determine the robustness of the healing effect: results*E-mail: reiman@pppl.gov
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from multifilament ~as opposed to single-filament! healed
coil set calculations used to model the finite thickness of
the coils, various vacuum configurations with the healed
coils, and an equilibrium at b � 4.6% comparing the
healed coils to the unhealed coils.

The calculations described in Secs. IV through VIII
do not include neoclassical effects, which are expected to
reduce island widths. The expected consequences of neo-
classical effects are estimated in Sec. IX.

II. THE VMEC CODE

The VMEC code1 solves the 3-D equilibrium equa-
tions using a representation for the magnetic field that
assumes nested flux surfaces. VMEC uses an inverse
moments method, in which the geometric coordinates R
and Z are expanded in Fourier series in a poloidal angle
and the ~geometric! toroidal angle ~for nonaxisymmetric
configurations!. The coefficients Rmn, Zmn in this series
are functions of the normalized toroidal flux s, where
s � 0 at the magnetic axis ~which can be a helical curve
in three dimensions! and s � 1 at the plasma boundary.
Here, m is the poloidal and n is the toroidal Fourier
mode number. The Fourier coefficients Rmn~s � 1! and
Zmn~s � 1! at the boundary can either be constants ~cor-
responding to a “fixed-boundary” equilibrium!, or they
may be self-consistently computed from the MHD force
balance equation at the plasma-vacuum interface ~for a
“free-boundary” calculation2!.

Internally, VMEC computes an additional “renormal-
ization” stream function l, which is used to optimize,
dynamically and at every radial surface, the convergence
rate in Fourier space for the spectral sum S~Rmn

2 � Zmn
2 !.

In the original ~pre-2000 version! of VMEC, the radial
mesh grid was staggered, with the Rmn~s! and Zmn~s!
coefficients defined on integral radial mesh points sj �
~ j � 1!0~Ns � 1!, where Ns is the number of radial sur-
faces, and the lambda coefficients on ~half-integral!mesh
points interleaving the sj mesh. For large aspect ratio
plasmas, this scheme leads to excellent radial resolution
as well as minimal mesh separation ~with angular meshes
of limited resolution!.

Significant improvements have been made to the
VMEC code to deal with numerical challenges at the low
aspect ratios characterizing the NCSX design. VMEC2000
~the updated version of VMEC used in this work! has
been redifferenced to improve the convergence both on
finer angular and radial meshes and for equilibria with a
wide range of rotational transform profiles. In VMEC2000,
the inverse equations are cast as second-order equations
~in minor radius! for the Fourier components of R, Z, and
l. As noted above, l was previously differenced on a
radial mesh centered between R, Z nodes, which greatly
improved the radial resolution. This could be done to
second-order accuracy ~in hs � 10@Ns � 1# ! since no

radial derivatives of l appear in the determining equa-
tion, J s � 0. ~Here, J s is the contravariant radial com-
ponent of the current, which vanishes in equilibrium.!
Near the magnetic axis, however, a type of numerical
interchange instability ~mesh separation! has been ob-
served as the angular resolution was refined. This behav-
ior previously prevented the temporal convergence of
3-D solutions with large numbers of poloidal ~m! and
toroidal ~n! modes ~typically, m ; 6 to 8 was the prac-
tical limitation!. Convergence problems were also ob-
served for equilibria with low i ~,,1!, where field lines
must encircle the magnetic axis many times to define
magnetic surfaces. The new differencing scheme en-
coded in VMEC2000 computes the stream function on
the same radial mesh as R and Z ~although the values of
l continue to be output on the centered grid for backward
compatibility!, which leads to numerical stabilization of
the numerical origin interchange instability. To avoid first-
order errors ~in hs! near the plasma boundary resulting
from the new representation of l, the radial current J s

continues to be internally represented ~in terms of the
full-grid values of l! on the interlaced grid. This main-
tains the good radial spatial resolution associated with
the original half-grid representation for l. As a result,
computation of accurate, convergent solutions with sub-
stantially higher mode numbers is now possible using
VMEC2000 ~up to poloidal mode numbers m � 20!. This
corresponds to much finer spatial resolution and signif-
icantly improved force balance in the final equilibrium
state. It also allows the calculation of equilibria with
lower values of i, which were difficult to obtain with the
previous differencing scheme.

An additional improvement in the output from
VMEC2000 includes an optional recalculation ~once the
equilibrium has been obtained! of the magnetic force
balance F[ J � B �¹p � 0. The radial ~¹s! component
of F is solved in terms of the nonvanishing contravariant
components of B ~Bu and Bv! and the metric elements
determined by VMEC2000, as a magnetic differential
equation for the radial covariant component of the mag-
netic field, Bs. An angular collocation procedure ~with
grid points matched to the Nyquist spatial frequency of
the modes! is used to avoid aliasing that would arise from
the nonlinear mode coupling of the Fourier harmonics of
R and Z in the inverse representation of the equilibrium
equation. The accurate determination of Bs, together with
the higher angular resolution afforded by the larger limits
on the allowable m, n spectra in VMEC, permits an ac-
curate assessment for the parallel current ~which con-
tains angular derivatives of Bs!, as a function of poloidal
mode number, to be performed.

III. THE PIES CODE

Three-dimensional magnetic fields in general have
magnetic islands and regions of stochastic field lines.
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The VMEC code uses a representation of the magnetic
field that assumes nested flux surfaces and thus cannot
be used to examine magnetic islands. The PIES code is a
three-dimensional equilibrium code that uses a general
representation for the field and is used for calculating
islands and stochastic field line trajectories. There is an
extensive set of publications on the algorithm, implemen-
tation, validation, convergence properties, and applica-
tions of the PIES code.3–29

The PIES code solves the MHD equilibrium equa-
tions using a Picard iteration scheme:

¹� B~n�1! � J~B~n! ! , ¹� B~n�1! � 0 , ~1!

where the superscripts indicate the iteration number. The
iterative steps involve solving for the plasma current J,
given the magnetic field B and pressure gradient ¹p from
the force balance equation,

¹p � J~n�1! � B~n! , ~2!

and the constraint

¹� J~n�1! � 0 . ~3!

This scheme is closely related to the Picard algorithm
widely used to solve the axisymmetric Grad-Shafranov
equation in the form D*cn�1 � jf~cn!. As with the Picard
iteration scheme for the Grad-Shafranov equation, un-
derrelaxation is used to extend the domain of conver-
gence of the Picard iteration:

B~n�1! � aB~n! � ~1 � a!B , ~4!

where 0 , a , 1, typically a � 0.98 or 0.99 for the
calculations reported here.

An advantage of solving the equilibrium equations
in the form of Eqs. ~1!, ~2!, and ~3! is that it provides an
accurate calculation of resonant pressure–driven cur-
rents, which are believed to play an important role in
determining island widths. At each iteration, the code
solves for the current from the force balance equation.
Writing

J � mB � J4 , J4� B � ¹p0B2 , ~5!

gives

B{¹m � �¹{J4 . ~6!

