PPPL-4039

PPPL-4039

Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Years 2002 and 2003

Prepared by: Virgina L. Finley

December 2004

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073.

PPPL Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

PPPL Report Availability

This report is posted on the U.S. Department of Energy's Princeton Plasma Physics Laboratory Publications and Reports web site in Fiscal Year 2005. The home page for PPPL Reports and Publications is: http://www.pppl.gov/pub_report/

Office of Scientific and Technical Information (OSTI):

Available electronically at: http://www.osti.gov/bridge.

Available for a processing fee to U.S. Department of Energy and its contractors, in paper from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062

Telephone: (865) 576-8401 Fax: (865) 576-5728 E-mail: reports@adonis.osti.gov

National Technical Information Service (NTIS):

This report is available for sale to the general public from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

Telephone: (800) 553-6847 Fax: (703) 605-6900 Email: orders@ntis.fedworld.gov Online ordering: http://www.ntis.gov/ordering.htm

ANNUAL SITE ENVIRONMENTAL REPORT FOR CALENDAR YEARS 2002 AND 2003

Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, New Jersey 08543

Prepared by: Virginia L. Finley Operated by Princeton University For the U.S. Department of Energy Under Contract DE-AC02-76-CHO-3073 See http://www.pppl.gov This page is intentionally blank.

Table of Contents

			<u>Page</u>
1.0	EXECUT	TIVE SUMMARY	1
2.0	INTROI	DUCTION	5
2.1	Site Miss	510n	5
2.2	Site Loca	ition	5
2.3	General Environmental Setting		
2.4	Primary	Operations and Activities	9
2.5	Relevant	Demographic Information	10
3.0	2002 and	1 2003 COMPLIANCE SUMMARY	11
3.1	Environ	mental Restoration and Waste Management	11
	3.1.1	Liability Act (CERCLA)	
	312	Resource Conservation and Recovery Act (RCRA) and Solid Waste	11
	313	Federal Facility Compliance Act (FFCA)	14
	314	National Environmental Policy Act (NEPA)	14
	3.1.5	Toxic Substance Control Act (TSCA)	11
	3.1.6	Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)	
	3.1.7	Spill Prevention Control and Countermeasure (SPCC)	
3.2	Radiatio	n Protection	15
	3.2.1	DOE Order 5400.5 "Radiation Protection of the Public	
		and the Environment"	15
	3.2.2	DOE Order 435.1 "Radioactive Waste Management"	17
	3.2.3	Atomic Energy Act (AEA) of 1954	17
3.3	Air Qua	lity and Protection	17
	3.3.1	Clean Air Act (CAA)	17
	3.3.2	National Emission Standards for Hazardous Air Pollutants (NESHAPs)	19
3.4	Water Q	uality and Protection	21
	3.4.1	Clean Water Act (CWA)	21
	3.4.2	National Pollutant Discharge Elimination System (NPDES)	21
	3.4.3	Safe Drinking Water Act (SDWA)	22
3.5	Other Er	nvironmental Statutes	22
	3.5.1	Endangered Species Act (ESA)	20
	3.52	Migratory Bird Treaty Act	22
	3.5.3	National Historic Preservation Act (NHPA)	22
3.6	DOE Or	der 450.1 Environmental Protection Program	22
	3.6.1	Pollution Prevention Activities	22
	3.6.2	Site Environmental Compliance and EMS Auditss	23
	3.6.3	Benefical Landscape	23
	3.6.4	Progress on Secretarial Goals Including Ozone-Depleting Substance Reduction	23
3.7	Executiv	e Orders (EO)	25
	3.7.1	Executive Orders (EO) 13148, "Greening the Government through Leadership	
		in Environ mental Management"	25
	3.7.2	Executive Orders (EO) 11988, "Floodplain Management"	25
	3.7.3	Executive Orders (EO) 11990, "Protection of Wetlands"	25
	3.7.4	Executive Orders (EO) 12856, "Federal Compliance with Right-to-Know and	
		Pollution Prevention Requirements," and Superfund Amendments and Reautho	r-
		zation Act (SARA) Title III, Emergency Planning and Community Right-to-Knov	v oz
0.0		ACT (EPCKA)	27
3.8	Other M	ajor Issues and Actions	28
	3.8.1	Air Quality	
	3.8.2	Surrace vvater Quality	28
	3.8.3	Ground-Water Quality	30
	3.8.4 2.8 F	Outreach 2002-oth and 2003 -/thAnnual Earth Day	
	3.8.3 2.9.6	Facility improvements	3L 21
	3.8.0	Saltly	31

			Page	
3.9	Continue	bus Release Reporting	31	
3.10	Unplan	ned Releases	31	
3.11	Current Issues and Actions			
	3.11.1	Environmental Management System	32	
3.12	Summa	ry of Environmental Permits	32	
4.0	ENVIR	ONMENTAL PROGRAM INFORMATION	35	
4.1	Environ	mental Management System and Environmental Protection Program	35	
	4.1.1	Environmental Management System (EMS)	35	
	4.1.2	Environmental Protection Program (EPP)	35	
4.2	Summa	ry of Radiological Monitoring Program	36	
4.3	Summa	ry of Non-Radiological Monitoring Program	39	
4.4	Environ	mental Requirements	39	
4.5	Environ	mental Impact Statements and Environmental Assessments	39	
4.6	Summa	ry of Significant Environmental Activities at PPPL	39	
	4.6.1	Regulatory Inspections/Audits	39	
	4.6.2	Basin Management	40	
	4.6.3	Tritium in the Environment	40	
	4.6.4	TFTR & PBX-M Make Way for NCSX	41	
	4.6.5	Occupational Safety & Health Administration Inspection	42	
	4.6.6	Environmental Training and College Interns	42	
5.0	ENVIR	ONMENTAL RADIOLOGICAL PROGRAM INFORMATION	44	
5.1	Radiolo	gical Emissions and Doses	44	
	5.1.1	Penetrating Radiation	45	
	5.1.2	Sanitary Sewage		
	5.1.3	Radioactive and Mixed Waste		
	5.1.4	Airborne Emissions		
5.2	Release	of Property Containing Residual Radioactive Material	48	
5.3	Protecti	on of Biota	49	
5.4	Unplan	ned Releases	49	
5.5	Environ	mental Radiological Monitoring	49	
	5.5.1	Waterborne Radioactivity	49	
	5.5.2	Foodstuffs, Soil, and Vegetation	51	
6.0	ENVIR	ONMENTAL NON-RADIOLOGICAL PROGRAM INFORMATION	52	
6.1	New Jei	sey Pollutant Discharge Elimination System (NJPDES) Program	52	
	6.1.1	Surface and Storm Water	52	
	6.1.2	Chronic Toxicity Characterization Study	52	
	6.1.3	Ground Water	53	
6.2	Non-Ra	diological Programs	54	
	6.2.1	Non-Radiological Emissions Monitoring Programs	54	
	6.2.2	Continuous Release Reporting	57	
	6.2.3	Environmental Occurrences	57	
	6.2.4	SARA Title III Reporting Requirements	58	
7.0	SITE H	YDROLOGY, GROUNDWATER MONITORING, AND PUBLIC		
	DRINK	ING WATER PROTECTION	59	
8.0	QUALI	TY ASSURANCE	68	
9.0	ACKNO	DWLEDGEMENTS	70	
10.0	REFER	ENCES	71	
Appe	endix A.	TABLES	78	
Appendix B. REPORT DISTRIBUTION LIST				
List o	of Acrony	/ms	iii	
List o	of Exhibi	ts Contained in Text	vi	
PPPI	Certific	ation of Monitoring Data for Annual Site Environmental Report for 2002 and 2003	viii	

List of Acronyms

AEA	Atomic Energy Act of 1954
ALARA	as low as reasonably achievable
APEC	area of potential environmental concern
ARD	America Recycles Day (November 15 th annually)
AST	above-around storage tank
R1 R2	Bee Brock 1 (unstream of DSN001) and 2 (downstream of DSN001) (surface water stations)
	Burning Plane Experiment
DFA	
Вd	Becquerel
BTEX	Benzene, toluene, ethyl benzene, and xylenes
С	C site of James Forrestal Campus, part of PPPL site
CAA	Clean Air Act
СААА	Clean Air Act Amendments of 1990
CAS	Coil Assembly and Storage Building
	Calibration and Sonico Laboratory
CAJL	
	Content Dive Experiment – upgrade (di FFFC)
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CEQ	Council on Environmental Quality
CFCs	chlorofluorocarbons
CFR	Code of Federal Regulations
Ci	Curie (3.7 ^{E10} Becquerel)
cm	centimeter
	chemical ovvaen demand
CDO	chemical oxygen denidants as known as total residual oblaring
CFU	
CS	C site Stellarator (PPPL)
CWA	Clean Water Act
CY	calendar year
D	deuterium
D&D	deconstruction and decontamination
D-D	deuterium-deuterium
	doutorium tritium
D-II, D-IZ	determion basin monitoring weils number 11 and 12
DAIS	differential atmospheric tritium sampler
DMR	discharge monitoring report
DOE	Department of Energy
DOE-CH	Department of Energy - Chicago Operations Office
DOF-FH	Department of Energy – Environment Safety and Health
	Department of Energy – Environmental Management
	Department of Energy - Livionmentaria
	Deputitient of Energy - neudopointers
DOE-OFES	Department of Energy - Office of Fusion Energy Sciences
doe-pso	Department of Energy - Princeton Site Office
D&R	Delaware & Raritan (Canal)
DRCC	Delaware & Raritan Canal Commission
DSN	discharae serial number
F1	Elizabethtown Water (Potable water supplier – surface water station)
FΔ	Environmental Assessment
EDE	effective dose equivalent
EHS	Environment, Health & Satety
EIS	Environmental Impact Statement
EML	Environmental Monitoring Laboratory (DOE)
EMS	Environmental Management System
EO	Executive Order
FPΔ	Environmental Protection Agency (US)
	Environmental role charge (05)
	Emergency Fidining dha commonly kigin to know Act
ERDA	Energy Research and Development Agency, DOE predecessor agency
ESA	Endangered Species Act
ES&H	Environment, Safety, and Health
FABA	Former Annex Building Area
F&EM	Facilities and Environmental Management Division (PPPL)
FCPC	Field Coil Power Conversion Building
FFCA	Eederal Facility Compliance Act
FIFRA	Federal Insecticide Fundicide and Podenticide Act
	Ending of Ne Significant Impact
FJAK	Final Salety Analysis Report
FSCD	Freehold Soil Conservation District (Middlesex and Monmouth Counties)
g	gram
GBq	giga Becquerel or 10 [°] Bq
GCUA	Gloucester County Utility Authority
GP	General Permit (Wetlands)
~ ·	

