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Abstract

Global hybrid simulations of energetic particle effects on the n=1 internal

kink mode have been carried out for tokamaks. For the Internationa Ther-

monuclear Experimental Reactor (ITER) [ITER Physics Basis Editors et al,

Nucl. Fusion 3
¯
9, 2137 (1999).], it is shown that alpha particle effects are sta-

bilizing for the internal kink mode. However, the elongation of ITER reduces

the stabilization effects significantly. Nonlinear simulations of the preces-

sional drift fishbone instability for circular tokamak plasmas show that the

mode saturates due to flattening of the particle distribution function near the

resonance region. The mode frequency chirps down rapidly as the flattening

region expands radially outward. Fluid nonlinearity reduces the saturation

level.

I. INTRODUCTION

As we approach burning plasma experiments such as the Internationa Thermonuclear

Experimental Reactor (ITER) [1], the physics of energetic particles is an area of increasing

importance. A key issue is how energetic alpha particles would affect the bulk plasmas and
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whether alpha-driven Magnetohydrodynamics (MHD) instabilities will induce large alpha

particle transport and associated losses. To answer this question, we need self-consistent

numerical simulations which can predict alpha particle-driven instabilities in the new pa-

rameter regimes of burning plasmas. Towards this end, we have developed a particle/MHD

hybrid code, M3D, to study the physics of energetic particle-driven instabilities in present

and future fusion devices. In this work, we focus on energetic particle effects on the n=1

kink mode (where n is the toroidal mode number), namely, alpha particle stabilization of

the internal kink mode in ITER and the nonlinear dynamics of energetic particle-driven

fishbone instability in tokamaks.

The M3D code contains multiple levels of physics models including resistive MHD, two

fluids [3], and particle/MHD hybrid. In the present work, the particle/MHD hybrid model

is used. In this model, the plasma is divided into two parts: the bulk plasma (thermal

electrons and ions) and the energetic particles. The bulk plasma is treated as a single fluid

whereas the energetic particles are treated either as drift-kinetic or gyrokinetic particles.

The details of the model are described in the next section.

The original version of the M3D hybrid code has been applied to study nonlinear satura-

tion of energetic particle-driven Toroidal Alfvén Eigenmodes [4], stabilization of the internal

kink mode and the excitation of the fishbone instability [2]. Recently, we have extended

the hybrid level of M3D code to general 3D meshes by using linear finite elements in the

poloidal planes and finite differences in the toroidal direction [5]. These new capabilities

have enabled us to study energetic particle-driven modes in many types of fusion devices

including shaped tokamaks such as ITER, spherical tokamaks [6] and stellarators [7]. In this

work, we present results on alpha particle stabilization of internal kink mode in ITER and

on the nonlinear evolution of the fishbone instability.

The energetic particle stabilization of the internal kink mode has been studied extensively.

The stabilization comes from conservation of the third invariant when the energetic particle

precession frequency is much larger than the MHD growth rate [8,9]. Most previous work

[10–13] used analytic methods valid for large aspect ratio circular tokamaks. General shaped
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tokamak equilibria have been considered in a few studies only [14–16]. In this work, we

consider alpha particle stabilization of the internal kink in ITER. In particular, we study

shaping effects on the alpha stabilization. We find that the elongation of ITER significantly

reduces the stabilization compared to that of an equivalent tokamak with circular cross

section. In contrast, Wu, Cheng and White [15] found that elongation enhances alpha

stabilization. We believe the discrepancy arises because they ony considered the effect of

shaping on alpha particle’s precessional drift frequency. More details are discussed in Sec.

IV.

On the second topic of this paper, we have carried out extensive nonlinear simulations

of the fishbone instability driven by energetic particles in tokamaks. The fishbone is an

n = 1 internal mode with dominant poloidal mode number m = 1 which is resonantly

destabilized by energetic trapped particles. It was first discovered [17] in the Princeton

tokamak Divertor Experiments (PDX) in 1980. The name came from its characteristic

shape of the Mirnov magnetic signal. Since then, the instability has been observed in many

tokamaks and stellarators. Extensive theoretical work has been done over the years. There

were two early competing theories to explain the experimental observations. Chen et al.