Integration of this magnetic differential equation gives
an accurate method for determining the currents. Gard-
ner and Blackwell30 demonstrated the importance of using
an accurate solution for the currents in stability studies,
and it is now routine in Mercier and global stability stud-
ies of stellarators to recalculate the current from 3-D
equilibrium solutions in this way. In implementing a nu-
merical scheme for solving the magnetic differential equa-
tion, explicit upper bounds on the associated numerical
errors were derived and are used to allow the specifica-
tion of required tolerances in the code.4

As the PIES code iterates, the pressure and current
are flattened in islands and stochastic regions. Several
numerical diagnostics in the code allow the determina-
tion of the locations of these regions. The PIES algorithm
is described in detail in the literature.3–7,10

The PIES code has been validated by testing of the
individual components, by internal checks in the code
that monitor the accuracy with which the equilibrium
equations are satisfied, and by comparison with analytic
solutions and with other codes. Analytic solutions against
which the code has been compared include Soloveev
equilibria,5 large aspect ratio stellarator expansions,5 he-
lical force-free Bessel function equilibria with islands,10

and analytic solutions for saturated tearing modes with
narrow islands. Comparisons of PIES with other codes
include axisymmetric j-solver31 equilibria for Tokamak
Fusion Test Reactor ~TFTR! and DIII-D, Biot-Savart
vacuum field solvers, marginal stability for tearing modes
calculated by linearized resistive time-dependent code,
and VMEC ~Ref. 8!. Reference 8 contains a careful com-
parison between the VMEC code and the PIES code so-
lutions. The devices modeled were theAdvanced Toroidal
Facility ~ATF! and TJ-II stellarators, for rotational trans-
form profiles where low-order rational surfaces were ab-
sent. The flux surface shape, the location of the magnetic
axis, and the value of iota as a function of flux surface
were monitored as a function of b and radial resolution.
An extrapolation in radial resolution was used to verify
the quantitative agreement of the codes. The comparison
with VMEC was continued in Ref. 9. Here, the rotational
transform as a function of radius was in excellent agree-
ment between the two codes for the W7-X stellarator, at
^b& � 5%.

Many stellarators, for example ATF, TJ-II, W7-AS,
W7-X, and the Large Helical Device ~LHD!, have been
modeled by the PIES code.5,8,9,11

In the context of the NCSX design effort, several
modifications have been made to the PIES code that have
increased its speed by about an order of magnitude, al-
lowing routine application of the code to evaluate flux
surfaces in candidate NCSX configurations. The speed
of the code was improved by modifications to use an
improved method for PIES initialization with a VMEC
solution, converting to a spline representation of the mag-
netic field for field line following, and to store matrix
inverses. Compared with VMEC, the PIES code has a
more time-consuming algorithm, which is needed for a
general representation for the magnetic field. Time is
saved by initializing PIES with a converged VMEC so-
lution. For this purpose, the underrelaxation scheme in
PIES has been modified to provided an improved cou-
pling to the VMEC solution. This involves blending with
the VMEC field in the first PIES iteration. The previous
underrelaxation scheme blended the current rather than
the fields. The underrelaxation was skipped in the first
PIES iteration, allowing a large step from the VMEC
field but slowing the ultimate convergence. The PIES
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code follows magnetic field lines as a preliminary step to
solving the magnetic differential equation determining
the Pfirsch-Schlueter current. In each iteration of the PIES
code, a discretized Ampère’s law is solved by the inver-
sion of a block-tridiagonal matrix. The elements of the
blocks are determined by metric elements of a “back-
ground coordinate system” that does not change from
one iteration to the next, allowing time to be saved by
storing the inverses of the blocks. For high-resolution
calculations, this changes the scaling of the code’s ex-
ecution time from m3n3k to a much more favorable m2n2k,
where m and n are the number of poloidal and toroidal
modes retained and k is the number of radial grid surfaces.

IV. FLUX SURFACE INTEGRITY

Three-dimensional magnetic fields in general have
magnetic islands and stochastic field lines. In addition,
perturbations produced by field errors can break the pe-
riodicity of the stellarator and produce additional islands
not intrinsic to the equilibrium. Small periodicity-breaking
perturbations can be unstable ~tearing modes!. We do not
discuss periodicity-breaking perturbations here, instead
focusing on the issue of islands, which are intrinsic to the
equilibrium.

The goal in NCSX is to minimize the size of islands
and stochastic regions to obtain good flux surfaces across
at least 90% of the cross section. As a first step in ad-
dressing this issue, a fixed boundary reference configu-
ration with relatively good flux surfaces has been
identified,29 and this configuration is referred to as LI383.
The intrinsic flux surface properties of configuration
LI383 relative to those of other configurations are dis-
cussed in this section. Section VI discusses adjustments
of the LI383 boundary to remove residual islands. Sec-
tion VII discusses the design of coils that preserve flux
surfaces by suppressing magnetic islands—a procedure
called coil healing.

The configuration optimizer used to generate candi-
date configurations for the NCSX design study did not
include a measure of flux surface integrity. Flux surface
calculations for the various candidate configurations have
found significant differences in the extent of islands and
stochastic regions. An earlier reference configuration,
referred to as configuration C82, was found to have a
large region of stochastic field lines at beta values of
interest. This was typical of several types of configura-
tions that were studied. In contrast, the flux surfaces of
the NCSX reference design configuration LI383 and sim-
ilar configurations were nearly adequate even before the
application of any flux surface optimization.

In regions where di0ds. 0, perturbed bootstrap cur-
rent effects are predicted to lead to substantially de-
creased magnetic island widths in configurations of the
type studied here.32 This is the inverse of the neoclassical

tearing mode that has been observed in tokamak exper-
iments. This neoclassical effect is presently being incor-
porated into PIES but is not included in the calculations
reported here. The calculations are therefore conserva-
tive in that the calculated island widths are likely to be
larger than would be observed in an experiment operated
in a collisionless regime. Section IX gives an estimate of
the neoclassical effect on the island widths.

The PIES calculations discussed in this section are
all fixed boundary and used 143 Fourier modes, 0 � m �
11 and �6 � n � 6, and 60 radial zones.

Figure 1 shows a Poincaré plot of a fixed-boundary
PIES equilibrium for configuration C82 at full current,
b� 0. Magnetic islands occupy about 10% of the cross
section. The islands are more readily visible if the Poincaré
plot uses a polar ~r, u! coordinate system, as in Fig. 2.
Here, the coordinate r is taken to be constant on VMEC
flux surfaces and to measure the distance of the VMEC
flux surface from the magnetic axis along the u � 0,
f � 0 line. The angular coordinate u is identical to the
VMEC angular coordinate. When plotted in these coor-
dinates, the Poincaré plot gives straight lines when the
VMEC and PIES solutions coincide.

When b is raised to 3%, the PIES calculations find
that a substantial fraction of the flux surfaces is lost
~Fig. 3!. The equilibrium solution shown is not fully
converged. The outer surfaces continue to deteriorate as
the calculation progresses, so further computation is of
limited interest. From these plots we conclude that flux
surface integrity is a problem for configuration C82 in
the absence of stabilizing neoclassical effects.

Fig. 1. Poincaré plot for configuration C82 at full current,
b� 0.
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Figure 4 shows the result of a PIES calculation for
configuration LI383 as originally generated by the opti-
mizer at full current, b � 4.2%. The flux surfaces are

greatly improved relative to those of configuration C82.
The total island width is about 15% and is dominated by
a single island chain at i � 0.6 having poloidal and to-
roidal mode numbers m � 5 and n � 3.