List of Acronyms

gdp	gallons per day
GPMP	Ground water Protection and Monitoring Program
GWPP	Ground Water Protection Plan
GW	ground water
	Innun Hazardaur Air Pollutanta
	Hazardous Material Storage Facility
HQ	Headquarters
HT	tritium (elemental)
HIO	tritiated water
HVAC	heating, ventilation, and air-conditioning
ICRF	Ion Cyclotron Radio Frequency
IC ₂₅	inhibition concentration 25 percent
ISM	Integrated Safety Management
ISO14001	International Standards Organization 14001 (Environmental Management System – EMS)
JFC	James Forrestal Campus
km	kilometer
kV	kilovolt (thousand volts)
LEC	liquid effluent collection (tanks)
LEPC	Local Emergency Planning Committee
LSB	Lyman Spitzer Building (Formerly Laboratory Office Building)
LOI	Letter of Interpretation (Wetlands)
LLW	Low level waste (radiological waste)
m	meter
MI	Millstone River (surface water station)
MC&A	Material Control & Accountability (nuclear materials)
MCHD	Midalesex County Health Department
MESD	million electron velta
MG	Motor Cenerator (Building)
ma/l	milliaram per liter
MOU	Memorandum of Understanding
mrem	milli radiation equivalent man
mR/h	milliRoentgen per hour
MRX	Magnetic Reconnection Experiment
MSDS	Material Safety Data Sheet
m/s	meters per second
msl	mean sea level
mSv	milliSievert
MT	metric ton (equivalent to 2,204.6 pounds or 1.10 tons)
MW	monitoring well
n	neutron
N Or N-	Nifrogen
NAAQS	National Ampient Air Quality Standards
	Neutral Roam Rower Conversion building
NCSY	National Compact Stellarator Experiment
NEPA	National Environmental Policy Act
NESHAPs	National Emission Standards for Hazardous Air Pollutants
NHPA	National Historic and Preservation Act
NIST	National Institute of Standards and Technology
NJAC	New Jersey Administrative Code
NJDEP	New Jersey Department of Environmental Protection (prior to 1991 and after July 1994)
NJPDES	New Jersey Pollutant Discharge Elimination System
NOAA	National Oceanic and Atmospheric Administration
NOEC	no observable effect concentration
NOV	notice of violation
NOX	nifrogen oxides
NPDES	National Pollutant Discharge Elimination System
	National Friendles List Nuclear Pagulaton, Commission
NRC	National Response Center
XT2IN	National Spherical Torus Evperiment
nSv	nanoSievert
NTS	Nevada Test Site (DOE site)
OH	ohmic heating
OSHA	Occupational Safety and Health Agency
P1, P2	Plainsboro 1 (Cranbury Brook) and 2 (Devil's Brook) (surface water stations)

List of Acronyms

PBX-M	Princeton Beta Experiment - Modification
PCBs	polychlorinated biphenyls
PCE	perchloroethylene, tetrachloroethene, or tetrachloroethylene
pCi/L	picoCuries per liter
PEARL	Princeton Environmental. Analytical, and Radiological Laboratory
PFC	Princeton Forrestal Center
PIT	Princeton Large Torus
Pots	publicly owned treatment works
nnh	parts per billion
ppp	part per million
	Princeton Plasma Physics Laboratory
	Proposed Site Treatment Plan for the Endoral Eacility Compliance Act
	notontial to amit (air amissions)
RAA	Remedial Alternative Assessment
RACI	reasonably achievable control technology
RCRA	Resource Conservation and Recovery Act
REAM	remote environmental atmospheric monitoring (station)
REML	Radiological Environmental Monitoring Laboratory
RESA	Research Equipment Storage and Assembly Building
RI	Remedial Investigation
RMS	Remote Monitoring Station
RQ	reportable quantity
RWHF	Radiological Waste Handling Facility
S or S-	Sulfur
SAD	Safety Assessment Document
SARA	Superfund Amendments and Reauthorization Act of 1986
SBRSA	Stony Brook Regional Sewerage Authority
SDWA	Safe Drinking Water Act
SERC	State Emergency Response Commission
SF ₆	sulfur hexafluoride
SPCC	Spill Prevention Control and Countermeasure
T	tritium
TDa	tora Resourced or 10 ¹² Ra
тол	
ICA	Inchioroeinane
ICE	frichioroethene or frichioroethylene
ICLP	toxic characteristic leaching procedure (RCRA)
IDS	total aissolved solids
	lokamak Fusion lest Reactor
1PH	total petroleum hydrocarbons
IRI	Toxic Reduction Inventory (CERCLA)
IPX	Tokamak Physics Experiment
tsca	Toxic Substance Control Act
tsds	tritium storage and delivery system
TSS	total suspended solids
TW	test wells
TWA	treatment works approval
UIC	underground injection control
USDA	US Department of Agriculture
USGS	US Geological Survey
USEPA	US Environmental Protection Agency
UST	underground storage tanks
VOCs	volatile organic compounds
γ/Q	atmospheric dilution factor (NOAA)
ua/l	micrograms per liter
uSV	microSievert
por	

List of Exhibits Contained in the Text

Exhibit #	Title	Page
2-1	Region Surrounding PPPL (50-mile radius shown)	6
2-2	PPPL James Forrestal Campus, Plainsboro, NJ	7
2-3	Aerial View of PPPL	8
2-4	The TFTR Pedestal Before Its Removal in 2002	9
2-5	The PBX-M vacuum vessel loaded on flat-bed truck, is taken from PPPL in August 2003	9
2-6	TheNational Compact Stellarator Experiment (NCSX)	10
3-1	Hazardous Waste Quantity Comparisons 1997-2003 (3 largest quantities)	11
3-2	2002 Waste Reduction	11
3-3	2003 Waste Reduction	13
3-4	Critical Pathways	16
3-5	Radiation Monitoring Program Covering Critical Pathways	16
3-6	No. 4 Fuel Oil Consumption 1998-2003	18
3-7	Natural Gas Consumption 1998-2003	18
3-8	Total Air Releases from D Site (formerly TFTR) Stack from 1994 to 2003	20
3-9	Estimated Dose from PPPL Operations from 1994 to 2003	20
3-10	NJPDES Non-Compliances 2002-2003	21
3-11	Before Landscaping	23
3-12	After Landscaping	23
3-13	PPPL's Progress in Meeting Executive Order 13148 Pollution Prevention,	
	Energy Efficiency, and Transportation Goals in 2002 and 2003	24
3-14	PPPL Site Map - Floodplan and Wetland Boundaries	26
3-15	Summary of PPPL EPCRA Reporting Requirements	27
3-16	Hazard Class of Chemicals at PPPL	28
3-17	COD Comparison with TOC Samples Collected on November 7, 2003	29
3-18	Worker using bucket with safety harness for painting elevated water tower project	31
3-19	PPPL Environmental Requirements	33
4-1	Radiological Air Monitoring Stations	36
4-2	Radiological and Non-Radiological Water Monitoring Stations	36
4-3	PPPL Site Map On-site Montioring Locations	37
4-4	Off-site Monitoring Locations	38
4-5	New Slide Gate	40
4-6	Basin Drained August 2003	40
4-7	2002 Highest Tritium Concentrations in Environmental Samples	41
4-8	2003 Highest Tritium Concentrations in Environmental Samples	41
4-9	NCSX plasma and magnetic coil configurationt	41
4-10	Drexel Intern next to slide gate	43

Exhibit # Title

Page

5-1	Summary of 2002 Emissions and Doses from D site Operations	44
5-2	Summary of 2003 Emissions and Doses from D site Operations	45
5-3	Total Annual Releases to Sanitary System from 1994 to 2003 Table	
5-4	Total Annual Releases to Sanitary System from 1994 to 2003 Chart	47
5-5	Total Low-Level Radioactive Waste 1997 - 2003	
5-6	Radioactive Waste Packaging (Duct crushed and wrapped)	
5-7	Preparing DATS samples	
5-8	Total Annual Precipitation from 1989 to 2003	
5-9	Surface Water Sampling	
5-10	Ground Water Level Measurement	50
6-1	Summary of Chronic Toxicity Testing	
6-2	Ground Water Monitoring Equipment	54
6-3	Air-Permitted Equipment	54
6-4	PPPL's Potable and Non-Potable Use from 1994 to 2003	55
6-5	PPPL Potable Water Use	55
6-6	PPPL Non-Potable Water Use	56
	ϕ_{i} , ϕ_{i	
7-1	Millstone River Watershed Basin	
7-2	Potentiometric Surface of the Bedrock Aquifer at PPPL	61
7-3	Approved Classification Exception Area Boundary	65
7-4	Typical Shallow Ground Water Contours (March 2003)	66
7-5	Typical PCE Distribution in Shallow Ground Water March 2003	67
8-1	PPPL technician analzying chemical oxygen demand sample at PEARL facility.	68
8-2	PPPL technician analzying tritium water samples at PEARL facility	68

NAMES OF CASE OF CASE

NOTE: Data tables are located in Appendix A beginning on page 78.

vii

Princeton Plasma Physics Laboratory (PPPL) Certification of Monitoring Data for Annual Site Environmental Report for 2002 and 2003

Contained in the following report are data for radioactivity in the environment collected and analyzed by Princeton Plasma Physics Laboratory's Princeton Environmental, Analytical, and Radiological Laboratory (PEARL). The PEARL is located on-site and is certified for analyzing radiological and non-radiological parameters through the New Jersey Department of Environmental Protection's Laboratory Certification Program, Certification Number 12471. Non-radiological surface and ground water samples are analyzed by NJDEP certified subcontractor laboratories – Accutest, Accredited Laboratory, QC, Inc. and Reliance Laboratory. To the best of our knowledge, these data, as contained in the "Annual Site Environmental Report for 2002 and 2003," are documented and certified to be correct.

Signed:

Virgénia L. Finley, Head, Environmental Compliance Materiel & Environmental Services Division

Jerry D. Levine, Head, Environment. Safety, & Health Division

Approved:

Robert S. Sheneman Head, Materiel & Environmental Services Division

Anderson.

Head, ES&H and Infrastructure Support Department

EARTH DAY 2002 PARTICIPATING STUDENTS

DR. ANDREW BOCARSLY – EARTH DAY SPEAKER 2003

THANK YOU TO ALL WHO PARTICIPATED AND WHO REMEMBERED EARTH DAY

2002 Participating Schools

Central Elementary School, Trenton, NJ, 1st year Corpus Christi School, Willingboro NJ, 5th year Fisher Middle School, Ewing, NJ, 1st year Grace N. Rogers School, East Windsor Reg. NJ, and 5th year Parkway Elementary, Trenton NJ, 3rd year St. Raphael School, Trenton, NJ, 1st year Thomas Grover Middle School, West Windsor-Plainsboro, NJ, 2nd year

EARTH DAY 2002-2003 at PPPL

EARTH DAY 2002-2003 at PPPL

Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2002 and 2003

Executive Summary

This report presents the results of environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for Calendar Years 2002 and 2003. The report is the prepared to provide U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2002 and 2003. The objective of the Annual Site Environmental Report is to document PPPL's efforts to protect the public's health and the environment through its environmental protection, safety, and health programs.

The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The reaction occurring in our sun as well as in other stars is fusion. In a fusion reaction, the nuclei of hydrogen atoms, in a plasma state, fuse or join to form helium atoms, causing the release of neutrons and energy. Unlike the sun, PPPL's fusion reactions are magnetically confined within a vessel or reactor under vacuum conditions. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate

the practical application of fusion power as a safe, alternative energy source.

The National Spherical Torus Experiment Heated by Neutral Beam Injection

Calendar Years 2002 and 2003 marked the fourth and fifth year of the National Spherical Torus Experiment (NSTX) operations and 2002 the third and final year of the Tokamak Fusion Test Reactor (TFTR) dismantlement.

From groundbreaking in May 1998 to the creation of the first plasma on February 12, 1999, the National Spherical Torus Experiment (NSTX) was completed within budget and ahead of the target schedule. PPPL re-used the former TFTR Hot Cell of D-site to house NSTX, which contributed to the cost savings. For the NSTX collaborators, the project was a major effort to produce a smaller, more economical fusion reactor or volumetric neutron source. The NSTX program is a national collaboration; the following institutions are NSTX research participants.

Columbia University Fusion Physics & Technology, Inc. General Atomics Johns Hopkins University Lawrence Livermore National Laboratory Los Alamos National Laboratory Massachusetts Institute of Technology Oak Ridge National Laboratory Sandia National Laboratory University of California at Davis University of California at Los Angeles University of California at San Diego University of Washington at Seattle

PPPL's TFTR was kept in a safe, shutdown mode following fifteen years of operation (1982-1997). In 1999, a multi-year project to dismantle TFTR began. Previous milestones of TFTR included achieving a world power record of approximately 10.7 million watts of controlled fusion power during the deuterium-tritium plasma (D-T) experiments.

In 2002, TFTR deconstruction and dismantlement (D&D) project was completed with, the vacuum vessel itself dismantled and removed. As seen in the photograph on this page, the circular, darkened area was once occupied by the vacuum vessel, and the neutral beam boxes remain for possible use on future devices.

The Tokamak Fusion Test Reactor Test Cell Following D&D Operations - 2002

International Thermonuclear The Experimental Reactor (ITER) project was again supported by the United States, joining with Canada, the European Union nations, Japan, and the Russian Federation following the formal announcement by Department of Energy Secretary, Spencer Abraham in January 2003 (See below picture).