[18] proposed that the mode is destabilized by energetic trapped ions via precessional drift

resonance(ω = ωd) and that the mode is intrinsically an energetic particle mode. Coppi

et al. [19] proposed that the mode is MHD-like with a frequency on the order of the thermal

ion’s diamagnetic drift frequency (ω = ω?i). More recently, the possibility of a fishbone

instability driven by the bounce resonance has also been proposed [20]. Finally, there is the

possibility of the fishbone being driven by circulating particles [21]. In this work, we focus

on the precessional drift branch due to its interesting nonlinear behavior.

Compared to linear theory, the nonlinear theory of the fishbone is less mature. Early work

used phenomelogical predator-prey models [18,22,23] to explain the mode saturation and

bursting due to resonant particle loss. More recently, Candy et al. [24] simulated a full cycle

of fishbone oscillations by using a simplified hybrid model where a fixed internal kink mode

structure was used. The fluid nonlinearity was neglected and the mode saturation was due
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entirely to the particle nonlinearity. On the other hand, Odblom et al. [25] investigated the

fluid nonlinearity of the fishbone instability while neglecting the particle nonlinearity. They

found that the fluid nonlinearity enhances the initial growth rate near marginal stability.

In this work, we use a fully self-consistent model which includes both particle and fluid

nonlinearities. The mode structure is self-consistently determined both in the linear and

nonlinear regime including energetic particle effects. We find that the nonlinear dynamics is

mainly determined by the particle nonlinearity. The mode saturates due to flattening of the

particle distribution in the resonance region. The mode frequency chirps down significantly

as the width of flattening region increases. The fluid nonlinearity is found to reduce the

saturation level.

The paper is organized as follows. Sec II. describes the hybrid model used in this work.

Sec. III describes the benchmarking of the M3D hybrid code. Sec. IV describes the results

for alpha particle stabilization of the internal kink mode in ITER. Sec. V describes the

results of nonlinear simulations of the fishbone instability. Finally, conclusions are given in

Sec. VI.

II. PARTICLE/MHD HYBRID MODEL

In this work, we use a particle/MHD hybrid model to describe the interaction of energetic

particles and MHD waves. In the model [2], the plasma is divided into two parts: the

thermal component and the energetic particle component. The thermal ions and electrons

are treated as a single fluid. The energetic species is treated as drift-kinetic particles or

gyrokinetic particles. The energetic particle effects enter through the particle stress tensor

Ph in the momentum equation:

ρ
dv

dt
= −∇P −∇ ·Ph + J×B . (1)

Equation (1) is closed by the Maxwell equations

J = ∇×B,
∂B

∂t
= −∇×E , (2)
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Ohm’s law

E + v ×B = ηJ , (3)

continuity equation for plasma mass density

dρ/dt = −ρ∇ · v. (4)

and the pressure equation for thermal species

dP/dt = −γP∇ · v. (5)

The particle stress tensor is taken to be in the Chew-Goldberger-Low (CGL) form

Ph = P⊥I + (P‖ − P⊥)bb , (6)

where the parallel and perpendicular pressure is calculated from the particle distribution

function F in the gyrocenter coordinates (X, v‖, µ):

P‖(x) =
∫

Mv2
‖δ(x−X− ρh)F (X, v‖, µ)d3Xdv‖dµdθ

P⊥(x) =
∫

1

2
Mv2

⊥δ(x−X− ρh)F (X, v‖, µ)d3Xdv‖dµdθ (7)

where ρh = v⊥ × b/Ω is the gyroradius vector, (x,v) is the particle physical space

coordinates, µ is the magnetic moment and θ is the gyroangle.