The fact that the flux surface loss in the original
configuration LI383 is dominated by a single island chain
suggests that the flux surfaces can be further improved
by adjusting the amplitude of the corresponding resonant
Fourier mode in the specification of the boundary shape.
This has been demonstrated and is discussed in the fol-
lowing sections.

V. RESONANT FIELDS, ISLANDS, AND QUADRATIC

FLUX–MINIMIZING SURFACES

Magnetic islands are caused by resonant radial mag-
netic fields where the rotational transform is a rational
value. The continuous one-dimensional family of peri-
odic orbits that form a rational rotational transform flux
surface in the absence of resonant fields will be reduced
to a finite set of periodic orbits by the resonant field, and
an island chain will form. The periodic orbits surviving
perturbation will typically be the stable and unstable pe-
riodic orbits, which correspond to the O and X points on
Poincaré plots of the magnetic field. In the small island
approximation, where the shear i' is assumed constant
across the island, the width of the island is given33 as
w @ ~ 6Bnm 60i 'm!102, where Bnm � ~B{¹s0B{¹f!nm

is the resonant Fourier component of the radial field at

Fig. 2. Poincaré plot for configuration C82 in VMEC coordi-
nates, at full current, b � 0. The rotational transform
ranges from i ' 0.25 on axis to i ' 0.48 at the edge.

Fig. 3. Poincaré plot for earlier configuration, C82, at full
current, b� 3%. The rotational transform ranges from
i ' 0.27 on axis to i ' 0.46 at the edge.

Fig. 4. Poincaré plot for configuration LI383 at full current,
b� 4.2%.
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the i � n0m rational surface, s is the radial coordinate,
and the prime represents derivative with respect to s. The
phase of the island chain is determined by the sign of Bnm

and the sign of the shear.
Significant progress in this field of island suppres-

sion was made with the introduction of the Cary-Hanson
technique,34 which relates the width of magnetic islands
to the residue of periodic orbits determined by field line
integration, and standard computational optimization rou-
tines can be used efficiently to construct coil configura-
tions that produce nested flux surfaces in the vacuum. An
alternative technique35 has been applied to the H-1 He-
liac.36 Resonant radial fields were determined via con-
struction of quadratic flux–minimizing surfaces, and
variations in the vertical field coil currents were used to
manipulate the width and phase of magnetic islands in
the vacuum field. A configuration was constructed for
which vacuum magnetic islands healed as pressure was
increased.37

A method for calculating resonant fields at rational
surfaces has been incorporated into PIES. This method is
based on the construction of quadratic flux–minimizing
surfaces.38 The construction of these surfaces has been
presented in Ref. 39. The surfaces are defined as extrem-
izing surfaces of the square of the action gradient func-
tional, which is defined as

w �
1

2
��@dS0du# 2 dudz , ~7!

where the action integral is

S � ��A { dl , ~8!

where

A � magnetic vector potential

dl � line segment

�* � integral along a closed field line.

For the purposes of the present discussion, quadratic flux–
minimizing surfaces pass directly through the correspond-
ing island chains and may be considered as rational flux
surfaces of an underlying integrable magnetic field.

The construction of the quadratic flux–minimizing
surfaces, in essence, provides an optimal magnetic coor-
dinate system, or equivalently an optimal nearby integra-
ble magnetic field, and in these coordinates resonant
perturbation harmonics are easily identified. The method
is computationally efficient since the quadratic flux–
minimizing surfaces defining the coordinate system may
be constructed exactly and only where required—at the
rational rotational transform surfaces where islands de-
velop. The amplitude of each selected resonant field har-
monic is calculated by Fourier decomposing the magnetic
field normal to the quadratic flux–minimizing surface.
Furthermore, and importantly, the Fourier decomposi-
tion is performed using an angle coordinate that corre-

sponds to a straight field line coordinate of the underlying
integrable field on that surface.

The rotational transform profile determines which
islands will be present in a given configuration, and is-
lands associated with low-order rationals are typically
the largest; however, where the shear is small, higher-
order islands can easily overlap and result in chaotic field
lines and loss of confinement. For the case of LI383, the
islands selected for suppression are typically those cor-
responding to i� 0.5, 0.6, although higher-order islands
are also considered at times. Generally, the lowest-order
resonances present will produce the largest magnetic is-
lands. A convenient method of selecting the lowest-order
rationals is guided by the Farey Tree construction.40

VI. HEALING OF FIXED-BOUNDARY FLUX SURFACES

In this section we consider manipulation of the width
and phase of magnetic islands in finite b stellarator equi-
libria as calculated by PIES by making small variations
to the boundary.41 Magnetic islands are controlled by
adjusting the resonant fields at the rational surfaces.

A set of islands that we wish to control is selected. In
the case of LI383, clearly the ~n, m! � ~3,5! island is
dominant. The corresponding set of resonant fields that
needs to be controlled is represented by

B � ~Bn1, m1, Bn2, m2, . . .!T . ~9!

We expect that an ~n, m! island width will be strongly
affected by an ~n, m! resonant deformation of the plasma
boundary in magnetic coordinates and perhaps through
coupling to neighboring modes, so a set of independent
boundary variation parameters is constructed as follows.
We consider the minor radius,

r � Srnm cos~mu� nNpf! , ~10!

of the plasma boundary to be a Fourier series in the
cylindrical toroidal angle and the poloidal angle used in
VMEC to construct the input R and Z harmonics, where
Np is the field periodicity. The conversion to cylindrical
space is given as R � R0 � r cos u, Z � r sin u. For a
change rr r � drnm cos~mu� nNpf!, the input Fourier
harmonics for the VMEC code change according to

Rm�1, nr Rm�1, n � drnm 02 ,

Rm�1, nr Rm�1, n � drnm 02 ,

Zm�1, nr Rm�1, n � drnm 02 ,

Zm�1, nr Rm�1, n � drnm 02 . ~11!

In principle we may change infinitely many boundary
harmonics rnm, but a small set is chosen to match the
islands targeted, and this becomes the vector of indepen-
dent parameters
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r � ~rn1m1, rn2m2, . . .!T . ~12!

Now the problem is amenable to standard treatments
where the functional dependence of B on r is represented:

B~r0 � dr! � B~r0 !� C{dr � . . . , ~13!

where r0 � 0 is the initial boundary shape and dr is a
small boundary variation. The coupling matrix C repre-
sents derivative information and will in general be an
M � N matrix, where M is the number of resonant fields
and N is the number of independent boundary variations.
The j ’th column of the coupling matrix is determined
through a VMEC0PIES run by making a small change
drnj,mj and taking the difference in the resonant fields
from the original equilibrium, divided by the change.
Hence, N � 1 VMEC0PIES runs are required to deter-
mine the coupling matrix ~each PIES run is initialized
with a VMEC equilibrium!.

The coupling matrix is inverted using the singular
value representation,42 C � UwVT , where U and V are
orthonormal and w is the diagonal matrix of singular
values. If there are more variables than equations, more
than one solution may exist, and the nullspace is spanned
by the columns of U corresponding to zero singular val-
ues, of which there will be at least N-M. Islands are
removed if B � 0, so by choosing a correction to the
boundary dr according to

dri�1 � �Vw�1UT Bi , ~14!

where as in standard singular value decomposition tech-
niques the zero, and if desired the small, eigenvalues are
ignored in the inversion of w and Bi is the vector of
resonant fields at the i ’th iteration. In practice, several
iterations will be required to achieve a desired accuracy.