Department of Energy Secretary Abraham addresses PPPL staff in PPPL's Gottleib Auditorium on January 30, 2003

To further strengthen the idea that fusion will provide an environmentally attractive and economically viable energy option for this century, PPPL continued experimentation and associated environmental monitoring programs.

PPPL Director Rob Goldston shows NSTX to US Congressman Rush Holt, Energy Secretary Spencer Abraham, US Congressman Rodney Frelinghuyesen, DOE Office of Science Raymond Orbach, and Princeton University President Shirley Tilghman

In 2002 and 2003, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency Also included in PPPL's (EPA). radiological environmental monitoring program, are precipitation, surface, ground, and wastewater monitoring.

The dose results of the radiological monitoring program for 2002 and 2003 were as follows:

- 1. Total maximum off-site dose from all sources—airborne and liquid releases—was 0.31 (2002) and 0.13 (2003) mrem/year.
- 2. Dose at the nearest business due to airborne releases was 0.30 (2002) and 0.13 (2003) mrem/year.
- 3. The collective effective dose equivalent for the population living within 80 kilometers was 2.26 (2002) and 0.74 (2003) person-rem.

The total maximum off-site dose for 2003 was the lowest since 1993, prior to D-T experiments. Both dose #1 and #2 are a small fraction of the 10-mrem/year PPPL objective and the 100-mrem/year DOE limit.

PPPL's 2002-2003 Pollution Prevention and Community Outreach Programs included Earth Day and America Recycles Day events. In April 2002, PPPL conducted a poster contest involving local middle school students (see Posters in Preface of this report). In November 2002 and 2003, PPPL celebrated America Recycles Day with the presentation of "Green Machine" awards that were given to staff members whose efforts have contributed greatly to the Laboratory's progress in Recycling and Buying Recycled Products. PPPL's Pollution Prevention Program results were based on:

- 1. Usage of recycled material *versus* non-recycled material;
- 2. Reducing hazardous waste disposal by 38.5% and 65% and solid waste by 75% and 74% in 2002 and 2003, respectively, through actively seeking recyclers for waste materials; and

3. Buying recycled rate of 85.3% in 2002 and 81% in 2003 (goal being 100%).

PPPL's Community Outreach Program included facilities tours given to school, governmental, service, and private groups, representation at numerous community events, Science on Saturday seminars for the general public, hosting the Regional competition of the New Jersey High School Science Bowl, and participation through the Science Education Program, in local schools and at professional meetings.

PPPL's non-radiological environmental monitoring program demonstrates compliance with applicable environmental requirements. The program includes monthly surface water monitoring and annual chronic toxicity testing. In 2002, quarterly ground-water sampling continued as a requirement of the Remedial Action Work Plan. Based on PPPL's results showing that the contaminants are biodegrading in the ground, the requirement was changed to annual monitoring in 2003. Since 1989, ground-water investigations have revealed volatile organic compound (VOC) contamination (most likely from solvents) at low levels in three locations. PPPL's remedial action work plan relies existing building drains on for

containment and extraction and includes monitoring and reporting of quarterly sampling of selected wells.

An Occupational Safety and Health Administration (OSHA) Audit Team conducted a comprehensive compliance audit of PPPL in August 2003. The objective of the compliance audit was to those instances identify of noncompliance with current OSHA standards with sufficient detail to enable DOE and PPPL to determine methods and costs to come into compliance. The auditors identified 200 deficiencies, of which PPPL corrected over 50% before the end of calendar vear 2003. PPPL continues to correct the remaining 50% as funding and labor availability allows with of goal of completing most by the end of fiscal year 2004.

The Laboratory is expected to continue excelling in ES&H as it has in its fusion research program. Efforts are geared not only to full compliance with applicable local, state, and federal regulations, but also to achieve a level of excellence in ES&H performance. PPPL is an institution that serves other research facilities and the nation with valuable information gathered from its fusion research program.

To view current activities and news about PPPL, visit http://www.pppl.gov

Introduction

2.1 <u>Site Mission</u>

The U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) is a Collaborative National Center for plasma and fusion science. Its primary mission is to develop scientific understanding and key innovations leading to an attractive fusion energy source [PPPL98a]. Related missions include conducting world-class research along the broad frontier of plasma science and providing highest quality of scientific the education and experimentation.

At PPPL, the National Spherical Torus Experiment (NSTX) is a collaborative project among 14 Department of Energy National Laboratories, universities, and institutions. Also located at PPPL are smaller experimental devices, such as the Magnetic Reconnection Experiment (MRX) and the Current Drive Experiment-Upgrade (CDX-U), which investigate plasma physics phenomena.

As a part of off-site collaborative projects, PPPL scientists assist fusion programs both in the United States and other countries. Particularly, PPPL collaborated with the Koreans in their K-Star program and with the European community at the Joint European Torus (JET) facility located in the United Kingdom, to further fusion science.

2.2 <u>Site Location</u>

The Princeton Plasma Physics Laboratory site is in the center of a highly urbanized region the of Northeast region. The closest urban centers are New Brunswick, 14 miles to the northeast, and Trenton, 12 miles to the southwest. Major surrounding cities, including New York City, Philadelphia, and Newark, are within 50 miles of the site.

As shown in Exhibit 2-1, the site is located in Plainsboro Township within Middlesex County (central New Jersey), adjacent to the municipalities of Princeton, Kingston, West Windsor, and Cranbury, NJ. The Princeton area continues to experience a substantial increase in new businesses locating along the Route 1 corridor near the site. Also, the main campus of Princeton University, primarily located within the Borough of Princeton, is approximately three miles to the west of the site.

In the early 1950's, Dr. Lyman Spitzer's vision for plasma physics culminated in Project Matterhorn, which gained approval of the U.S. Atomic Energy Commission. Its mission was to contain and harness the nuclear burning of hydrogen at temperatures exceeding those found in the sun. Dr. Spitzer became known as the father of the "Stellarator" and was PPPL Director

until 1961. Named for Dr. Spitzer's A, B, and C stellarators, PPPL was first located on A- and B-sites of the James Forrestal Campus; and in 1959, PPPL moved to its present location at C-site. In the late 1970's, D-site became the home of the Tokamak Fusion Test Reactor (TFTR), which is currently being dismantled, and is also the home of the National Spherical Torus Experiment (NSTX) (Exhibit 2-2).

Undisturbed areas surrounding the site include upland forest, wetlands, open grassy areas, cultivated fields, and a minor stream (Bee Brook), which flows

Exhibit 2-1. Region Surrounding PPPL (50-mile radius shown)

along its eastern boundary. These areas are designated as open space in the JFC site development plan. The following aerial photo (Exhibit 2-3) shows the general layout of the facilities at the C- and D-sites of Forrestal Campus as viewed from the north; former TFTR and NSTX Test Cells are located at Dsite (on the left side of photo).

Exhibit 2-2. PPPL James Forrestal Campus, Plainsboro, NJ

Exhibit 2-3. Aerial View of PPPL

D-site is fully surrounded with a barbed -wire, chain-linked fence for security purposes. PPPL openly operates C-site, allowing the public access for educational purposes. This free access C-site warranted a thorough to evaluation of on-site discharges, as well as the potential for off-site releases of radioactive and non-radioactive effluents. To maintain free access to Csite, PPPL instituted an extensive monitoring program that was expanded in recent years. The PPPL radiological environmental monitoring program generally follows the guidance given in two DOE reports; A Guide for: Environmental Radiological Surveillance at U.S. Department of Energy Installations [Co81] and Environmental Dose Assessment Methods for Normal Operations at DOE Nuclear Sites (PNL-4410) [St82].

2.3 <u>General Environmental</u> <u>Setting</u>

The climate of central New Jersey is as classified mid-latitude, rainv climate with winters, mild hot summers, and no dry season. Temperatures range from below zero to above 100 degrees Fahrenheit (°F), -17.8°Celsius (C) to 37.8° C; extreme temperatures typically occur once every five years. Approximately half the year, from late April until mid-October, the days are freeze-free.

Normally, the climate is moderately humid with a total average precipitation of 46.5 inches (118 cm) evenly distributed throughout the year. Droughts typically occur about once every 15 years [PSAR78]. In 2002 and 2003, the annual rainfall totals, 47.92 inches (122 cm) and 54.73 inches (139 cm), respectively, were well above the average rainfall for central New Jersey. These above-average levels were primarily due to wet weather in the autumn months (September - December) for both years, with monthly totals exceeding 6 inches (15.3 cm) of precipitation at least once during that period (Appendix A, Tables 2 & 3) [Ch03 and Ch 04].

archaeological An survey was conducted in 1978 as part of the TFTR site environmental assessment study. From historical records, personal interviews, and field investigations one projectile point and a stone cistern were found. Apparently, the site had limited occupation during prehistoric time and has only in recent times been actively used for farming. There are examples of prehistoric occupation in areas closer to the Millstone River, which are within a mile of the site [Gr77].

2.4 <u>Primary Operations and</u> <u>Activities</u>

The fusion experiments, such as NSTX, MRX, or CDX-U, currently in operation at PPPL, do not generate tritium releases. Having used tritium in its experiments from 1994 to 1997, TFTR is the tritium source that is being monitored in air and water Dismantling activities for samples. TFTR continued in 2002 resulting in periodic releases to the stack (Ex. 2-4). In 2003, TFTR was fully dismantled and the area is presently vacant, availing its Test Cell for a new device. Many of the TFTR support systems are secured for future use.

Next door to the TFTR Test Cell is the NSTX Test Cell. Since its start-up in February 1999, NSTX has consistently exceeded its target milestones.

Exhibit 2-4. The TFTR Pedestal before its removal in 2002

NSTX produced one million amperes of plasma current, setting a new world record for a spherical torus device. This device is designed to test the physics principles of spherical-shaped plasmas forming a sphere with a hole through its center. Plasma shaping is an important parameter to plasma stability and performance ultimately enabling viable fusion power.

Exhibit 2-5. The PBX-M vacuum vessel, loaded on a flat bed truck, is taken from PPPL in August 2003

Insert show workers securing the vessel for its journey.

In 2003, Princeton Beta Experiment – Modified, PBX-M, was dismantled on

C-site (Ex. 2-5). The combination of the test cells of the former Princeton Large Torus (PLT) and PBX-M will be home to PPPL's newest device, the National Compact Stellarator Experiment, NCSX. NCSX is in the final design stages, with plan to begin construction in FY2004 and completion by FY2007.

"The success of the most widely studied magnetic fusion concept, the tokamak, has shown the advantage of bending the plasma into a torodial, or doughnut, shape for achieving reactor-level plasma parameters for a short time. ... The 'bootstrap current' (theoretically predicted selfgenerating current) can be used to make the tokamak into a continuously sustained 'advance tokamak' configuration, but up to 20% of the plant's output power would still have to be re-circulated to drive active plasma controls needed to prevent the disruption of a tokamak plasma." In Exhibit 2-6, the [PPPL01b]. uniquely twisted shape of the vacuum vessel is shown in purple in this cutaway view. The scale of the device is about six-feet (two meters) above the floor where the vessel sits on its pedestals.

Exhibit 2-6. The National Compact Stellarator Experiment (NCSX)

2.5 <u>Relevant Demographic</u> <u>Information</u>

demographic А study of the surrounding 31.1 miles (50 kilometers) was completed in 1987 as part of the Environmental Assessment for the proposed Burning Plasma Experiment (BPX), which was also known as Ignition Compact Tokamak (CIT) Other information gathered [Be87a]. and updated from previous TFTR socioeconomic studies include information [Be87b] and an ecological survey [En87], which were studies describing pre-TFTR conditions. 滎

2002 and 2003 COMPLIANCE SUMMARY

3.1 Materiel and Environmental Services (formerly Environmental Restoration and Waste Management)

Princeton Plasma Physics Laboratory's environmental goal is full (PPPL) compliance with all applicable state, federal, and local environmental regulations. As a part of PPPL's Project Mission Statement, PPPL initiates actions that enhance its compliance efforts and fully documents meeting the requirements. The process of compliance with each applicable federal, state, and local environmental statute or regulation, and executive and DOE orders [DOE03a &b] are discussed in this chapter.