The gyrocenter distribution F is represented by an ensemble of markers as

f = f(X, v‖, µ) =
∑

i

δ(X−Xi)δ(v‖ − v‖,i)δ(µ− µi) (8)

The marker’s orbits follow from the gyrokinetic equations:

dX

dt
=

1

B??

[
v‖(B? − b0 × (< E > −1

e
µ∇(B0+ < δB >))

]
(9)

m
dv‖
dt

=
e

B??
B? · (< E > −1

e
µ∇(B0+ < δB >)) (10)

Here E is the total electric field, B is the total magnetic field, b0 is the unit vector in

the direction of the equilibrium magnetic field, and B0 and δB are the equilibrium and
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perturbed magnetic field respectively. Note that the bracket <> represents gyro-average.

The variables B? and B?? are given by

B? = B0+ < δB > +
mv‖
q
∇× b0, B?? = B? · b0 (11)

The system of coupled equations (1-11) is a complete particle/MHD hybrid model which

is self-consistent, three dimensional, and nonlinear. The coupled equations are solved as an

initial value problem. The δf method is used for the energetic particles. More details of the

δf method and the particle part of the code are given in the appendices.

It should be noted that the gyrokinetic equations (Eq. (9)) reduce to the drift kinetic

equations without gyro-average. For simplicity, all results presented here are obtained using

the drift kinetic model.

Finally, we note that similar hybrid models have been used by others in the simulations

of energetic particle-driven toroidal Alfvén eigenmodes [26,27].

III. BENCHMARKING OF THE M3D HYBRID CODE

The hybrid code M3D has been benchmarked extensively for both single particle orbits

and collective effects of energetic particles on internal kink mode, fishbone instability and

toroidal Alfvén eigenmodes. In particular, the new version of the code with unstructured

mesh has been benchmarked against the original Fourier version of M3D [2]. For single

particle orbits in tokamak equilibria, the particle energy and toroidal angular momentum are

well conserved. The calculated linear TAE mode frequencies and growth rates agree well with

those of the perturbative kinetic MHD linear eigenvalue code NOVA-K [28]. For a tokamak

equilibrium, the results of M3D agree well with the NOVA2 [14] code for an n=1 internal

kink mode and fishbone mode. Figure 1 compares the n=1 mode frequency and growth rates

of NOVA2 and M3D as a function of the energetic particle beta at the center of plasma. We

note that the agreement is quite good. The small difference could be caused by differences

in the models. The NOVA2 code is a non-perturbative version of the NOVA-K code which
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only includes the trapped particle response of the precessional resonance in the limit of zero

orbit width. The M3D code includes all wave particle resonances for both trapped and

passing particles and full drift orbits. Since the trapped particle precessional resonance is

the dominant response of energetic particles, we expect the differences in the models are not

important, as confirmed by Fig. 1. The results are obtained for a circular tokamak with

aspect ratio R/a = 2.763, total central beta βtotal(0) = 8.0%. The plasma density profile is

uniform and the bulk plasma pressure profile is given by P (Ψ) = P (0) exp(−Ψ/0.25) where

Ψ is the normalized poloidal flux variable with Ψ = 0 at the center and Ψ = 1 at the edge

of the plasma. The safety factor profile is given by

q = q0 + Ψ

[
q1 − q0 + (q′1 − q1 + q0)

(1−Ψs)(Ψ− 1)

Ψ−Ψs

]
(12)

where Ψs = (q′1 − q1 + q0)/(q
′
0 + q′1 − 2q1 + 2q0), q0 = 0.6, q1 = 2.5, q′0 = 0.78 and q′1 = 5.0.