This technique was applied to configuration LI383.
In Fig. 5 a Poincaré plot of the PIES field after 32 itera-
tions shows island chains, and the i� 305 island is sig-
nificant. In this figure and in Fig. 6, the Poincaré section
is the f� 0 plane and 50 field lines are followed starting
along the u� 0 line. In addition, field lines at the X points
of several low-order island chains are followed and the
quadratic flux–minimizing surface and an estimated sep-
aratrix has been plotted over one period of each island
chain. The separatrix of the island chains has been cal-
culated using the resonant radial field and the shear at the
rational surface of the VMEC equilibrium. PIES has not
yet converged for this case, but the information about the
island width is still useful for construction of the cou-
pling matrix.

In this application of the island reducing technique,
the ~3,5!, ~6,10!, ~3,6!, and ~6,12! resonances are tar-
geted, and the ~3,9!, ~3,8!, ~3,7!, ~3,6!, ~3,5!, and ~3,4!
boundary harmonics are varied. The ~6,10! resonance
produces an island at the same rational surface as the
~3,5!, namely at i � 305, and may be considered as the
second harmonic of the ~3,5! resonance. If the ~6,10!
resonant field is not targeted, this may cause an island
of distinct topology from the ~3,5!. The ~3,6! and ~3,12!
resonances are included to ensure that elimination of the

Fig. 5. Poincaré plot of initial LI383 configuration after 32 PIES iterations. For selected island chains, the separatrix and the
quadratic flux–minimizing surface ~which passes directly through the island chain! has been plotted as the solid line over
one period of the island chain.
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~3,5! island does not cause a ~3,6! island to grow. The ~3,7! resonance is also present in the configuration, but this
has not been included. For this set of resonant fields and independent boundary variation parameters, the coupling
matrix is

�
dB3,5

dB6,10

dB3,6

dB6,12

� � �
�0.15603 0.94645 �0.73397 �1.13506 �0.17282 �0.30578

0.12627 0.17790 0.02146 0.19875 �0.07025 0.01394

�0.05487 �0.22773 �0.50056 0.24140 �0.30079 0.01531

�0.00874 0.03067 �0.00351 0.00827 �0.00327 �0.00083
� �
d3,9

d3,8

d3.7

d3,6

d3,5

d3,4

� .

On performing the Newton iterations, the reduction in
resonant fields shown in Table I is observed.

The Newton iterations are terminated after four steps
since this provides sufficient reduction of the islands, as
seen in Fig. 6. In a true Newton iteration procedure, the
coupling matrix would be recalculated at every iteration.
In this application such a procedure is too slow and the
coupling matrix is not changed; nevertheless, the con-
vergence is satisfactory. The total change in the boundary
variation parameters is

dr � ~�0.00184, �0.00026, 0.00056,

0.00300, 0.00012, 0.00064!T . ~15!

These variations are several millimeters in magni-
tude and generally have little impact on stability and
other physics. However, the case shown does destabilize
the ballooning modes on some surfaces. This would be
expected to relax the pressure gradient slightly on those
surfaces. This is not surprising considering that the LI383
configuration has been optimized to provide marginal
ballooning stability at full pressure.

The healed configuration has converged after 32 it-
erations, as has been confirmed by an extended PIES run
for hundreds of iterations. If the equilibrium has no is-
lands, or if the width of the islands is less than the radial
grid used in PIES, then PIES and VMEC will agree and
PIES will rapidly converge.

VII. HEALING OF FREE-BOUNDARY FLUX SURFACES:

“COIL HEALING”

VII.A. Algorithm for Healing of Free-Boundary

Flux Surfaces

The previous two sections have discussed the design
of the fixed-boundary configuration to obtain good flux
surfaces in equilibria where the shape of the boundary is
specified. In the coil design process, a discrete set of
coils is produced that targets the desired boundary shape,
and the coils are further modified using the merged op-
timizer to allow for the simultaneous targeting of engi-
neering and physics objectives in the coil design. The
result is a plasma that is stable to ideal modes and a coil
design that is buildable; however, flux surface quality is
not guaranteed by this process, and islands reappear in
the free-boundary equilibria.

This section discusses the modification of the coils
to heal the flux surfaces while preserving various engi-
neering and physics measures of the free-boundary equi-
librium. The method is based on the free-boundary version
of the PIES code. Island suppression is achieved by add-
ing to the standard PIES algorithm a procedure that alters
the coil geometry at each iteration so that selected res-
onant components of the coil magnetic field cancel the
resonant components of the plasma magnetic field—thus
eliminating islands. The changes in coil geometry are
constrained to preserve both engineering constraints and
ideal kink stability. As the iterations continue, the coil
geometry and the plasma simultaneously converge to an
island-free coil-plasma equilibrium.

An early attempt43 at healing free-boundary PIES
equilibria by variation of the coil geometry calculated the
resonant fields after a fixed number Nit of PIES iterations
in which the coil geometry was unchanged. The resonant
fields were expressed as a function of coil geometry, and
a method essentially identical to the fixed-boundary heal-
ing method was used to vary the coil geometry to reduce
the resonant fields after Nit iterations. This method had
some success in healing coil sets; however, the PIES
calculations were typically not converged after the fixed

TABLE I

Reduction in Resonant Fields on Performing
the Newton Iterations

Iteration 6B3,56 6B6,106 6B3,66 6B6,126

0 1.8 � 10�3 1.6 � 10�4 1.3 � 10�4 1.4 � 10�5

1 1.3 � 10�4 3.4 � 10�5 1.0 � 10�4 2.4 � 10�6

2 6.7 � 10�5 3.4 � 10�5 5.1 � 10�5 1.9 � 10�6

3 2.4 � 10�5 6.7 � 10�5 4.0 � 10�16 5.4 � 10�7
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number Nit iterations, and there was no guarantee that the
configuration would remain healed ~this is in contrast to
the fixed-boundary healing method, where PIES was ini-
tialized by the VMEC equilibrium for each trial bound-
ary, which was not the case here!. Experience from this
work led to the method presently used to heal free-
boundary surfaces—termed dynamic healing—which al-
ters the coil geometry at each PIES iteration and is now
described.

The dynamic healing procedure amounts to a free-
boundary coil physics optimizer that preserves good flux
surfaces, satisfies engineering constraints, and includes
measures of physics stability. It is this procedure that
leads to healed coil sets, and this procedure is also called
coil healing or island healing.

The dynamic healing procedure is obtained by in-
cluding in the basic PIES the module COILOPT ~Ref. 44!
and STELLOPT, which are used to alter the coil geom-
etry and evaluate physics measures. Solving the equilib-
rium equation and the adjustment of a coil design to
eliminate selected magnetic islands proceeds with initial-
ization given

B � BP
n � BC ~j!

n . ~16!

The total magnetic field is the sum of the magnetic field
produced by the plasma, BP, and the magnetic field pro-
duced by the confining coils, BC , which is a function of
a set of Fourier harmonics j that describe the coil geom-
etry at the n’th iteration. The initial plasma state is pro-
vided by the VMEC code, which imposes the artificial
constraint that the plasma is consistent with nested flux

surfaces. The constraint is generally associated with the
appearance of delta function currents at the rational sur-
faces. The method presented in this section can be con-
sidered as removing this constraint and imposing the
condition that there be no delta function currents, allow-
ing the VMEC initialization to relax into an equilibrium,
potentially with broken flux surfaces ~islands!, while mak-
ing adjustments to the coil set to remove selected islands
as they develop. The initial coil geometry is provided by
the COILOPT code.