Department of Energy-Princeton Site Office (DOE-PSO) annually performs a review of one aspect of PPPL's Environmental Permitting Program. [DOE-PSO]. The conclusion of the review conducted in 2002 and 2003 was that the overall environmental permitting process was well defined and functioning without difficulty. Future actions included listing of current permits on PPPL's web page to be updated annually; hard copies of monitoring data loaded into an electronic database: electronic submittals of data when such applications are developed; and the procedure for Environmental Permits completed and posted on the Materiel & Environmental Service Division web page.

3.1.1 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)

During 2002 and 2003, PPPL had no involvement with CERCLA-mandated cleanup actions. Resulting from the 1991 assessment by Department of Energy – Headquarters' (DOE-HQ) environmental team, known as the Tiger Team, an action plan was developed to conduct a more comprehensive documentation of past CERCLA hazardous substances releases. A CERCLA inventory was completed in 1993 [Dy93], and no further CERCLA actions were warranted.

3.1.2 Resource Conservation and Recovery Act (RCRA) and Solid Waste

The Laboratory complies with all the requirements of a hazardous waste generator. In 2002, PPPL shipped off site approximately 15.68 tons (14.22 metric tons, MT) of waste to facilities permitted to treat, store, or dispose of hazardous wastes and 9.81 tons (8.90 MT) to recycling facilities [Pu03b]. In 2003, PPPL shipped off site approximately 4.71 tons (4.27 MT) of waste to facilities permitted to treat, store, or dispose of hazardous wastes and 8.70 tons (7.89 MT) to recycling facilities [Pu04b] Summaries of PPPL's annual hazardous generation rates waste waste and reduction/recycling efforts are presented in Exhibits 3-1 to 3-3.

Exhibit 3-2. 2002 Waste Reduction

View PPPL Pollution Prevention accomplishments @http://tis.eh.doe.gov/p2/wastemin/RecycleRpt.Asp Metric ton equals 2,205 pounds or 1.10 tons

Туре	Source	Amount	Fate
Hazardous	Oil and oily debris	0.44 MT	Recycled
Waste	Lab wastes, solvents	2.82 MT	Incinerated
	Batteries - lithium	0.03MT	Incinerated
	Batteries (includes lead acid)	2.52 MT	Recycled
	Lead debris	0.54 MT	Incinerated
	Non-PCBs Non-Haz. Capacitors	9.04 MT	Incinerated
	Fluorescent lamps (contain Hg)	2.92 MT	Recycled
	Mercury debris	0.16 MT	Incinerated
	Mercury	0.49 MT	Recycled
	Oily debris	0.21 MT	Incinerated
	Oily debris	0.91 MT	Land-filled
	Refrigerant oil	0.20 MT	Incinerated
	Waste water	1.76 MT	Recycled
	Waste sludge	0.26 MT	Incinerated
	Recycled / Total Hazardous Waste	38.48 %	
	Exhibit 3-2 2002 Waste Reduction	(continued)	

Туре	Source	Amount	Fate
TSCA	Asbestos	0 cu. yds.	Land-filled
Waste	PCB capacitors and debris	0.05 MT	Incinerated
	Ballasts incl. Ballasts (PCBs)	0.41 MT	Recycled
Municipal	Front end trash	119.85 MT	Land-filled
Solid	Construction waste - wood	18.80 MT	Recycled
Waste	CFCs	44.07 MT	Recycled
(MSW)	Office Waste Stream:		
	Paper (mixed)	22.08 MT	Recycled
[Kin02a]	Cardboard	49.97 MT	Recycled
	Aluminum & glass (bottles & cans)	19.96 MT	Recycled
	Industrial Waste Stream:		
	Metals – aluminum & stainless steel	192.72 MT	Recycled
	copper & wiring & iron		Recycled
	Batteries	0.96 MT	Recycled
	Computer/electronic scrap	6.53 MT	Recycled
	Electronic Media	1.34 MT	Recycled
	Recycled + Reused / Total MSW	75.06%	MT/ MT * 100

Exhibit 3-3. 2003 Waste Reduction

View PPPL Pollution Prevention accomplishments @http://tis.eh.doe.gov/p2/wastemin/RecycleRpt.Asp

Туре	Source	Amount	Fate
Hazardous	Oil	3.31 MT	Recycled
Waste	Lab wastes, solvents	0.58 MT	Incinerated
	Batteries - lithium	0.02MT	Incinerated
	Batteries (includes lead acid)	1.28 MT	Recycled
	Lead debris	0.19 MT	Incinerated
	Non-PCBs Non-Haz. Capacitors	0.85 MT	Incinerated
	Fluorescent lamps (contain Hg)	0.76 MT	Recycled
	Mercury debris	1.39 MT	Incinerated
	Mercury	0.01 MT	Recycled
	Oily debris	0.83 MT	Land-filled
	Waste water	1.80 MT	Recycled
	Waste sludge	0.41 MT	Incinerated
	Recycled / Total Hazardous Waste	64.89 %	
TSCA Waste	Asbestos	80 cu. yds.	Land-filled
Municipal	Front end trash	93.0.00 MT	Land-filled
Solid	Construction waste - wood	12.70 MT	Recycled
Waste	Office Waste Stream:		
(MSW)	Paper (mixed)	21.77 MT	Recycled
	Cardboard	48.98 MT	Recycled
Industrial	Aluminum & glass (bottles & cans)	15.42 MT	Recycled
Waste	Metals – aluminum & stainless steel	492.52 MT	Recycled
Stream:	copper & wiring & iron		
	Batteries	3.57 MT	Recycled
	Computer/electronic scrap	13.22 MT	Recycled
[Kin03a]	Recycled + Reused / Total MSW	83.73%	MT/ MT * 100

PPPL is also in compliance with the requirements of the RCRA-mandated Underground Storage Tank (UST) Program. In 1995, PPPL placed all underground storage tanks out of service. PPPL submitted a Site Assessment Report as part of the Remedial Investigation and Remedial Alternative Assessment (RI/RAA) Report in March 1997 [HLA97]. NIDEP issued a "No Further Action" determination for the UST closure in a letter to Princeton University, dated March 28, 2000. All UST-related actions have been completed.

3.1.3 Federal Facility Compliance Act (FFCA)

The Federal Facility Compliance Act (FFCA) requires the Department of Energy (DOE) to prepare "Site Treatment Plans" for the treatment of mixed waste, which is waste containing both hazardous and radioactive components. Based on the possibility of the site generating mixed waste, which could require treatment on site, PPPL was identified on the list of DOE sites that would be included in the FFCA process [PPPL95]. In 1995, PPPL prepared its proposed "Site Treatment Plan (STP) for Princeton Plasma Physics Laboratory (PPPL)." PPPL does not currently generate mixed waste and has no future plans to generate mixed waste.

PPPL developed an approach where any potential mixed waste would be treated in the original accumulation container within 90 days of generation of the hazardous This treatment option was waste. discussed with the State of New Jersey and Environmental Protection Agency (EPA) Region II regulators, who were in agreement with this approach. Based on their agreement, this approach keeps PPPL in compliance with the applicable Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions. DOE provides the state and EPA with annual updates and keeps the regulators apprised of activities. If mixed wastes were generated that could not be treated in original accumulation containers, PPPL would notify the regulators and provide them with a revised "Site Treatment Plan" [PPPL95].

3.1.4 National Environmental Policy Act (NEPA)

Thirty-four (34) PPPL activities in 2002, and forty-four (44) PPPL activities in 2003, received NEPA reviews. All but one of these activities were determined to be categorical exclusions (CX) in accordance with the NEPA regulations and guidelines of the Council on Environmental Quality (CEQ) and DOE, or covered in a previously approved environmental assessment (EA). An EA was completed for the proposed National Compact Stellarator Experiment (NCSX) in 2002, and DOE issued a Finding of No Significant Impact (FONSI) for this proposed action on October 25, 2002. [Lev04b].

3.1.5 Toxic Substance Control Act (TSCA)

PPPL complies with the terms and conditions of TSCA for the protection of human health and the environment by requiring that specific chemicals be controlled and regulations restricting use are implemented. The last PPPL polychlorinated biphenyl (PCB) transformers were removed from the site in 1990.

In September 1998, 640 regulated capacitors were removed from the total inventory of 645 capacitors. At the end of 2002 and 2003, only 5 PCB capacitors that met the regulation criteria remained at PPPL [Pu04a].

3.1.6 Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)

Certified subcontractors, who meet all the requirements of FIFRA, performed the application of herbicides, pesticides, and fertilizers. The PPPL Maintenance & Operations Division (M&O) monitors this subcontract. The following list of herbicides were used on the PPPL site in 2002 and 2003 [Kin03b and 04b].

Herbicides: Used in 2002: Dimension (5.5 gallons) Roundup (6.25 gallons) Momentum (15.6 gallons)

> Used in 2003: Roundup (15.4 gallons) Malathion (1.69 gallons)

3.1.7 Spill Prevention Control and Countermeasure (SPCC)

PPPL maintains a Spill Prevention Control and Countermeasures (SPCC) plan as a requirement of 40 CFR 112 "Oil Pollution Prevention" regulations. [PPPL03e]. The SPCC Plan was updated in 2003 to address new regulatory requirements. There numerous transformers are containing non-PCB mineral oil as well as fuel oil tanks (25,000 and 15,000 gallon aboveground storage tanks) for supplying fuel to the boilers and generators located on-site. Smaller vehicle refueling tanks and equipment oil storage tanks containing petroleum products are included in PPPL's SPCC plan.

The most recent NJDEP inspection of the facility was conducted in June 1998. Under New Jersey regulations, NJDEP classified PPPL as a non-major facility [NJDEP98a]. The threshold of 200,000 gallons of petroleum (not in transformers) is not exceeded. PPPL has reporting obligations under these regulations. These obligations include notification of discharges and discharge confirmation reporting to NJDEP. PPPL is considered a minor facility and therefore, the Discharge Prevention

Control and Containment (DPCC) plan and Discharge Cleanup and Reporting plan (DCR) requirements do not apply.

3.2 <u>Radiation Protection</u>

3.2.1 DOE Order 5400.5, "Radiation Protection of the Public and the Environment"

For radiation protection of the public and the environment, PPPL follows the documented requirements in the Radiological Plan contained in PPPL's Environmental Monitoring Plan [PPPL99b]; Plan meets the the requirements stated in DOE Order 5400.5 [DOE93a].

Through its monitoring program, the Plan provides assurance that the release of radioactive material on-site or off-site will be within regulatory limits and PPPL's policy of all radiation exposures "As Low As Reasonably Achievable" (ALARA). The order pertains to permissible dose equivalents and concentration guides as well as giving guidance on maintaining exposures to ALARA limits.

When 10 CFR 835, "Occupational Radiation Protection," became effective, PPPL made operational changes personnel monitoring reflected in requirements. Specific criteria for implementing the requirements are included in the NSTX Safety Assessment Document [PPPL01a]. These criteria are shown in Appendix A, Table 1.

The radiation monitoring program emphasizes exposure pathways appropriate to fusion energy projects at PPPL. These pathways include external exposure from direct penetrating radiation.

Exhibit 3-4. Critical Pathways

Path	Source and Pathway
A1	Atmospheric> Whole Body Exposure
A2	Atmospheric> Inhalation Exposure
A3	Atmospheric> Soil & Vegetation Deposition> Ingestion/Whole Body
	Exposure
L1	Liquid Water Way> Drinking Water Supply> Human
L2	Liquid Water Way> External Exposure
L3	Liquid Water Way> Fish> Human

Following the end of TFTR deuterium and tritium (isotopes of hydrogen, D-T) experiments, internal exposure from radionuclides, such as tritium (HT and HTO) in air and water, was monitored. Tritium releases continue to be measured following TFTR shut down and during TFTR Decontamination and Decommissioning (D&D) Project. Six major critical pathways are considered as appropriate (see Exhibit 3-4).