An isotropic slowing-down distribution is used for energetic particles and is given by

f =
cH(v0 − v)

v3 + v3
c

exp(− < Ψ > /0.25) (13)

where v0 is the maximum particle speed, vc = 0.58v0 is the critical velocity, c is a normal-

ization factor, and < Ψ > is Ψ averaged over the particle orbit. Since the toroidal angular

momentum Pφ = eΨ + Mv‖RBφ/B is conserved, we can write

< Ψ >= Pφ/e− M

e
< v‖R

Bφ

B
> (14)

where e is the particle charge, M the mass. For simplicity, we make use of the approximations

< v‖R
Bφ

B
>≈ 0 (15)

for trapped particles and

< v‖R
Bφ

B
>≈ sign(v‖)

√
1− µB0/ER0 (16)

for passing particles, with B0 and R0 being the magnetic field strength and major radius

at the magnetic axis. Finally, the normalized particle gyroradius and speed is given by

ρh = v0/(Ωcha) = 0.0125 and v0/vA = 4 where Ωch = eB0/(Mc) is the energetic particle’s

cyclotron frequency.
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IV. ALPHA PARTICLE STABILIZATION OF INTERNAL KINK MODE IN ITER

We now consider the effects of fusion alpha particles on the stability of the internal kink

mode in burning plasmas. Specifically, we consider parameters and profiles of ITER. It is

well known that energetic particles such as high energy alpha particles have a significant

stabilization effect on the internal kink mode. There have been many previous studies related

to this physics. However, most of the previous work assumed large aspect ratio and circular

flux surfaces. Here, we apply the M3D hybrid code, which can treat arbitrary aspect ratio

and shaped plasma cross sections. We find that cross section elongation is an important

effect for the alpha particle stabilization of the internal kink.

The alpha particle stabilization of the internal kink can be described in the limit of small

alpha particle beta as follows:

γ

ωA
=

γMHD

ωA
− βα(0)δWα , (17)

here ωA is the shear Alfvén frequency, γ is the net growth rate, γMHD is the MHD growth

rate including alpha’s pressure effects, βα(0) is the central alpha beta, and δWα is an order

of unity numerical factor which represents the stabilizing effects of alpha particle’s non-

adiabatic response. In the limit of large aspect ratio, circular geometry and 1− q(0) << 1,

δWα can be written as [13]:

δWα = −
√

3π

8s1

√
R

r

∫ r1

0
rdr[(0.6 + 3.2(1− q − 0.5s))(

r

r1

)1.5 dp̂α

dr
] (18)

where r = r1 is the minor radius at which q(r1) = 1.0, s1 is the magnetic shear at r = r1,

and p̂α is the alpha pressure normalized to unity at the center. This analytic result agrees

well with our numerical results for a model tokamak equilibrium with circular flux surfaces.

We now consider the case of ITER. The main parameters and profiles, obtained from

a TRANSP simulation [29], are as follows: B = 5.05T , R = 620cm, a = 200cm, electron

density ne(0) = 1.014cm−3, Ti(0) = 19kev, Te(0) = 23kev, central total beta β(0) = 6.5%,
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βα(0) = 1%, q(0) ∼ 0.9, q(a) = 3.83. The alpha particle distribution is a slowing-down

function given by Eq. (13). Using these parameters and profiles, linear simulations have

been carried out to determine the alpha particle stabilization effects. Figure 2 shows the

n=1 internal kink eigenmode structure with (right) and without (left) alpha particles. The

MHD growth rate γMHD/ωA = 0.0070 is reduced to γ/ωA = 0.0039 with alpha particles,

which corresponds to δWα = 0.31. However, the simple analytic estimate in Eq. 18 gives

δWα = 0.82 which is much larger. We have shown analytically and numerically that this

discrepancy is mainly due to the elongation of the ITER plasma shape. To illustrate the

importance of this effect, Fig. 3 shows δWα as a function of elongation at zero triangularity

while all other parameters and profiles are fixed. We observe that the stabilization effects of

alpha particles decreases as elongation increases. At the full ITER shape (elongation=1.8),

alpha particle stabilization is reduced by a factor of 2.5 as compared to the circular shape

case. This result shows that the elongation of plasma shape is an important factor for the

alpha particle stabilization of the internal kink mode and it must be taken into account for

realistic modeling of the internal kink stability and sawteeth in ITER.