As described, the standard PIES algorithm will cal-
culate the plasma current from the field, and then the
plasma field from the current. The additional steps in
the implementation of the coil healing are as follows. The
total magnetic field B after one PIES iteration is written

uB � BP
~n�1!� BC ~j!

~n! . ~17!

We may consider uB as a small perturbation to a nearby
integrable field and that magnetic islands are caused by
fields normal to, and resonant with, rational rotational
transform flux surfaces of the nearby integrable field. A
set of resonances that are to be suppressed is selected, for
each resonance a quadratic flux–minimizing surface is
constructed, and the set of resonant fields thus calculated
is denoted $ tBi : i � 1, N % .

The COILOPT code provides a convenient Fourier
representation of the coil geometry, and a set of coil
harmonics $jj: j � 1, M % appropriate for the resonances
selected are systematically varied to set tBi � 0 using a
Newton method. The coupling matrix ¹BCij

n is defined as
the partial derivatives of the selected resonant harmonics

Fig. 6. Poincaré plot of full-beta island-reduced LI383 configuration.
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of the coil magnetic field normal to the quadratic flux–
minimizing surface ~held constant during each PIES heal-
ing iteration! with respect to the chosen coil harmonics
and is calculated using finite differences. A multidimen-
sional Newton method is applied to find the coil changes
djj that set tBi � 0:

tBi � ¹BCij
n {djj

n . ~18!

This equation is solved for the djj in a few iterations by
inverting the N � M matrix ¹BCij

n using singular value
decomposition and the new coil set is obtained,

jj
~n�1! � ji

n � djj
n , ~19!

such that the resonant component of the combined plasma-
coil field is eliminated. As the iterations proceed, the coil
geometry and the plasma simultaneously converge to coil
geometry–plasma solution with good flux surfaces.

The algorithm as presented is insufficient for prac-
tical purposes because no consideration has been given
to various engineering constraints. To be “buildable,” the
minimum coil curvature and coil-coil separation, for ex-
ample, must exceed certain limits. Such constraints are
included in the COILOPT code, and the initialization coil
set, described by j 0, is satisfactory from an engineering
perspective. The healing algorithm is modified to pre-

serve the minimum curvature and coil-coil separation by
adding to the set of resonant fields to be eliminated the
~appropriately weighted! differences in minimum curva-
ture and coil separation of the n’th coil set, described by
j n , from the initial coil set. This constrains the island-
eliminating coil variations to lie in the nullspace of these
measures of engineering acceptability.

In a similar manner, the algorithm is extended to
preserve kink stability. The VMEC initialization is stable
with respect to kink modes. By calculating kink stability
using the TERPSICHORE and VMEC codes, which are
executed via the STELLOPT routine, the coil changes
are constrained to preserve kink stability.

VII.B. Application of Coil Healing to M45 Coils:

Healed Coils M45h

We consider now a coil set referred to as the M45 coil
set, which was constructed to reproduce the LI383 plasma
boundary using the VMEC free-boundary code, so that
the issue of flux surfaces was not initially addressed. The
~n, m! � ~3,6!, ~3,5! islands were selected to be sup-
pressed, subject to the constraint that the minimum coil
curvatures, the coil-coil separation, and the kink stability
be preserved ~nine constraints!. For this purpose, some
m � 3, 4, 5, 6, 7, 8 modular coil harmonics were allowed

Fig. 7. Poincaré plots before ~lower! and after ~upper! free-boundary healing of flux surfaces from M45 coils. b� 4.1%. The thick
solid line corresponds to the plasma boundary in the VMEC solution used to initialize the PIES calculation.
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to vary ~36 independent variables!, and a healed coil-
plasma state was achieved. The engineering measures
were preserved, with the plasma stable with respect to
kink modes. The plasma retains quasi-axisymmetry.About
250 iterations, using a relaxation parameter a� 0.98, are
required to approach convergence in both the plasma
field and the coil geometry. To confirm that the coil set is
healed, about 200 additional standard PIES iterations are
performed with the coil set unchanged. The coil set ob-
tained is called the healed M45 coil set and is renamed
M45h.

A Poincaré plot of the final field is shown for an
up-down symmetric toroidal cross section in the upper
half of Fig. 7. The thick solid line in this figure corre-
sponds to the plasma boundary in the VMEC solution
used to initialize the PIES calculation. For this calcula-
tion and those described below, the pressure profile on
the good flux surfaces is held fixed. The VMEC bound-
ary is not treated as a limiter so that the region of nonzero
pressure gradient can extend outside that boundary on
sufficiently deformed flux surfaces. The island content
in the healed configuration is small, though there is some
resonant m �18 deformation near the zero shear location
~indicating that additional near-resonant modes may need
suppressing, or that the maximum i needs to be con-
strained to avoid the resonance! and some high-order
~m � 10, 11, 12, and 14! island chains ~which are con-
sidered sufficiently small!. For comparison, a Poincaré
plot of the unhealed configuration after 180 standard PIES
iterations is shown in the lower half of the figure. For the
unhealed case there is a large m � 5 island, the edge has
become chaotic, and the configuration deteriorates into
large regions of chaos as the iterations continue.

A broad selection of coil harmonics was varied since
the coil harmonics are not decomposed in a magnetic
angle and thus cannot be expected to couple directly with
the resonant field harmonics of the plasma.Also, by doing
so there is extra freedom that is utilized by the singular
value decomposition method to find a solution with min-
imal coil change. The coil harmonics varied actually de-
scribe the toroidal variation of the modular coils on a
topologically toroidal winding surface. The winding sur-
face itself is described using a Fourier representation, but
the winding surface is not altered in this procedure. The
calculation shown used 63 radial surfaces and 12 poloidal
and 6 toroidal modes. Similar results have been obtained
using up to 93 radial surfaces and 20 poloidal modes.

The maximum coil alteration is about 2 cm, which
comfortably exceeds manufacturing tolerances but is not
so large that “healing” significantly impacts other design
concerns, such as diagnostic access. A plot of the original
coils and the healed coils in VMEC toroidal coordinates
is shown in Fig. 8. From this figure we can see that the
healed coils, from an engineering perspective, are essen-
tially the same as the original coils; in particular, the
coil-coil separation and minimum coil bend radius are
the same for the M45h coils and the original M45 coils.

VIII. MAGNETIC FIELDS PRODUCED

BY THE HEALED COILS

VIII.A. Finite Thickness Healed Coil Set

The analysis of coil sets thus far has used single
filament coil representations. The single filament model
simply positions a filament at the geometrical center of
each coil along the winding path. Because the difference
between the healed and unhealed coils is about 2 cm, it is
required to confirm that the finite thickness of the coils to
be built will not adversely affect the quality of the flux
surfaces. A finite model coil configuration, based on the
healed coil set, is obtained as follows. The modular coils
are modeled as rectangles in cross section, 0.12 m in
height and 0.10 m in width, with a 0.02-m web at the
center that separates each coil into two halves. There are
8 by 2 turns for each coil half, and each turn is modeled
as a filament. This coil model resembles the proposed
winding discussed in the engineering design document.