The radiation monitoring program, described in the TFTR Final Safety Analysis Report [FSAR82], was updated

to reflect the current environment around TFTR and D site (Exhibit 3-5).

PPPL's Environment, Safety & Health Directives (ESHD) 5008, Section 10, "Radiation Safety," Subpart L, "Release of Materials and Equipment from Radiological Areas," and Subpart P, "Radiological Environmental Monitoring Program," support the requirements for compliance with DOE 5400.5 {PPPL00d]. Monitoring of equipment and the environment ensures radiation protection for the employees and the public good.

Exhibit 3-5.	Radiation Mo	nitoring Pro	gram Cove	ring Critical	Pathways
			0		

Type of Sample	Critical Pathway	Sample Location	Sampling Frequency	Analysis	
Surface Water	L1, L2, L3 & A3	1 – Basin Outfall (DSN001) 2 – Delaware & Raritan Canal (DSN003)	1 – Monthly 2 – Monthly	All surface water	
	7.0	3 – Off-site (Bee, Cranbury, Devils Brooks, Millstone River)	3 - Quarterly	samples –HTO	
		1– Within 250 and 500' radius of D- site stack (N,S,E, & W)	Monthly		
Rain Water	L1, L2, & L3	2 –Within 1 km radius (co-located with air monitoring stations)	(as filled)	HTO	
Ground	L1, L2, & L3	1– Select ground water monitoring wells	1 –Monthly	HTO	
Water		2 –D-site sumps (Air shaft and MG basement)	2 –Monthly		
Sanitary Waste	1& 2	Liquid effluent collection tanks (3 tanks each 15,000 aal, on D-site)	As required- dependent on fill	HTO Gross beta	
Water			rate		
Air	A1, A2, & A3	TFTR Test Cell	Continuously	HT and HTO	
Air	A1, A2, & A3	Tritium Vault	Continuously	HT and HTO	
Air	A1, A2, & A3	D-site Stack (HVAC)	Continuously	HT and HTO, Particulates	
Direct & Air (on-site)		4 air monitoring trailers on D-site facility boundary	Continuously	g, n, HT and HTO,	
Direct & Air (off-site)		6 locations off-site with 1 km radius	Continuously	HT and HTO	
$H_{\rm c}$ = domental tritium $H_{\rm c}$ = triticted water $C_{\rm rest}$ b = Gross beta a = gamma p = poutron					

HTO = tritiated water n = neutronelemental tritium Gross b = Gross beta g = gamma

3.2.2 DOE Order 435.1, "Radioactive Waste Management"

To comply with the requirements of DOE Order 435.1, PPPL manages its radioactive waste by two implementing documents [DOE99b]:

- 1. <u>PPPL ESHD 5008, Section 7, "Waste</u> <u>Management"</u> [PPPL00c]; and
- 2. Environmental Restoration/Waste Management (ER/WM), <u>EM-CP-21,</u> <u>Low-level Radioactive and Mixed</u> <u>Waste Certification Plan [PPPL98c].</u>

The first document discusses roles and responsibilities for the management of radioactive waste and describes the Radioactive Waste Handling Facility (RWHF) operations. The second document describes PPPL's organization methodology for certifying, and handling, and characterizing low-level radioactive and mixed waste that may be generated by PPPL. This plan includes transportation and subsequent burial at DOE's Hanford Burial Site in the state of Washington and the Nevada Test Site outside of Las Vegas, Nevada. Other ER/WM procedures provide specific instructions for sampling, packaging and preparing waste for shipment/disposal.

3.2.3 Atomic Energy Act (AEA) of 1954

PPPL complies with the requirements of the Atomic Energy Act (AEA) of 1954 through the adherence to PPPL's plan developed for controlling radioactive PPPL's "Nuclear Materials material. Control and Accountability (MC&A) Plan" describes the system for control and accountability of nuclear materials in PPPL's custody [PPPL98d]. PPPL's management assures that nuclear material used at PPPL is properly controlled, inventoried, and accounted for as required in DOE Order 474.1 [DOE99c].

The objective of the MC&A program is to provide а basis for planning, implementing, and evaluating an information and control system. The system is a combination of checks and balances sufficient to detect and assist in the prevention of the unauthorized use and removal of nuclear materials from PPPL.

3.3 <u>Air Quality and Protection</u>

3.3.1 Clean Air Act (CAA)

PPPL complied with the requirements of the CAA in 2002 and 2003. Under Title I, "Non-attainment Provisions," PPPL is located in a severe 17-ozone nonattainment area (ozone attainment to be reached 15 to 17 years following date of regulations, *i.e.* 2005 - 2007). This classification limits the threshold potential-to-emit (PTE) to 25 tons per year of nitrogen oxides (NO_x) and 10 tons per year of volatile organic compounds (VOCs). Formed during the burning of fossil fuels in boilers, generators, vehicle engines, etc., NO_x and VOCs are precursors to ozone formation.

At PPPL, NO_x is the only class of regulated air contaminant that could exceed PTE thresholds limit of greater than 25 tons per year. In order to meet this limit, PPPL calculated total fuel use for all four boilers and maximum hours of operations for the diesel generators. PPPL then requested from NJDEP the fuel limits (Exhibits 3-6 and 3-7) and hours of operations for the generators. NJDEP granted the request and imposed a maximum annual fuel (oil and natural gas) use limitation for the C-site boilers as a whole rather than the individual boiler fuel use limit. PPPL continues to operate successfully within the stated limitations (typically less than 30% of the limitations) [NJDEP96, Kir04a]. In 2002 and 2003, the four boilers actual emissions of NO_x were calculated to be 4.75 and 4.76 tons, respectively.

As a requirement of New Jersey Administrative Code (NJAC) Title 7:27-21, "Emissions Statements," PPPL submitted the 1994 Air Emission Survey to NJDEP; this Emission Survey was the last survey submitted. In March 1996, the NJDEP approved PPPL's request for Annual Emission Statement Non-Applicability.

The CAA Title V, "Operating Permit Program," is implemented through the State of New Jersey. In August 1995, PPPL filed a negative declaration for the New Jersey Operating Permit Program. By reducing the annual operating hours from 500 to 200 for the (formerly TFTR) D-site emergency diesel generator, PPPL lowered the NO_x potential to emit to below the 25 ton-per-year threshold. NJDEP granted approval in March 1996, effective November 29, 1995.

Under CAA Title VI, "Stratospheric Ozone Depletion," PPPL's use of certified refrigerant recovery units and trained technicians comply with Section 608 of the CAA, which prohibits the venting of ozone-depleting substances. PPPL maintains an inventory of Class I and II ozone-depleting substances (chlorofluorocarbons or CFCs).

PPPL safely disposes of equipment containing ozone-depleting substances by removing refrigerants to specified levels prior to disposal of equipment. PPPL employs trained and certified technicians to service and repair equipment containing ozone-depleting substances and to operate the four refrigerant recovery units. In March 2002, PPPL replaced three older chiller units with units operating with non-Class I and II refrigerants. These units supply facility air-conditioning and process cooling of NSTX.

In its efforts to track gases that contribute to global warming, NIDEP requested that PPPL determine the amount of sulfur hexafluoride (SF₆) released annually from TFTR. Prior to 1995, the amount of SF₆ needed to maintain the SF₆ systems ranged from 28,060 pounds to 36,340 pounds per year. During TFTR operations, SF₆ maintained high-voltage equipment modulator electrical regulators, ion cyclotron radio frequency (ICRF), and neutral beam (NB) high voltage and ion source enclosures. Following TFTR shutdown in 1997, no additional SF₆ was purchased. PPPL removed the remaining inventory of SF₆ from those systems, and currently SF₆ is used only in NSTX's high voltage regulators.

3.3.2 National Emission Standards for Hazardous Air Pollutants (NESHAPs)

PPPL has an in-stack sampler within the Dsite stack to monitor tritium releases. The monitor has been independently verified as meeting NESHAPs radionuclide emission monitoring requirements. In August 1993, EPA concurred with this determination. In 2002, the levels of tritium released during operations were measured: 96.495 curies of tritiated water (HTO) and 13.761 curies of elemental tritium (HT) [Lev04c].

In 2003, the levels of tritium released during operations were: 34.329 curies of HTO and 1.789 curies of HT (Exhibit 3-8 and App. A, Tables 4 & 5). The decrease in the levels of tritium released was largely due to the end of TFTR D&D operations. This decrease is reflected also in the Site and Boundary dose calculations (Ex. 3-9).

Calendar Year	HTO (Curies)	HT (Curies)	Total Curies (HTO + HT)	Activities
1994	45.55	93.13	138.68	D-T Operations
1995	37.031	24.87	61.901	D-T Operations
1996	118.624	64.88	183.504	D-T Operations
1997	124.093	63.019	187.112	TFTR shutdown
1998	45.867	28.982	74.849	TFTR shutdown
1999	59.712	21.779	81.491	TFTR D&D preparation
2000	58.320	18.073	76.393	TFTR D&D activities
2001	221.242	38.742	259.984	TFTR D&D activities
2002	96.495	13.761	110.256	TFTR D&D activities
2003	34.329	1.789	36.118	NSTX Operations

Exhibit 3-8. Total Air Releases from D-Site (formerly TFTR) Stack from 1994 to 2003

Annual Limit is 500 Curie

Exhibit 3-9. Estimated Dose (mrem) from PPPL Operations from 1994 to 2003

The Annual Limit of 10 mrem/year applies to the estimated dose equivalent at the site boundary only.

In 2002 and 2003, the effective dose equivalent (EDE) to a person at the business nearest PPPL, due to

radionuclide air emissions, was 0.072 mrem (0.72 μ Sv)and 0.027 mrem (0.27 μ Sv), respectively, which is significantly
lower than the NESHAPs standard of 10 mrem/yr (Exhibit 3-9). During their most recent inspection of PPPL's facilities in March 1998, representatives from EPA Region II indicated that PPPL complied with NESHAPs requirements [Lev04c].

3.4 <u>Water Quality and Protection</u>

3.4.1 Clean Water Act (CWA)

PPPL complies with the requirements of the CWA. Based on an assessment of leaking underground storage tanks (USTs) that contained fuel oil, PPPL conducted quarterly ground water monitoring for petroleum hydrocarbons and VOCs until September 1997 (see Section 6.1.3). The data collected for 24 quarters (6 years) were consistent: trace or no petroleum hydrocarbons were detected and the former USTs were not contributing to ground water contamination.

Under the CWA and "New Jersey Discharge of Petroleum and Hazardous Substances" regulation (New Jersey Administrative Code Title 7, Chapter 1E), PPPL reported 2 and 4 releases during CY 2002 and 2003, respectively [PPPL02a & b, & 03a,c,d,&f].

3.4.2 National Pollutant Discharge Elimination System (NPDES)

In 2002 and 2003, PPPL operated under the requirements of New Jersey Pollutant Discharge Elimination System (NJPDES) surface water discharge permit The NJDEP issued the (NJ0023922). renewed surface water permit on April 29, 1999, with an effective date of June 1, 1999 [NJDEP99]. In December 2003, the renewal application permit was submitted to NJDEP 180 days prior to its expiration date (June 1, 2004) [PPPL03i].

In 2002, the monitoring locations designated in the permit are the detention basin outfall (DSN001), and the filter backwash discharge (DSN003) located at the Delaware & Raritan (D&R) Canal pump house. These two locations are designated as monthly sampling points. In 2002, the chlorine produced oxidants (CPO) permit limit was exceeded twice at DSN001; in 2003, the chemical oxygen demand (COD) limit was exceeded at DSN001 in once June and July and twice in November (see Section 3.7.2 for discussion).

PPPL maintains an inventory of wastewater streams (industrial discharges) that flow into the Stony Brook Regional Sewerage Authority (SBRSA) system. Under the requirements of the Discharge License from SBRSA, each month PPPL reports to SBRSA discharges from the Dsite liquid effluent collection tanks (LEC).