It should be pointed out that our results of shaping effects are opposite to that found by

Wu, Cheng and White. They found that shaping (mainly elongation) enhances the alpha

particle stabilizing. The results were obtained from an analytic dispersion relation which

showed δWk is proportional to a weighted average of ω?α/ωdα. In their work, elongation

effects are retained only in the alpha precessional drift frequency ωdα. The alpha’s diamag-

netic drift frequency ω?α was held fixed. Since ωdα in proportional to 1/κ to lowest order

(where κ is elongation), this effect of elongation was found to enhance the alpha particle

stabilization. However, it can be shown that ω?α is also proportional to 1/κ for fixed alpha

pressure profile. Thus, the dependence of ω?α on elongation nearly cancels the that of ωdα.

We find that our results of elongation effects can be explained in part by a higher order κ

dependence of ωdα and by a κ dependence of the inertial term in the fishbone dispersion

relation. An analytic derivation of this elongation effect will be reported elsewhere.
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V. FISHBONE INSTABILITY

The fishbone instability was first discovered in the PDX tokamak. The name ”fishbone”

came from the characteristic shape of the magnetic signal from the Mirnov coils. It is

basically an (n, m) = (1, 1) internal kink mode destabilized by energetic trapped particles

via precessional resonance. Here we use the M3D hybrid code to study the excitation and

nonlinear evolution of the fishbone instability driven by energetic particles. In particular,

we investigate the nonlinear dynamics of the instability self-consistently.

We start with linear simulations. We consider a sequence of circular tokamak equilibria

with increasing energetic particle pressure. The plasma parameters and profiles are the same

as in Sec. III except the q profile is specified by q0 = 0.9, q1 = 2.5, q′0 = 0.78 and q′1 = 5.0.

The energetic particle distribution is an isotropic slowing-down one given by Eq. (13) with

ρh/a = 0.05 and v0/vA = 1. Figure 4 plots the fishbone growth rate and mode frequency

versus energetic particle beta βh(0) from three cases: A) βh(0) = 2.6%,B) βh(0) = 4.3%,

and C) βh(0) = 5.7%. The plasma thermal beta is very small, with βh/βtotal ∼ 0.9 for all

these cases. Figure 5 shows the velocity stream function U and the non-adiabatic part of

perturbed energetic particle pressure δP‖ and δP⊥ of the linear eigenmode for case B. We

observe that the eigenmode structure is mainly a (1, 1) mode as expected. We also observe

in Fig. 4 that the growth rate increases approximately linearly as a function of βh(0) while

the mode frequency varies slightly about ω ∼ 0.04. This frequency is comparable to the

nominal energetic particle precessional frequency ωd/ωA ∼ 1
2
kθρhvh/vA ∼ 0.05. These results

are consistent with analytic results for the fishbone instability.

We now turn to nonlinear simulation results. We first focus on the particle nonlinearity

by imposing a linear MHD response from the thermal species. Figure 6 shows the nonlinear

evolution of Ucos (the cosφ component of U) for case A, B and C. Figure 7 shows the

corresponding evolution of ln(|U |) where |U | =
√

U2
cos + U2

sin is the amplitude of U . We

observe that the mode first grows linearly (seen more clearly in Fig. 7) and then begins to

saturate after a few oscillations. The initial saturation amplitude scales as Uamp ∼ γ2 as
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shown in Fig. 8. It is interesting to note that after the initial saturation, the mode amplitude

can oscillate (case A with smallest growth rate), or decay slowly (case B) or decay rapidly

(case C with largest linear growth rate). We also observe that the frequency of the mode

chirps down significantly as the mode oscillation period increases for all these cases. This

can be clearly seen in Fig. 9 where we plot the mode frequency versus time. We observe up

to a factor of two reduction in mode frequency at the end the simulation runs. It should be

pointed out that the calculated mode frequency is evaluated from the rate of phase change

of U averaged over ∆t = 45.