We first note that the multifilament coil model pre-
serves the quasi-axisymmetry for the healed coils, M45h.
Using effective ripple as a measure of quasi-symmetry,
the results of a NEO transport calculation based on VMEC
equilibria show that the difference is less than 1.5% be-
tween single- and multifilament models throughout the
entire plasma volume. The effective ripple is 0.21% at
r0a � 0.5 for the single-filament model, whereas it is
0.213% for the multifilament model. Similarly, at r0a �
0.9 it is 1.026% for the single-filament versus 1.029% for
the multifilament model. Also, the multifilament coils
are stable with respect to kink and ballooning modes.

PIES calculations indicate that the flux surfaces
are similar in quality for both single- and multifilament

Fig. 8. Original M45 coils and healed M45h coils in U-V space.
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models of the healed coils ~M45h! at the reference op-
erating state. Using the multifilament coil set con-
structed, a PIES run was performed and the converged
equilibrium is shown in Fig. 9. The flux surface quality
of the equilibrium actually appears to be better than that
in the single-filament coil case. The area of greatest im-
provement is the absence of the resonant m � 18 defor-
mation near the zero shear region.

Figure 9 displays several good surfaces that extend
beyond the first wall boundary. That is not an issue for
these surfaces because they lie in the vacuum region,
outside the surface where the imposed pressure profile
goes to zero.

The improvement in flux surface quality in going
from single-filament to multifilament coil representa-
tions suggests that the remaining Poincaré plots, which
are all single-filament calculations, may be conservative
and that the finite coil build may improve flux surface
quality for these configurations.

VIII.B. Vacuum Configurations with the Healed Coils

The coil healing procedure considered only the full-
pressure and full-current configuration; nevertheless, the
healed coils produce plasma states at different pressure
and current with good flux surfaces over most of the
plasma volume. This section will present an analysis of a
variety of vacuum states.

Various vacuum configurations are shown that con-
firm that good flux surfaces may be obtained with the
healed coils ~M45h! for a number of cases. The different
rotational transform profiles, varying from 0.43 to 0.46,
0.52 to 0.53, 0.52 to 0.54, 0.54 to 0.56, and 0.54 to 058,
are shown in Fig. 10. The corresponding Poincaré plots
are shown in Figs. 11 through 15. The adjustment of the
rotational transform in the vacuum is achieved by vari-
ation of the coil currents. These plots all show good flux
surfaces, to varying degrees, and indicate that a variety
of starting points may be used to generate plasma evo-
lution sequences that will ultimately reach the healed,
operating configuration. In all of these plots the location
of the first wall is shown as the thick solid line.

VIII.C. Comparison of Healed Coils and Unhealed Coils

at an Alternative Configuration

The coils have been modified to heal the islands in
the reference configuration. We find that, having reduced
the amplitude of the resonant magnetic field components
produced by the coils in this configuration, the flux sur-
faces are improved in other configurations as well. This
is illustrated by Fig. 16, which shows the results of PIES
calculations using the healed and unhealed coils for a
configuration that arises in a start-up scenario. The PIES
calculations have been done for a time slice at 303 ms,
with a b of 4.6%, and the configuration is stable to

Fig. 9. PIES equilibrium using the multifilament healed coils ~M45h! at b� 4.1% The first wall boundary is shown as the thick
solid line. This figure compares favorably to single-filament equilibrium in Fig. 7.
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ballooning and kink modes. The upper half of the Poincaré
plot is for the healed coils, and the bottom half for the
unhealed coils. The flux surface quality of the healed
coils for this configuration is far better than that of the
unhealed coils. The PIES run for the unhealed coils is not
converged and continues to deteriorate as the calculation
proceeds.

This plot shows that the healed coils ~M45h! pro-
duce improved flux surface quality in a configuration
other than the configuration for which the healing was
performed.

The improvement of flux surface quality in going
from a single-filament coil model to a multifilament model
and the fact that the healed coils display better flux sur-
face quality than the unhealed coils in a variety of con-
figurations suggest that the healing process has provided
a distinctly improved set of coils for the NCSX experiment.

IX. NEOCLASSICAL HEALING OF MAGNETIC ISLANDS

IX.A. Introduction

The purpose of this section is to estimate the effect
of the neoclassical bootstrap current in reducing the
width of magnetic islands in a “reversed shear” quasi-
axisymmetric stellarator such as NCSX. It has been
recognized for some time32 that the bootstrap current,
which can destabilize “neoclassical tearing modes” in
tokamaks, is stabilizing in a stellarator with outwardly
increasing transform, i.e., positive di0dr. There is exper-
imental evidence for the neoclassical stabilizing effect

from the LHD stellarator.45,46 The magnitude of this ef-
fect depends on plasma collisionality, both through the
dependence of the bootstrap current on the parameter n*e
and through the role of finite parallel thermal conduction
in limiting temperature flattening across the island.

In the present analysis, we employ the formalism of
tokamak theory: The only stellarator-specific effect is an
externally imposed chain of magnetic islands with mode
numbers corresponding to the dominant nonsymmetric
field “perturbation” in the NCSX configuration. For sim-
plicity, we neglect two other effects, namely resonant
Pfirsch-Schlueter currents and stabilizing resistive-
interchange contributions, which are expected to be less
important than the bootstrap current effect in the cases
considered here. Note that in considering the effects of
the bootstrap current, we do not modify the global cur-
rent profile but only assume that some fraction of it is
driven by the bootstrap effect. That fraction of the current
will then go to zero inside the islands when the pressure
gradient is flattened there, producing a helical modifica-
tion of the current that gives rise to the neoclassical effect.

IX.B. Bootstrap Current Effect on Magnetic Islands

For cylindrical tokamak geometry, including the boot-
strap current density jbs, the island width w in the weakly
nonlinear regime47– 49 grows according to

~m0 01.2h! dw0dt � D' � 6.4~m0 Lq 0Bu !jbs 0w , ~20!

where D' is the usual tearing-mode stability quantity and
Lq � q0q ' . The numerical coefficient 6.4 arises from
calculating the applicable Fourier component of the cur-
rent perturbation caused by zeroing the bootstrap current
inside the magnetic island, i.e., within the area bounded
by the island separatrix.50 Writing

jbs � �Cbs~«
0.50Bu ! dpe 0dr , ~21!

where «� r0R and Cbs is a numerical coefficient of order
unity that describes the dependences of the bootstrap
current on the density and temperature profiles and on
the collisionality parameter n*e , we obtain

~m0 01.2h! dw0dt � D' � 3.2Cbs«
0.5bue~Lq 0Lpe !0w ,

~22!

where Lpe � �pe 0pe
'. For the tokamak ~q ' . 0!, the

bootstrap current term is positive and can overcome a
negativeD' to produce unstable neoclassical tearing modes.
Comparisons with experimental data from tokamaks have
generally suggested a numerical coefficient somewhat
smaller than 3.2 in this equation; for example, analysis of
neoclassical tearing modes in TFTR gave a coefficient of
2.6 ~Ref. 51!. For present purposes, however, we will
retain the somewhat larger theoretical coefficient.

The case of an island produced by the vacuum mag-
netic fields in a quasi-axisymmetric stellarator may be

Fig. 10. Rotational transform profiles corresponding to vac-
uum cases shown in Figs. 11 through 15.
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Fig. 11. Vacuum configuration, i� 0.43 to 0.46, with healed coils ~M45h!. The first wall boundary is shown as the thick solid
line.