Outfall	Para-	# Non-	#	#Compliant	%	Date(s)	Description/
No.	meter	compliance	Samples	Samples	Compliant	Exceeded	Solution
DSN001	CPO	2	7	5	71	8/7/02	Automated chlorination equipment installed.
DSN001	COD	4	19	15	79	6/6/03 7/1/03 11/7/03	Basin cleaned & inspected; discharge closely monitored.

Exhibit 3-10. NJPDES Non-Compliances 2002-2003

3.4.3 Safe Drinking Water Act (SDWA)

The PPPL receives its drinking water from the Elizabethtown Water Company. While Elizabethtown is responsible for providing safe drinking water, PPPL periodically tests incoming water quality (App. A, Tables 23 & 32).

PPPL can switch from D & R Canal water (non-potable) to potable water for its non-contact water supply in the event of a fire or other emergency situation.

On a quarterly basis, PPPL inspects and pressure tests the back flow prevention equipment at both locations: the main potable water connection where Elizabethtown water enters C site and the cross-connect system beneath the elevated water tower. Back flow prevention equipment prevents contamination of the potable water supply via a large cross-connection. On an annual basis, these systems are completely disassembled, inspected, and tested in the presence of an Elizabethtown Water Company representative. These inspection reports are submitted to the NJDEP annually.

3.5 <u>Other Environmental Statutes</u>

3.5.1 Endangered Species Act (ESA)

In 2002 and 2003, PPPL occupied 88.5 acres of the Forrestal Campus of Princeton University. As documented in historical PPPL environmental assessments, no endangered species onsite have been indicated [ERDA75] [DOE92] [DOE93b] [Dy93].

In 1997, as part of the Remedial Investigation, Amy S. Greene Environmental Consultants, Inc. conducted a baseline ecological evaluation [Am98]. The New Jersey Audubon Society has visually verified and reported a pair of Cooper's Hawk (*Accipiter cooperii*) nesting within one mile of the PPPL property [NJB97]. Cooper's hawks are presently listed as threatened in the state of New Jersey [NJDEP97].

3.5.2. Migratory Bird Treaty Act

In 2002 and 2003, PPPL took no migratory bird species nor conducted any programs or actions that call for such activities as banding, marking or scientific collection, taxidermy and/or depredation control.

3.5.3 National Historic Preservation Act (NHPA)

There are no identified historical or archaeological resources at PPPL. No buildings or structures have been identified as historical [Gr77].

3.6 <u>DOE Order 450.1 Environmental</u> <u>Protection Program</u>

3.6.1 Pollution Prevention Activities

In 2002 and 2003, PPPL continued its efforts to pursue waste minimization and pollution prevention opportunities through active recycling efforts and through the purchasing of recycledcontent products. A refined Dumpster Diving survey method of PPPL's solid waste stream document the amount of recycled versus waste materials. In 2003, a digital read-out for the large truck scale was installed to measure the weight of municipal solid waste and the recycled materials in the MSW stream taken from PPPL.

In 2003, the Princeton Beta Experiment-Modification (PBX-M) was dismantled and removed from its test cell on C-site. The test cell will be the home of the next device – National Compact Stellarator Experiment (NCSX). Approximately 352 tons of metal were recycled, including the 57,000 pound vacuum vessel.

3.6.2 Site Environmental Compliance and EMS Audits

In 2002, PPPL's Quality Assurance Division performed eleven audits of which two involved environmental topics: Hazardous Waste and Radiological Waste. Each audit is tracked through PPPL's internal QA Audit Database.

In 2003, PPPL's Quality Assurance Division performed seventeen audits of which four involved environmental topics or subcontractors: ONYX Environmental Services, Radiological Waste, Precision Testing Labs, and PPPL Environmental – Air.

EMS audits will be conducted upon adoption and full implementation of PPPL's EMS program in 2005.

3.6.3 Beneficial landscape

In 2002, PPPL modified the area adjacent to the detention basin, where over time, soil had been temporarily piled (Exhibit 3-11). As part of the landscaping management plan, the area was graded, seeded, and gravel laid down for vehicular traffic that serviced the basin and its equipment or for surveillance purposes drove in this area. The project disturbed greater than 5000 sq. ft. and required an approved Soil Erosion and Sediment Control Plan from the Freehold Soil Conservation District.

Exhibit 3-11. Before Landscaping

Exhibit 3-12. After Landscaping

In Exhibit 3-12, the grassed area was mowed and the area is no longer a magnet for unwanted materials, dirt, or other debris.

3.6.4 Progress on DOE Secretarial Goals Including Ozone-Depleting Substances Reduction

Exhibit 3-13, "PPPL's Progress in Meeting Executive Order 13148 Pollution Prevention, Energy Efficiency, and Transportation Goals in 2002 and 2003," provides the status of PPPL's activities and accomplishments in pursing these fourteen goals.

Exhibit 3-13. PPPL's Progress Toward Meeting Executive Order 13148 Pollution Prevention, Energy Efficiency, and Transportation Goals in 2002 and 2003

Pollution Prevention	Criteria	Baseline	2005 Target	2002 Data	2003 Data
Goal 1	Hazardous Waste Generated				
metric tons(MT)	(90% reduction of 1993 baseline)	29	2.9	9.94	5.88
cubic meters	Mixed Waste Generated				
(m ³)	(80% reduction of 1993 baseline)	2	0.4	0	0
cubic meters	Low Level Waste Generated				
(m ³)	(80% reduction of 1993 baseline)	22	4.4	0	0
cubic meters	TRU/Mixed TRU Waste Generated				
(m ³)	(80% reduction of 1993 baseline)	0	0	0	0
Goal 2	TRI Chemical Releases				
Pounds	(90% reduction of 1993 baseline)	0	0	0	0
Goal 3	Sanitary Waste Generated				
metric tons (MT)	(75% reduction of 1993 baseline)	1,410	352.5	120	93.1
Goal 4	Sanitary Waste Recycled		45% recycling	10.07	17.07
Percent (%)	(45% recycle versus disposal)	N/A	rate in 2005	43.3%	4/.8%
Goal 5	Waste Reduced from Cleanup		Reduce 10% per	0	0
Metric tons	/Stabilization (C/S) Activities (% of	N/A	year FY 2001 to	0	0
	Total waste from C/S activities)		FY 2005 (NOTE I)	0.507	0.507
Goal 6	Purchases of EPA-designated liems			80%	80%
Porcont (97)	with Recycled Content (100% by		1007		
Gool 10	Class I Ozono Doplating Substances		N/A	100%	70/0 NI/A
Guario		N/A	N/A	N/A	N/A
Energy Efficiency	Criteria	Baseline	2005 Target	2002 Data	2003 Data
Goal 7	Unit Energy Consumption	2000	got		2000 2 4.4
BTUs/Ft ²	(40% of 1985 baseline for building)	249,007	149,404	150,600	175,300
Goal 8	Request for bid packages for energy				
	supply with clean energy provisions				
Percent (%)	(% of requests with provisions versus	N/A	100%	0%	0%
	those without)				
	Purchase of electricity from less				
Percent (%)	greenhouse gas-intensive sources (%	N/A			
	of electricity from less greenhouse			0%	0%
	gas sources to total consumption)				
Goal 9	Replacement of chillers (% of total	Five (5)			
Percent (%)	150 ton or larger pre-1984 units with	units	100%	100%	100%
0.111	class i retrigerants replacea)				
Goal 11	Greenhouse gas emission from	2.007	0.055	E E 10	E E 40
US IONS	graphausa an amission reduced	3,806	2,833	5,518	3,34Z
	relative to 1890 baseline)				
Transportation	Criteria	Basolino	2005 Target	2002 Data	2002 Data
Goal 12	Petroleum consumption by fleet	Dasenne	2005 Target	2002 Data	2003 Data
aallons	vehicles (80% of petroleum fuel used	8 076	6 461	7 966	9.082
galloris	in relation to FY00 baseline)	0,070	0,101	/ ,/ 00	7,002
Goal 13	New alternative fuel light truck				
Percent (%)	purchase (%of new truck purchase	N/A	80%	0	50%
	with alternative fuel capability)	,		-	/ -
Goal 14	Usage rate of alternative fuel				
Percent (%)	vehicles (% use versus total	N/A	75%	50%	50%
	availability)				

Hazardous waste and municipal solid waste reduction data are discussed in Section 3.1.2 (see Exhibits 3.1, 3.2, and 3.3)

In 2002, used and virgin Freon were sold to a recycler. Proceeds from the sale returned \$95,000 to the Laboratory. The total pounds recycled were 9,459 lbs: R500 - Used 2,921 lbs, R 12-Used 5,242 lbs, R 12-virgin 400 lbs, and R 500-virgin 896 lbs.

3.7 <u>Executive Orders (EO)</u>

3.7.1 Executive Order (EO) 13148, "Greening the Government through Leadership in Environmental Management"

On Earth Day, April 21, 2000, President Clinton signed this EO, which set goals for all government agencies to achieve reductions in toxic chemicals, hazardous, and ozone-depleting substances, environcompliance, mental environmental and management systems, environmentally economically and beneficial landscaping. Each agency develops a written implementation plan, which is submitted to EPA and annual progress reports on the progress achieved to meet the goals by the set deadlines.

PPPL will integrate the Environmental Management System (EMS) as part of the PPPL Integrated Safety Management System (ISMS) program that was developed in 1999 [PPPL99a]. The EO13148 requires that the EMS be implemented by the end of 2005.

3.7.2 Executive Order (EO) 11988, "Floodplain Management"

In 2002 and 2003, PPPL complied with EO 11988, "Floodplain Management." Delineation of the 500 and the 100-year floodplains was completed in February 1994. The 500-year and the 100-year floodplains are located at the 85-foot elevation and at the 80-foot elevation mean sea level (msl), respectively [NJDEP84] (Exhibit 3-14).

The 88.5-acre parcel that PPPL occupies is included in Princeton Forrestal Center's (PFC) Storm Water Management Plan-Phase I [PFC80]. The 88.5-acre parcel is part of the Bee Brook watershed included in the PFC storm water plan.

One condition of the PFC Storm Water Management Plan is that the average density of development cannot exceed a maximum of 60% impervious coverage of developable areas. PPPL meets the ≤60% impervious coverage limit. The Site-Wide Storm water Management Plan was completed in February 1996, and PPPL is in compliance with this Plan [SE96].

In 1997, PPPL prepared a Site-Wide Storm Water Pollution Prevention Plan. Incorporating the Storm Water Management Plan, Spill Prevention Control and Countermeasure (SPCC) Plan, and other best management practices, this plan was a summary of activities already in practice at PPPL. The plan will be reviewed and updated triennially or as site changes warrant.

3.7.3 Executive Order (EO) 11990, "Protection of Wetlands"

In 2002 and 2003, PPPL complied with EO 11990, "Protection of Wetlands." The Land

Use Regulation Program within NJDEP continues to be the lead agency for establishing the extent of state and federally regulated wetlands and waters. The U.S. Army Corps of Engineers retains the right to re-evaluate and modify wetland boundary determinations at any time.

In 1994, PPPL received a "Letter of Interpretation" (LOI) from NJDEP for

defining the wetland boundaries and wetlands classification. This LOI is needed before NJDEP issues wetlands permits for a site. The LOI is valid for a five-year period with the option to renew for an additional five years. In 1999 PPPL submitted a renewal application to NJDEP and was granted the five-year extension, beginning in January 1999 and valid until January 2004 (Exhibit 3-14).

3.7.4 Executive Order (EO) 12856, "Federal Compliance with Rightto-Know and Pollution Prevention Requirements," and Superfund Amendments and Reauthorization Act (SARA) Title III, Emergency Planning and Community Right-to-Know Act (EPCRA)

Emergency Planning and Community Right-to-Know Act, Title III of the 1986 SARA amendments to CERCLA created a system for planning responses to emergency situations involving hazardous materials and for providing information to the public regarding the use and storage of hazardous materials. Under the reporting requirements of EO 12856 and SARA Title III, PPPL complied with the following:

PPPL submitted an annual chemical inventory in compliance with SARA Title III (EPCRA Section 312) in 2002 and 2003. This inventory reports the quantities of chemicals listed in the CERCLA regulations (Exhibit 3-15). Under SARA Title III, PPPL provides the following to the applicable emergency response agencies:

- 1. An inventory of hazardous substances stored on-site;
- 2. Material Safety Data Sheets (MSDS); and
- 3. SARA Tier I form.