It is interesting to ask whether the mode structure changes significantly during the

nonlinear evolution. Figure 10 plots contours of U at three times: t = 297 (top, linear

stage), t = 594 (middle, inial saturation) and t = 1578 (late stage of nonlinear evolution),

for case B. We note that the mode structure at the initial saturation is similar to the linear

eigenmode, but the mode structure changes significantly at later stage of the evolution. This

is actually not surprising since the mode frequency has changed by a large amount by that

time.

We now investigate the physical mechanism for saturation and mode frequency chirping.

Figure 11 shows the evolution of the energetic particle distribution at particle speed v/vA ∼
0.8 and pitch angle Λ = µB0/E ∼ 1.0. Note that the horizontal axis Pφ corresponds

to a radial variable ranging from -0.42 at the center of plasma to 0 at the plasma edge.

We observe that the distribution becomes flattened starting from t ∼ 500 when the mode

frequency begins to chirp down rapidly. Furthermore, the flattening region widens clearly

from this time. Notice that the shoulder of the flattening region moves out radially in time.

Since the instability is driven by df/dPφ, the initial saturation is caused by the nonlinear

flattening of the distribution. On the other hand, the frequency chirping can be explained

by the movement of the shoulder in the distribution function. In the nonlinear evolution,

we expect the mode frequency evolves according to the distribution evolution in order to

maximize instability drive. In particular, we expect that the maximum drive comes from the

steep gradient region just outside the shoulder region. Since the precession drift frequency
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of trapped particles at fixed energy and pitch angle is smaller for larger Pφ (or larger radius),

the mode frequency needs to decrease in time as the steep gradient region moves out radially

in order to satisfy the resonant condition ω = ωd and tap the free energy associated with

the df/dPφ.

So far, we have neglected the MHD nonlinearity in the nonlinear simulations. We have

also carried out simulations with both particle nonlinearity and MHD nonlinearity. Figure

12 compares fishbone amplitude evolutions with (dashed line) and without (solid line) MHD

nonlinearity. The results are obtained for another fishbone case with ω/ωA = 0.078 and

γ/ωA = 0.017. We observe that the MHD nonlinearity reduces the initial saturation level.

However, the MHD nonlinearity does not enhance the initial mode growth in contrast to the

results of Odblom et al [25]. In the work of Odblom et al, the MHD nonlinear enhancement

of the initial mode growth was found near marginal stability when the linear mode had a

double layer radial structure around the q=1 surface. In this work, however, the linear mode

has a single layer structure around the q=1 surface due to finite numerical viscosity. Results

of nonlinear cases with small viscosity will be reported in future.

A word on the numerical resolution is in order here. For the simulation results presented

in this work, we typically used about 61 radial zones, 7000 mesh points in a poloidal plane,

and 16 toroidal zones. Up to 8 million simulation particles have been used. It is found that

this numerical resolution and particle number are sufficient for the cases considered above.

Compared to the previous work of Candy et al. [24], the present work is more self-

consistent and comprehensive. Candy et al. used a reduced model where the mode structures

was assumed to be fixed and a simple dispersion relation for the fishbone mode was used to

evolve the mode amplitude. In the work presented here, we used the full MHD equations

together with energetic particle effects. The mode structure is self-consistently determined as

the instability evolves nonlinearly. Our results agree with theirs in that we both find strong

frequency chirping. However, our saturation levels are much higher. For example, for the

case A with lowest growth rate, the saturation level in terms of plasma radial displacement

is around ξr/a ∼ 0.24.
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Finally it should be pointed out that our results for the nonlinear fishbone is qualita-

tively similar to the hole-clump theory of the bump-in-tail instability by Berk et al [30]. In

particular, the nonlinear frequency evolution in Fig. 10 approximately scales as δf ∼ √
t as

found analytically by their theory. Of course, quantitative agreement is not expected since

our model is much more comprehensive and self-consistent.