Fig. 12. Vacuum configuration, i� 0.52 to 0.53, with healed coils ~M45h!. The first wall boundary is shown as the thick solid
line.
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Fig. 13. Vacuum configuration, i� 0.52 to 0.54, with healed coils ~M45h!. The first wall boundary is shown as the thick solid
line.

Fig. 14. Vacuum configuration, i� 0.54 to 0.56, with healed coils ~M45h!. The first wall boundary is shown as the thick solid
line.
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Fig. 15. Vacuum configuration, i� 0.54 to 0.56, with healed coils ~M45h!. The first wall boundary is shown as the thick solid
line.

Fig. 16. Start-up evolution sequence time 303 ms at b� 4.6%. The upper half is with the healed coils ~M45h!, and the lower half
is with the unhealed coils ~M45!. The healed coils show significant improvement. The first wall boundary is shown as the
thick solid line.
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considered analogous to the case of a tokamak in which
an island is produced by superimposing an external he-
lical magnetic perturbation that is resonant on a magnetic
surface within the plasma. If such a perturbation were
imposed dynamically, then the plasma would respond
initially ~i.e., within ideal MHD theory! by forming a
helical sheet current on the resonant surface. This sheet
current would then decay resistively, producing a mag-
netic island; when the width of this island exceeds the
very narrow resistive layer of linear tearing-mode theory,
it will be described by an appropriate generalization of
the slow-growing tearing-mode theory. In the present
context, we are interested in the case where the resonant
helical perturbation has mode numbers m and n for which
the tearing mode would be stable, i.e., for which D' is
negative. ~Accordingly, we henceforth write D'� �6D' 6.!

It is straightforward to extend the theory of weakly
nonlinear tearing modes32 to include an externally driven
island. Rather than introducing the external perturbation
explicitly, it is more convenient simply to describe it in
terms of the island width wext that would be produced
after resistive relaxation of the currents on the scale length
of the island but without the bootstrap current effects.
Adding the bootstrap current term as before, the island is
found to evolve according to

~m0 01.2h! dw0dt � �6D' 6 ~1 � wext
2 0w 2 !

� 3.2Cbs«
0.5bue~Li 0Lpe !0w . ~23!

Here we have also written Lq � �Li� �i'0i in order to
use the quantity i � 10q that is more appropriate to a
stellarator and to indicate that in this case the bootstrap
term is stabilizing. For a high-m mode, to a very good
approximation, we may use

D' � �2m0r . ~24!

The “skin time” for resistive relaxation of w toward wext

without bootstrap effects may now be estimated, namely
ts � ~m001.2h!~2wext r0m!.

The bootstrap current term is seen to be inversely
proportional to the island width w. This arises from the
implicit assumption that density and temperature gradi-
ents are completely flattened across the magnetic island,
thereby zeroing the bootstrap current within the island.
Since electron thermal conduction is by far the fastest
process of equilibration along field lines in high-
temperature plasmas, bootstrap current drive ~or healing!
of magnetic islands arises most effectively from the flat-
tening of the electron temperature gradient, with flatten-
ing of the density gradient being less effective. Since in
most practical cases ~including the cases considered here!
the electron temperature gradient provides the dominant
contribution to the bootstrap current anyway, because the
density profile is relatively flat, it is not unreasonable to
employ the full bootstrap current in calculations such as

these, but it should be recognized that this may give an
overestimate of the bootstrap current effect on magnetic
islands in some cases.

For very narrow islands, however, the path length
along the helical field lines becomes very long, and finite
~as distinct from effectively infinite! electron thermal
conduction along the field lines will prevent the electron
temperature from flattening fully across the island, thereby
reducing even the most effective process of bootstrap
current island drive or healing. This effect is introduced
into the theory50 by modifying the bootstrap current term
as follows:

10w ] w0~w 2 � w0
2! , ~25!

where we have defined a “critical island width” w0, namely

w0 � 5.1~x4 0x5 !0.25~RLi0mi! 0.5 . ~26!

Here, x4 and x5 are the perpendicular and parallel ther-
mal diffusivities, which control the degree to which the
temperature is flattened across the island.

Setting dw0dt � 0, we then find the following rela-
tion to describe the actual island width w in terms of wext

with bootstrap current effects included:

wext
2 0w 2 � 1 � 2wbs w0~w 2 � w0

2! , ~27!

where we have introduced an island width characterizing
the bootstrap current effect, namely

wbs � 1.6Cbs«
0.5bue~Li 0Lpe !06D' 6 . ~28!

IX.C. Assumed NCSX Parameters and Profiles

We have assumed the following parameters for the
reference NCSX high-beta plasma:

R � 1.4 m ,

a � 0.32 m ~average! ,

^b& � 4.2% ,

B0 � 1.2 T ,

and

^ne & � 5.8 � 1019 m�3 . ~29!

We have used density and temperature profiles that
correspond very closely to those resulting from transport
calculations for NCSX ~Ref. 52!, namely,

ne~r! � 7.8~1 � r 20a2 !0.35 ~1019 m�3 ! ,

Te~r! � 2.8~1 � r 20a2 !1.35 ~keV! ,

and

Ti ~r! � 1.9~1 � r 20a2 !0.75 ~keV! . ~30!
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The use of profiles that are parabolas raised to exponents
an and aT facilitates the calculation of the bootstrap cur-
rent from the relevant theory. We have used an iota pro-
file for the reference configuration for which the iota �
0.6 surface falls at r0a � 0.8. The only other quantity
needed from the iota profile is the local shear length,
which for this profile is given by Li0a � 0.7. It should be
noted that the shear length Li may be longer for iota
profiles that flatten or decrease toward the plasma edge.

IX.D. Bootstrap Current Magnitude

To evaluate the bootstrap current term, i.e., the char-
acteristic island width wbs, it is essential to have a good
estimate for the constant Cbs, since this can vary appre-
ciably depending on profiles and on plasma collisional-
ity. For present purposes, we have assumed the profiles
given above and have employed the Hinton-Rosenbluth
neoclassical theory for the “banana0plateau transi-
tion,”53 taking Zeff �1.5. We have allowed for Ti � Te and
have included both the ¹Te and ¹Ti contributions to the
bootstrap current. We obtain collisionality parameters ~at
the resonant surface r0a � 0.8! given by n*e � 0.49 and
n* i � 0.27. For the profiles assumed and for these colli-
sionality parameters, we then obtain Cbs � 1.37, which
gives

wbs 0a � 0.28 . ~31!

In practical units, the value of Cbs found here corre-
sponds to a bootstrap current density at the resonant sur-
face r0a � 0.8 given by jbs � 60 A0cm2. This value is
close to the peak of the bootstrap current density profile
in this case, because of the strong local pressure gradient
and modest collisionality in the region of the resonant
surface. This value agrees reasonably well with other
calculations of the bootstrap current density in the NCSX
reference configuration.

For the case considered here, the major contribution
to the bootstrap current arises from the electron temper-
ature gradient. This is partly because the density gradient
is relatively small and partly because the coefficient in
the transport matrix that multiplies the electron temper-
ature gradient falls off less strongly with collisionality
than does the coefficient multiplying the density gradi-
ent. The ion temperature gradient is found to make only
a small contribution to the bootstrap current.