PPPL completed the listing of each hazardous substance stored by users above a certain threshold planning quantity (typically 10,000 pounds, but lower for certain compounds). Exhibit 3-16 lists hazardous compounds at PPPL reported under SARA Title III for 2002 and 2003 [PPPL03b & PPPL 04]. These chemicals are found in 40 CFR Part 372, Subpart D, which lists names and chemical abstract system numbers for toxic chemicals.

Of the fifteen, eight chemicals are in their gaseous form and are therefore classified as sudden release of pressure hazards; five gaseous compounds are also classified as acute health hazards. There are eight liquid chemicals; nitrogen is used in both gaseous and liquid forms. Fuel oil, gasoline, and petroleum oil are flammables: trichlorotrifluoroethane (CFC-113) and sulfuric acid are the liquid compounds that are classified as acute health hazards; sulfuric acid is also reactive. PCBs and gasoline are listed as chronic health hazards.

	YES	NO	NOT REQUIRED
EPCRA 302-303: Planning Notification	[🖌]	[]	[]
EPCRA 304: EHS Release Notification	[]	[🖌]	[]
EPCRA 311-312: MSDS/Chemical Inventory	r [🖌]	[]	[]
EPCRA 313: TRI Report	[]	[]	[✓]

Exhibit 3-15. Summary of PPPL EPCRA Reporting Requirements

EHS – Extremely hazardous substances (No EHS are on-site at PPPL) TRI – Toxic Release Inventory Section 304 of SARA Title III requires that the Local Emergency Planning Committee (LEPC) and State Emergency Response (SERC) be notified Commission of accidental or unplanned releases of certain hazardous substances to the environment. То ensure compliance with such notification provisions, a Laboratory-wide procedure, ESH-013, "Non-Emergency Environmental Release-Notification and Reporting," includes SARA Title III requirements [PPPL98b]. The NJDEP administers SARA Title III reporting for the USEPA and has modified the Tier I form to include SARA Title III reporting requirements NJDEP reporting and requirements [PPPL03b & 04].

Exhibit 3-16. Hazard Class of Chemicals at PPPL

Compound C	atogony
Compound C	aleyury
Bromochlorodifluoro- Su	udden release of
methane (Halon 1211) pi	ressure & Acute
he	ealth effects
Bromotrifluoromethane Su	udden release of
(Halon 1301) pi	ressure & Acute
h	ealth effects
Carbon dioxide Su	udden release of
pi	ressure & Reactive
Chlorine Re	eactive
Chlorodifluoromethane Su	udden release of
(HCFC22) pi	ressure & Reactive
Dichlorodifluoro- Su	udden release of
methane (CFC 12) pi	ressure & Reactive
Fuel Oil Fi	re
Gasoline Fi	re & Chronic Health
H	azard
Helium Su	udden release of
pi	ressure
Nitrogen Su	udden release of
pi	ressure
Petroleum Oil Fi	re
Polychlorinated C	hronic Health Hazard
Biphenyls	
Sulfur Hexafluoride Su	udden release of
pi	ressure
Sulfuric acid A	cute Health Hazard &
Re	eactive
Trichlorotrifluoroethane Re	eactive
(CFC 113)	

Because PPPL's use of chemicals listed on the Toxic Release Inventory (TRI) is below threshold amounts, PPPL is not required to submit the TRI. Following DOE's guidance, PPPL completed an annual submittal to DOE for 1997 that included the TRI cover page and laboratory exemption report. PPPL did not submit a TRI in 2002 or 2003 (not required).

3.8 <u>Other Major Issues and Actions</u>

3.8.1 Air Quality

Through PPPL's Air Environmental Permitting Program, PPPL applied to NIDEP for modifications to all four boilers to fire No. 2 fuel oil in addition to the existing permit provisions that allow for the burning of natural gas and No. 4 fuel oil. No. 2 fuel oil is a lighter and cleaner burning petroleum distillate and its use instead of No. 4 would lower the amount of nitrogen oxides (NO_x) emitted. In April 2003 PPPL received permission to burn No. 2 fuel oil in all four boilers, provided that a compliance plan was prepared to meet the permit requirements. A Compliance Plan was drafted, and records are being kept to meet those requirements.

3.8.2 Surface Water Quality

Under NJPDES requirements, PPPL eliminated chlorine-produced oxidants (CPO) from its discharges (basin outfall designate serial number, DSN001, and D&R Canal pump house outfall (DSN003). CPO is created by the reaction of chlorine combining with organic material in the water. Chlorine is added to prevent bio-fouling in water pipes and cooling tower equipment. CPO is generally harmful to biota in the receiving streams. PPPL installed an

automated chlorine controller and a new metering system in the D&R Canal water system in 2002. A similar system was installed at the D-site cooling tower in 2003: the CPO limit was exceeded once prior to the operation of the new chlorine metering system. By reducing or limiting the amount of chlorine added to these PPPL protects its systems, water systems/equipment while also protecting the environment by reducing CPO in its surface water discharge.

In June 2003, elevated chemical oxygen demand (COD) concentrations (<50 mg/L monthly average) were reported in (Noncompliance Report) Iulv and September 2003 (Response to a Notice of Violations) [PPPL 03]. PPPL determined the source to be accumulated fine organics that settled to the bottom of basin; the basin was cleaned and the liner inspected in August 2003. The COD concentrations returned to normal levels of less than 10 mg/L in September and October [PPPL03g].

In November, 2003, elevated COD concentrations at DSN001 as well as offsite monitoring locations were reported. At the off-site monitoring locations elevated COD concentrations were attributed to organic decomposition of leaves and other vegetation, based on the elevated total organic carbon (TOC) measurements. The elevated COD concentration at DSN001 did not appear attributable to higher organics concentration (TOC) (Exhibit 3-17).

PPPL's investigation was inclusive with no source of the elevataed COD identified. The COD concentration was lower in December 2003 (37.89 mg/L). PPPL did conclude that the probable

source was an inorganic, not from basin organics – leaves and debris, which accumulated following the basin cleaning in August 2003, as the TOC concentration at DSN001 was low [PPPL04b].

3.8.3 Ground Water Quality

Under New Jersey's State program for NJPDES ground water discharges, PPPL's permit (NJ0086029) in May 2001, NJDEP issued the revised ground water discharge permit. The requirement to monitor groundwater from seven monitoring wells and two basin inflows was eliminated.

Beginning in 1993, PPPL and DOE-PSO have been monitoring ground water under a Memorandum of Understanding (MOU) signed by NJDEP, Princeton University and DOE-PSO. Princeton University agreed to investigate A- and Bsites while PPPL and DOE-PSO were to investigate C-and D-sites of the James Forrestal Research Campus. A summary of major project milestones is presented below:

- **1993** Prepared specifications for Remedial Investigation and Remedial Alternative Assessment project (RI/RAA).
- 1994 Harding Lawson Associates (HLA) began RI/RAA. Sampled existing wells, sumps, and soil borings. Soil beneath the Facilities Building and adjacent to C Site Cooling Tower removed.
- 1995 HLA conducted ground water sampling; prepared RI/RAA report.; completed UST closure activities.
- 1996 RI/RAA report submitted. Installed four new monitoring wells south of the CAS/RESA Building to delineate extent of contamination.
- 1997 New area of potential environmental concern (APEC) near the former PPPL Annex Building identified by sampling ground water from eight new wells and soil borings. Report submitted.
- 1998 Phase 3 RI report submitted to NJDEP in September 1998 [HLA98].
- **1999** Phase 4 RI and Remedial Action Selection reports submitted in October. Ground water monitoring continued.

- 2000 Remedial Action Work Plan submitted to NJDEP in May, quarterly ground water monitoring continued [Sh00, Sh01].
- 2001 Remedial Action Monitoring Report submitted; quarterly monitoring continued [Sh01 & Sh03].
- 2002 Remedial Action Monitoring Report submitted; quarterly monitoring continued [Sh01 & Sh03].
- 2003 Remedial Action Monitoring continued; quarterly March and June 2003; first annual monitoring performed in October 2003. Fourteen monitoring wells permanently removed.

3.8.4 Outreach - 6th and 7th Annual Earth Day Celebration

In April 2002, the 6th annual Earth Day Celebration at PPPL involved local area middle schools and children of PPPL Over 200 staff in a poster contest. students, teachers, parents, and PPPL staff attended the celebration that included presentation of contest awards, a briefing on "Fusion Energy in the New Century" given by Dr. Rob Goldston, Director of PPPL, and a presentation by Richard Wetherald of the National Oceanographic Atmospheric and Administration's (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL): "Greenhouse Gases & Global Warming."

In 2003, the 7th Earth Day at PPPL was celebrated with a presentation by Dr. Boscarsly, Princeton Andrew University, whose research topic was "Fuel Cells: Brining Hydrogen to the As part of PPPL's Marketplace." outreach program, neighboring middle school science teachers and the public were invited to hear this presentation. Also, participants in Earth Dav activities at PPPL, were Eurest Dining Services, The Princeton Environmental Institute, Princeton University Water Watch, and Executive **Business** products.

3.8.5 Facility Improvements

In 2003, the elevated water tower that holds D&R Canal water for cooling and fire-protection was inspected, repaired, and painted. At 160 feet in height, the tower holds 250,000 gallons. Workers use safety equipment with a bucket that raises and lowers them from the ground to the desired elevation (Exhibit 3-18).

Exhibit 3-18. Worker Using Bucket with Safety Harness for Painting Elevated Water Tower Project

3.8.6 Safety

PPPL's 2002 and 2003 performance with respect to worker safety were as follows [Lev04b]:

<u>2002</u>

Total recordable case rate: 2.83 per 200,000 hours worked Days away, restricted or transferred (DART) case rate: 1.66 per 200,000 hours worked DART day rate: 60.53 per 200,000 hours worked Number radioactive contaminations of (external): \cap Number of Safety Occurrence reports: Ο (OSHA confined space, chemical exposure and lock out/tag out incidents) 2003 Total recordable case rate: 0.95 per 200,000 hours worked Days away, restricted or transferred (DART) 0.76 per 200,000 hours worked case rate: 12.72 per 200,000 hours worked DART day rate: Number of radioactive contaminations (external): 0 Number of Safety Occurrence reports: 0 (OSHA confined space, chemical exposure and lock out/tag out incidents)

3.9 <u>Continous Release Reporting</u>

In 2002 and 2003, PPPL had no continuous releases to report.

3.10 <u>Unplanned Releases</u>

During CY2002 and 2003, two and four, respectively, unplanned releases of hazardous or petroleum substances occurred. In April and May 2002, PPPL reported to the NJDEP Hotline that PPPL released hydraulic oil from the Lwing elevator (~35 gallons) and D-site diesel generator (~2 quarts). The elevator hydraulic lift leaked sufficiently that it was taken out of service until repairs could be made; prior to repairs, the elevator shaft required clean-up of the hydraulic oil. A bio-based or vegetable-based oil replaced the petroleum-based hydraulic oil in the lift. The D-site diesel generator leaked from a fuel line that hvdraulic oil spilled onto the concrete pad and adjacent gravel. PPPL cleanup the area and repaired the line.

In 2003, PPPL reported four releases to the NJDEP Hotline. Two involved lubricating oil - in February 2003, a ventilation, heating, and air conditioning unit (HVAC) line ruptured and released oil (~2 quarts) to the gravel and soil. In April 2003, the D-site diesel generator released lubricating oil (<2 gallons) onto the gravel and adjacent The third release involved an soil. employee's vehicle, which leaked gasoline (<2 gallons) onto the paved parking surface during a rain event in March 2003 causing the gasoline to runoff into a stormdrain. Lastly in September 2003, subcontractor's а backhoe ruptured a hydraulic line that released oil (~8 ounces) onto a grassed area. All of the above releases were cleaned up by PPPL personnel, and the contaminated gravel/soil was drummed and removed off-site by subcontractor waste removal company.