VI. CONCLUSIONS

We have performed global hybrid simulations of the n=1 internal kink mode in the pres-

ence of energetic particles using the M3D hybrid code. For ITER parameters and profiles, the

effects of alpha particles are stabilizing. However, the elongation of ITER strongly reduces

the alpha stabilization effects. Thus, shaping effects should be retained in the modeling of

internal kink stability and related sawteeth oscillations for ITER. On the second topic of this

work, we have investigated the nonlinear dynamics of the fishbone instability in tokamaks.

Our model is self-consistent, including both particle nonlinearity and MHD nonlinearity.

The mode structure is self-consistently determined together with energetic particle effects.

It is found that nonlinear flattening of the particle distribution function near the resonance

region leads to mode saturation and strong downward frequency chirping. Thus, particle

nonlinearity alone can account for the characteristic feature of experimental observations.

The MHD nonlinerity reduces the initial saturation level.
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APPENDIX A: COORDINATES, FIELD VARIABLES AND DISCRETIZATION

The cylindrical coordinates (R, Z, φ) are used as the spacial coordinates for the M3D

code. In this coordinates, the magnetic field and plasma velocity is written as

B = ∇Ψ×∇φ +
1

R
∇⊥F +

I

ε
∇φ (A1)

and

v = εR2∇u×∇φ +∇⊥χ + Rvφ∇φ (A2)

where

∇⊥ = ∇R
∂

∂R
+∇Z

∂

∂Z
(A3)

and ε = a/R0.

The time evolution equations are solved for nine independent variables Ψ, I , u, χ, vφ, P ,

and ρ, P‖ and P⊥. Note that F is related to I from zero divergence of the magnetic field.

A linear triangle finite element method is used in the poloidal plane (i.e., in (R, Z) space)

and a 4th order finite difference method is used in toroidal direction.

APPENDIX B: δF METHOD

A δf method is used to reduce particle noise in hybrid simulations. In this method, the

full particle distribution is written as f = f0 + δf where f0 is the equilibrium distribution

and δf is the perturbed one. We define a weight w = δf/g where g is the distribution of

loaded simulation particles (or markers). The evolution equation for the weight is

14



dw

dt
= −(

f

g
− w)

1

f0

df0

dt
(B1)

The equilibrium distribution is expressed as a function of the constants of motion:

f0 = f0(Pφ, E, µ) (B2)

where Pφ is the toroidal angular momentum, E the energy and µ is the magnetic moment.

Then

df0

dt
=

dPφ

dt

∂f0

∂Pφ
+

dE

dt

∂f0

∂E
(B3)

where

dE

dt
= evd· < E > +Mµ

d < δB >

dt
(B4)

dPφ

dt
= (

dX

dt
)1 · ∇Pφ + (

dv‖
dt

)1
∂Pφ

∂v‖
(B5)

(
dX

dt
)1 =

1

B??

[
v‖(δB− b0 × (< δE > −1

e
µ∇ < δB >

]
(B6)

m(
dv‖
dt

)1 =
e

B??
δB · (< E > −1

e
µ∇(B0+ < δB >)) +

e

B??
0

B? · (< δE > −1

e
µ∇ < δB >) (B7)

where the subscript 1 denotes the perturbed part. In term of particle weight, the perturbed

parallel and perpendicular pressure is given by

δP‖(x) =
∫

Mv2
‖δ(x−X − ρh)(w +

δB??

B??
(
f

g
− w))B??gd3Xdv‖dµdθ

δP⊥(x) =
∫ 1

2
Mv2

⊥δ(x−X− ρh)(w +
δB??

B??
(
f

g
− w) +

δB

B

f

g
)B??gd3Xdv‖dµdθ (B8)

APPENDIX C: PARTICLE CALCULATIONS WITH UNSTRUCTURED MESH

Here we briefly describe the numerical methods used in the particle part of the hybrid

code. This part of code consists of three main steps: (a) particle loading; (b) particle pushing;

15



and (c) calculations of P‖ and P⊥. In the particle part, we use the same unstructured mesh

and triangle elements as in the fluid part of the code. In order to push particles and to

calculate the particle pressure, it is essential to locate which triangle cell each particle is

in. To aid particle search, we use an auxiliary set of coordinates (x, y, φ) in addition to

the cylindrical coordinates (R, Z, φ) for particles. This set of (x, y, φ) is related to the flux

coordinates (s, θ, φ) as follows:

x =
√

scos(θ)

y =
√

ssin(θ) (C1)

where s is chosen to be the normalized toroidal flux. We carry out particle search in this

coordinates because the unstructured mesh is constructed based on the flux coordinates.