IX.E. Critical Island Width w0

To evaluate the critical island width w0, we need
estimates for the perpendicular and parallel electron ther-
mal diffusivities. We obtain an estimate for x4 from its
relation to the energy confinement time tE . Using tE �
a204x4 together with the empirically projected energy
confinement time in NCSX of 25 ms, we obtain an esti-
mate x4' 1.0 m20s.

Obtaining a good estimate for x5 is trickier. We start
by calculating the Spitzer parallel electron thermal dif-
fusivity at the resonant surface; this gives x5

Sp ' 2.9 �
109 m20s. If we use this value in the expression for w0,
we would obtain w00a'0.02. However, at low collision-
ality, the electron mean free path typically exceeds the
parallel wavelength along the helical perturbations. In
such cases, the use of Spitzer thermal diffusivity may
lead to unphysically large parallel heat fluxes, and ther-
mal diffusion must effectively be replaced by thermal
convection, according to the relationship x5¹5

2 Te ]
vthe¹5Te, where vthe is the electron thermal velocity. The
quantity ¹5 is the inverse parallel wavelength along the
helical perturbation, which depends on the island width
w and can be estimated as ¹5 � ~mw0R! di0dr � miw0
RLi. Since x5 appears only to the one-quarter power, it is
not necessary to retain this explicit dependence on the
island width w and so, for present purposes, we simply
estimate it as w0a ' 0.05. For the “effective” thermal
diffusivity in this convection-limited regime, we obtain
x5

eff' 7.2 �107 m20s. If we use this value in the expres-
sion for w0, we would obtain w00a' 0.05 ~validating our
estimate used to obtain x5

eff !.
Without more theoretical work, it is not obvious which

value to use for w0. Almost certainly, the Spitzer thermal
diffusivity will overestimate parallel heat transport at
low collisionality. On the other hand, fast electrons may
still be able to equilibrate the temperature at a rate faster
than that given by convection at the thermal speed. Ac-
cordingly, it might be appropriate to take a range w00a �
0.03 to 0.04. In the calculation of the bootstrap island
effect given below, we have simply chosen an intermedi-
ate value, namely

w0 0a � 0.035 . ~32!

It has been pointed out54 that islands of widths less
than w0 would not be expected to have a seriously dele-
terious effect on confinement because transport from one
side of the island to the other along the direct path is
already larger than transport along the path that follows
the helical field lines. For the high-b NCSX reference
case, this effect would apply only to islands with widths
less than about 1 cm. However, the effect ~unlike the
bootstrap current! does not depend on the plasma beta
value, and it increases strongly with higher collisionality,
so it should apply particularly to low-temperature pre-
heated plasmas. The Spitzer parallel thermal diffusivity
scales as Te

2.5 , so a reduction in the temperature at the
resonance surface to 100 eV ~from 700 eV in the high-b
plasma!would result in an increase in w00a to about 0.08.
~Since parallel thermal convection scales much more
weakly with electron temperature than thermal diffusiv-
ity, we find that the Spitzer diffusivity would be the op-
erative process in this case.! This result suggests that in
low-temperature ohmic plasmas in NCSX, islands at the
iota � 0.6 surface as large as about 2.5 cm may not have
a seriously detrimental effect on confinement.
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IX.F. Results for NCSX Reference Case

The actual island widths w for a range of possible
“externally produced” island widths wext are given in
Table II. For this calculation, we have taken wbs0a � 0.28
and a value w00a � 0.035 ~see the preceding discus-
sions!. For external islands with widths in the range 2 to
6 cm ~i.e., 6 to 18% of the minor radius!, the bootstrap
current reduces the island width by almost a factor of 3.

IX.G. Conclusions Concerning Neoclassical Healing

The depletion of bootstrap current within the island
causes a substantial reduction in the width of the mag-
netic island caused by the dominant nonsymmetric field
“perturbation” in NCSX. Specifically, for the 4% beta
reference NCSX configuration, the bootstrap current
should reduce the width of the m0n � 503 islands at the
iota � 0.6 surface by almost a factor of 3.

The bootstrap current in NCSX is sufficient for this
purpose despite the relatively high collisionality of the
plasma, which puts the island region ~where n*e'0.5! in
the “banana plateau transition,” rather than “pure ba-
nana,” regime of neoclassical transport. For the cases
considered, the main contribution to the bootstrap cur-
rent comes from the electron temperature gradient, rather
than the density gradient. The key element in ensuring
sufficient bootstrap current is a relatively high value of
the local bue at the resonant surface together with a rel-
atively steep local electron pressure gradient.

X. CONCLUSIONS

The calculation of 3-D equilibria for stability and
transport assessments of candidate NCSX configurations
has been performed with the VMEC code. This code
makes the simplifying assumption that nested magnetic
flux surfaces exist, which greatly increases the speed of
the calculation. To calculate the 3-D equilibria with is-

lands and stochastic regions, the PIES code is used, which
relaxes the assumption of nested flux surfaces at the cost
of computational speed. Critical improvements have been
made to both VMEC and PIES during the course of the
NCSX design.

The PIES code has been used to improve the flux
surface quality of the reference configuration by guiding
the introduction of small modifications to the configura-
tion that reduce the resonant magnetic field components.
In fixed-boundary equilibria, the island content is re-
duced by alteration of the boundary, and in free-boundary
equilibria, the island content is reduced by variation of
the coil geometry.

The latter technique, termed coil healing, in essence
amounts to a free-boundary stellarator plasma-coil de-
sign algorithm, which adjusts the coil geometry to obtain
a plasma equilibrium with selected islands suppressed
while simultaneously preserving certain engineering con-
straints and stability measures. This method was used to
obtain the healed reference coil set M45h referred to
throughout this paper.

The flux surface quality of plasma configurations
generated by the healed coil set M45h have been exten-
sively studied. Using a multifilament coil description to
model the finite build of the coils, the PIES calculation
shows that the flux surface quality is improved relative to
that of the single-filament healed coils. Vacuum states
with various rotational transform profiles are shown that
confirm that the healed coils allow good flux surfaces in
the vacuum. Also, a comparison of the healed coils with
the unhealed coils for an alternative high-b configuration
from the start-up modeling shows that the healed coils
produce improved flux surface quality, relative to the
unhealed coils, for configurations for which the coils
were not optimized. Having reduced the amplitude of the
resonant magnetic field components produced by the coils
in the reference configuration, the flux surfaces are im-
proved in other configurations as well.

Finally, neoclassical and x40x5 effects are esti-
mated. Neoclassical effects are predicted to produce a
substantial reduction in the island widths relative to those
calculated by the PIES code. The effect of finite x40x5 is
to give a threshold island width w0 � 0.035a, below
which islands have little impact on confinement.

Including the corrections due to the finite neoclassi-
cal and x40x5 effects, an assessment of the flux surfaces
as calculated by PIES for a range of configurations, in-
cluding the reference configuration with single- and mul-
tifilament coils, five different vacuum configurations, and
five equilibria representing snapshots at different times
in a start-up scenario, indicate that the flux surfaces for
the healed coil set M45h are acceptable.
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TABLE II

Neoclassical Bootstrap-Healed Island Widths w for Various
Externally Generated Island Widths wext at the i� 0.6
Surface in the Reference NCSX High-b Configuration

wext

~cm!
w
~cm!

1.0 0.41
2.0 0.70
3.0 1.00
4.0 1.34
5.0 1.73
6.0 2.19
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