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 Quantitative benchmarks of computational physics codes against experiment are 

essential for the credible application of such codes. Fluctuation measurements can provide 

necessary critical tests of nonlinear gyrokinetic simulations, but such require extraordinary 
computational resources. Linear microstability calculations with the GS2 [1] gyrokinetic code 

have been carried out for tokamak and ST experiments which exhibit internal transport 
barriers (ITB) and good plasma confinement. Qualitative correlation is found for improved 

confinement before and during ITB plasmas on Alcator C-Mod [2] and NSTX [3] with 

weaker long wavelength microinstabilities in the plasma core regions.  Mixing length 
transport models are discussed. The NSTX L-mode is found to be near marginal stability for 

kinetic ballooning modes. 

Fully electromagnetic, linear, gyrokinetic calculations of the Alcator C-Mod ITB 

during off-axis rf heating, following four plasma species and including the complete electron 

response show ITG/TEM microturbulence is suppressed in the plasma core and in the barrier 

region before barrier formation, without recourse to the usual requirements of velocity shear 

or reversed magnetic shear [4-5]. No strongly growing long or short wavelength drift modes 

are found in the plasma core but strong ITG/TEM and ETG drift wave turbulence is found 

outside the barrier region. Linear microstability analysis is qualitatively consistent with the 

experimental transport analysis, showing low transport inside and high transport outside the 

ITB region before barrier formation, without consideration of ExB shear stabilization.  

 Calculations of the ITG mode instability threshold and the dependence of instability 
on temperature and density scaling length have been used to test the GS2 gyrokinetic model 

for ITG microturbulence on C-Mod [4-5]. Transport analysis at the ITB onset time in H-

mode experiments [6] is in rough agreement with the linear mixing length model γ/<k⊥2>. 

The mixing length estimates exceed experimental estimates of transport by less than a factor 
of two and are in agreement with experiment in the plasma core (see Table I).  GS2 



calculations were also used to verify an algebraic, computationally-based model for the ITG 

instability threshold [7] and standard analytic models [8, 9].  Agreement of these threshold 
models (within 40%) with the critical temperature threshold obtained with the more complete 

physics of the GS2 code verifies that these standard models are approximately correct.  
Figure 1 shows a phase diagram for ITG/TEM instability for C-Mod at ITB onset in the 

barrier region on which are mapped the locations for linear GS2 calculations.  The topology 

of the diagram, adapted from Ref. 10, is preserved but for this case, the critical ITG 
temperature threshold is 6.9, rather than 2.5 as in Ref. 10. Considering experimental errors of 

10-20%, and even larger errors in plasma gradients, these differences are not remarkable. 
 Definitive testing of gyrokinetics is much more difficult for NSTX than for C-Mod, 

since the potentially most dangerous, long wavelength modes are not ITG/TEM only. The 

new microtearing modes may cause significant transport. NSTX L-mode plasmas are found 
to exhibit improved electron transport [11] and less strongly destabilized microtearing than 

do H-modes. ETG and microtearing modes dominate in different regions of NSTX plasmas 

and so appear to compete for the same free energy source. Further, new calculations show 
that L-mode plasma is just below the critical threshold for kinetic ballooning modes (Fig. 2). 

The linear microstability of a slow current ramp, low density L-mode pulse #112996 was 
studied at a selected radius, r/a=0.55, using an equilibrium based on experimental data.  At 

this radius, where the local beta is 9%, the ITG/TEM modes are unstable, and the KBM is 

near marginal stability. A self-consistent beta scan, based on a Miller model MHD 
equilibrium, indicates that the critical beta is 11% for strongly growing kinetic ballooning 

modes. The toroidal mode numbers and the real frequency are of the order of those expected 
for the KBM, with the growth rates peaking when the mode number is in the range 6 to 9. 

 Initial gyrokinetic calculations of this NSTX L-mode at an earlier time [11] show that 

for r/a = 0.35 the microtearing is maximum at 0.3 k⊥ρs.  At r/a = 0.45 the maximum ITG 

growth rate occurs at 0.3 k⊥ρs and ETG peaks at 20 k⊥ρs. At r/a = 0.65, ITG is most strongly 

growing at 0.7 k⊥ρs and ETG is maximum at 30 k⊥ρs. Other modes are not found to be 

unstable.   
 The effect of temperature gradients and magnetic shear variations on microstability 

was also studied at r/a=0.35 with fully electromagnetic calculations following four plasma 

species and including the complete electron response. In this case however, analytic Miller-
type equilibria were used, rather than numerical equilibria. At this radius the local β is 19%. 

The calculations lead to microtearing modes and ITG/TEM modes, in addition to other 



electromagnetic modes of longer wavelength and even parity, which rotate in the ion 

diamagnetic direction (possibly kink modes).  Core microtearing modes have been found 
unstable in every NSTX plasma examined, unless the plasma has reversed shear or is 

assumed collisionless [12, 13]. Figures 3-4 show the effects of a scan of both magnetic shear 
and temperature scale length variations on the ITG/TEM and microtearing long wavelength 

modes. As expected, microtearing is destabilized for positive temperature gradients and low 

magnetic shear (Fig. 3) while ITG is destabilized by reversed temperature gradients and low 
magnetic shear (Fig. 4). A more complex mixing length model than applied to the C-Mod 

case will be needed for NSTX, to properly include all the long wavelength modes.  
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Table I.  Comparison of linear ITG mixing length model transport coefficients to anomalous 

transport coefficients derived from transport analysis of experiment 
   r/a       0.25             0.45  0.65 

χmix = γ/<k⊥2>   (m2/s)                0                     0.76                1.04 

χeff -χi
Chang-Hinton  (m2/s)                 0                     0.4                   0.8          
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