Once (x, y, φ) is known for a particle, it is quite straightforward to determine which cell it

is in.

First, we consider particle loading. In general we can use any marker distribution g. For

convenience, we usually load particles uniformly in (R, Z, φ, v‖, v2
⊥) space. This corresponds

to a marker distribution of g = B/B??.

Second, we describe particle pushing. We use the Leap-Frog scheme to push particles

according Eq. (9). To do this, we need to evaluate fields at each particle position. For any

field (e.g., B), the value at the particle location can be determined by

B(x, y, φ) =
∑
i,j

ci,jB(i, j) (C2)

where B(i, j) is the value of B at jth toroidal angle and ith vertice ofthe triangle cell in

which the particle is located. The weight coefficients ci,j are determined by particle location

(x, y, φ). We advance each particle both in the cylindrical coordinates and the (x, y, φ)

coordinates. The evolution equations for (R, Z, φ) follows directly from Eq. (9). The

equations in (x, y, φ) coordinates can be obtained by using chain rule:

dx

dt
= (

dR

dt
− dφ

dt

∂R

∂φ
)
∂x

∂R
+ (

dZ

dt
− dφ

dt

∂Z

∂φ
)
∂x

∂Z
dy

dt
= (

dR

dt
− dφ

dt

∂R

∂φ
)
∂y

∂R
+ (

dZ

dt
− dφ

dt

∂Z

∂φ
)
∂y

∂Z
(C3)
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Finally, the perturbed particle pressures can be determined straightforwardly by using

Eq. (B8) and the weight coefficients as follows:

δP‖ =
∑
k

Mv2
‖(wk +

δB??

B??
(
fk

gk
− wk))ci,j/dVi

δP⊥ =
∑
k

1

2
Mv2

⊥(w +
δB??

B??
(
f

g
− w) +

δB

B

f

g
)ci,j/dVi (C4)

in the limit of zero-gyroradius. Here subscript k is the particle index and dVi is the volume

associated with the kth particle’s triangle cell.
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FIG. 1. The growth rate (top) and frequency (bottom) of the n = 1 mode as a function of

energetic particle beta fraction

FIG. 2. The n=1 internal kink mode structure with (right) and without(left) alpha particles.
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FIG. 3. The alpha particle stabilizing contribution δWα as a function of elongation.
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FIG. 4. The fishbone mode frequency and growth rate versus energetic particle beta.

21



FIG. 5. The contours of the fishbone linear eigenmode for velocity stream function U and the

perturbed energetic particle pressure δP‖ and δP⊥.
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FIG. 6. Nonlinear evolution of the cos component of U for case A (upper plot), B (middle plot)

and C (lower plot).
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FIG. 7. The nonlinear evolution of the mode amplitude ln|U | for case A (upper), B (middle)

and C (lower).
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FIG. 8. The initial saturation amplitude of U versus 50γ2.

0 200 400 600 800 1000 1200 1400 1600
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

time

fr
eq

ue
nc

y

FIG. 9. The nonlinear evolution of the fishbone mode frequency for case B.
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FIG. 10. The fishbone mode structure of U for case B at three time slices: (a)in linear stage

at t = 297, (b)near initial saturation at t = 594, and (c)in late nonlinear stage at t = 1578.
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FIG. 11. The trapped particle distribution function versus time at v/vA = 0.8 and Λ = 1.0.
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FIG. 12. The evolution of the mode amplitude ln|U | with (dashed line) and without (solid line)

fluid nonlinearity.
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