3.11 Current Issues and Actions

3.11.1 Environmental Management Systems

The benefits comprehensive of Environmental Management Systems (EMS) and the associated International Standard Organization (ISO) 14001 system are being reviewed. PPPL is evaluating the EO 13148 - "Greening the Government through Leadership in Environmental Management," - issued on April 22, 2000 (Earth Day) - to determine how best to implement an EMS inder the requirement of its DOE contract. Many of the elements of an EMS are presently instituted in plans, policies, and procedures at PPPL, however, integration into PPPL's ISM

and recognition of the EMS approach and laboratory management procedures and policies are being revisited to fully comply with EO13148.

3.12 <u>Summary of Environmental</u> <u>Permits</u>

The following table (Exhibit 3-19) presents the different regulatory requirements/permits with which PPPL must comply. It is not solely a list of environmental permits, but rather a list specifies the citation for that environmental regulations, PPPL's requirement or permit, and where data reports may be found. A discussion of environmental permits required by the applicable statutes is found in Sections 5.0 and 6.0. "Environmental Radiological and Non-Radiological Program Information."

Media	Regulatory Citation	Requirement/Permit	Data Reported
Air	40 CFR 61 – National Emission Standards for Hazardous Air Pollutants (NESHAPs)	Monitor D site stack for tritium	Reported in the annual Site Environmental Report (ASER)
	40 CFR 82 – Protection of Stratospheric Ozone	Training & certification; Chillers, HVAC, fire suppression systems, cylinders	Ozone Depleting Substances (ODS) Inventory
	NJAC 7:27- – Air Pollution Control –Subchapter 8 Permits and Certificates	4 Boiler stacks; 2 Storage tank vents; 3 Dust collectors; 2 Diesel generators.	Fuel use reported in ASER; Generator hours recorded in logbook
Asbestos	29 CFR 1910.1001, 1910.1200 – OSHA General Industry Standard	Identify locations prior to removal (roofing, tiles, walls, pipes, insulation, etc.)	Reporting to EPA prior to removal; Track generated quantities
EPCRA	40 CFR 370 – Hazardous Chemical Reporting: Community Right-to-Know	SARA Title III listed substances above threshold amounts	Section 312 annual report to EPA in March; Also reported in ASER
Laboratory Certification	NJAC 7:18 - Regulations Governing Laboratory Certification and Environmental Measurements	Princeton Environmental, Analytical, and Radiological Laboratory (PEARL) – tritium, COD, and analyze immed. parameters	Annual application; semi-annual performance testing; results reported in ASER
Land Use - Wetlands	NJAC 7:7A – Freshwater Wetlands Protection Act Rules	Delineated wetlands; 26-kV tower maintenance, well installations	Status reported in quarterly updates; Also, reported in ASER
Meteorology	DOE Order 430.1A - Life Cycle Asset Management	Meteorological tower – 3 levels (10, 30, and 60 meters) Rain gauge	Wind speed & direction, air temperature, dew point, precipitation. Precipitation reported in ASER
Safe Drinking Water	40 CFR 141.16 –National Primary Drinking Water Regulations	Best Management Practices - Tritium analyzed in ground, surface, & rain water	20,000 pCi/L or 4 mrem/year annual dose. Reported in ASER
Soil	NJAC 7:1E – Discharge of Petroleum and Other Hazardous Substances	Reporting discharge of petroleum or hazardous substances on soil/ unpaved areas/ water	30-Day confirmation report to NJDEP; Also reported in ASER
	Standards for Soil Erosion and Sediment Control Act Chapter 251	Projects which create soil disturbance greater than 5,000 sq. feet	Quarterly status reported in updates
SPCC	NJAC 7:1E – Discharge of Petroleum and Other Hazardous Substances 40 CFR 110 – Discharge of Oil 40 CFR 112 – Oil Pollution Prevention	PPPL designated minor facility – no DPCC or DCR required; Spill Prevention, Control, and Countermeasure Plan (SPCC) required	SPCC Plan required; Inspections, records, procedures
TSCA	40 CFR 761- Polychlorinated Biphenyls (PCBs)	Label, inspect, records of polychlorinated biphenyls (PCBs) in capacitors	Inventory; Disposal records; Also reported in ASER

Exhibit 3-19. PPPL Environmental Requirements

Media	Regulatory Citation	Requirement/Permit	Data Reported
Waste - Hazardous	40 CFR 260 –279 – Resource Conservation and Recovery Act (RCRA) NJAC 7:26-8 – Hazardous Waste Regulations	On-site 90 –day temporary storage; EPA ID # NJ1960011152 Manifest records	Biennial report to NJDEP
Waste - Medical	NJAC 7:26-3A Regulated Medical Waste	Disposal of medical wastes generated from dispensary	Annual report to NJDEP
Waste - Sanitary	NJAC 7:28 – Bureau of Radiation Protection	Liquid effluent collection (LEC) tanks sampled for: Tritium Gross beta	Tritium concentrations not to exceed 1 Curie per year
	DOE Order 5400.5 – Radiation Protection of the Public and the Environment	LEC tank - Tritium Gross beta	2 million picoCuries/Liter per discharge limit
	Stony Brook Regional Sewerage Authority Industrial Discharge License (22-96-NC)	LEC tank sampled for: Tritium & Gross beta pH, temperature, Chemical oxygen demand (COD) Quantity released	Monthly Discharge Report – Self Reporting Form to SBRSA Also, reported in ASER
Waste - Solid	NJAC 7:26 – Solid Waste	Registered Solid waste hauler; recycling separation of materials	Recycle report for paper, cardboard, glass/aluminum, plastics, scrap metals, batteries, office waste, <i>etc.</i> ; Also reported in ASER
Water - Ground	NJAC 7:14A – The New Jersey Pollutant Discharge Elimination System (NJPDES)	Integrity testing of the liner once every 3 years.	
	NJAC 7:19 – Water Supply Allocation Rules	Two former production wells (Wells 4 & 5) quantities pumped not to exceed 100,000 GPD	Annual report to NJDEP
	NJAC 7:26E – Technical Requirements for Site Remediation	Investigation –quarterly - annually ground water monitoring, 12 wells, 2 sumps, and one surface water location	Remedial Investigation reports to NJDEP; Also , reported in ASER
Water - Potable	NJAC 7:10 – Safe Drinking Water Act	Quarterly inspection of back-flow preventors; annual internal inspection	Annual report to NJDEP & water purveyor
Water – Storm	NJAC 7:13 – Flood Hazard Area Control	Basin inspection & maintenance	Records
Water - Surface	NJAC 7:14A – The New Jersey Pollutant Discharge Elimination System (NJPDES)	Monthly surface water samples at two locations – DSN 001 and 003; annual chronic toxicity test @ DSN 001	Monthly discharge monitoring reports to NJDEP; annual chronic toxicity test report to NJDEP; Also, reported in ASER

Exhibit 3-19	Environmental Requirements	(cont)
	Environmental Requirements	(00111.)

柴

ENVIRONMENTAL PROGRAM INFORMATION

4.1 Environmental Management System (EMS) and Environmental Protection Programs (EPP) at PPPL

4.1.1 EMS

In the EO 13148, "Greening of the Government through Leadership in Management," Environmental а requirement to prepare and implement an EMS program was placed upon all Federal Agencies, including Department of Energy (DOE) Laboratories and other facilities. In 2002, members of PPPL's Environmental Review Committee (ERC), DOE-Princeton Site Office (DOE-PSO), and other Divisions within PPPL formed the EMS subcommittee of the ERC. During 2002 and 2003 this gathered subcommittee information necessary to prepare an EMS Program, determined the extent of existing program documents, policies, and procedures, and identified those areas where actions were needed.

PPPL's EMS Program will be a part of the Site Integrated Safety Management System (ISMS). ISMS Program was implemented as required by DOE Policy 450.4, Safety Management System Policy in 2000.

4.1.2 EPP

DOE Order 450.1, "Environmental Protection Program," was approved on

January 15, 2003. As this Order requires the protection of air, water, land, and other natural and cultural resources that may be impacted by DOE and PPPL operations, the ERC subcommittee was similarly tasked with the action to spearhead the Laboratory's adoption of the Order's requirements. These requirements are to be implemented within 12 months of the inclusion of the Contractor Requirement Document (CRD) into the facility goals and contract, which occurred in May 2003.

Formalized programs to be are developed in order to fulfill CRD goals: environmentally economically and beneficial landscaping; supply specifications and acquisitions and operational assessments for pollution prevention projects; and ozonedepleting substance management. The integration of EMS into ISMS as well as revisions to implementing documents is under review.

Progress toward the CRD goals are discussed in Sections 3.3.1, Clean Air Act (CAA), 3.6.3, Beneficial Landscaping, and 3.6.4, Progress on DOE Secretarial Goals Including Ozone-Depleting Substances Reduction.

Since the announcement of the Clean Water Action Plan in January 1998, PPPL has actively pursued ways to improve water quality. The two surface water discharges are permitted under

the New Jersey Pollutant Discharge Elimination System regulations with monthly monitoring occurring at both outfalls since 1992. Improvements include the following actions taken by PPPL: for the detention basin- real-time flow meter data, annual maintenance and triennial liner inspections, aeration with upgrades planned, and upgraded oil-detection instrumentation. PPPL has installed two new chlorine metering systems, one at the Delaware & Raritan Canal pump house and the other D-site cooling tower that lowered the amount of chlorine used. То improve stormwater quality, site-wide grounds clean-ups and landscaping of disturbed areas reduce or eliminate runoff. For water conservation, PPPL has replaced old water lines. These activities were reported in previous Annual Site Environmental Reports as wells as within this report. Annually, PPPL

representatives meet with local officials to provide the current status of projects at the Laboratory; both experimental related and environmental topics are discussed.

4.2 <u>Summary of Radiological</u> <u>Monitoring Programs</u>

The monitoring for sources of potential radiological exposures is extensive. In 1981, real-time prompt gamma and/or neutron environmental monitoring on D-site began to establish baselines prior to TFTR operations. Exhibit 4-1 lists the air stations that were monitored for radiological parameters in 2002 and 2003.

Surface, ground, rain, and process water samples are collected at the same locations for both non-radiological and radiological (HTO) analysis (Exhibit 4-2).

Exhibit 4-1. Radiological Air Monitoring Stations

Station Name	Number/Description	Exhibit #
Remote Environmental Air Monitoring (REAM)-off site	Stations R 1- 6: Tritium	4-4
Radiological monitoring system (RMS) on D site	Passive tritium monitors at T 1-4:	4-3

O L 11 #	=	D
Station #	Location/Exhibit	Description
	#	
B1	Off-site / 4-3	Bee Brook Upstream of discharge from detention basin
B2	Off-site / 4-3	Bee Brook Downstream of discharge from detention basin
C1	Off-site / 4-4	Delaware & Raritan Canal (Plainsboro)
DSN001	On-site / 4-3	Surface Water Discharge from the detention basin
DSN003	Off-site / 4-4	Delaware & Raritan Canal pump house outfall
E1	On-site / 4-3	Elizabethtown Water Company - potable water supply
M1	Off-site / 4-4	Millstone River - Plainsboro & West Windsor boundary- Route 1
P1	Off-site / 4-4	Plainsboro Surface Water - Millstone River
P2	Off-site / 4-4	Plainsboro Surface Water - Devils Brook
D-MG & TFTR	On-site /4-3	Basement sumps that drain ground water to detention basin
D-11R & D-12	On-site /4-3	Ground water monitoring wells next to detention basin
TW-1,2,3,& 10	On-site /4-3	Ground water monitoring wells north of NSTX
LECT 1,2,or 3	On-site /4-3	Liquid effluent collection tanks north of NSTX
R Series R1S	On-site /4-3	8-Rain water monitoring locations for North, South, East, &
to R2N		West @ 250 & 500 ft. from stack
Rainwater R1-R6	Off-site /4-3	Rain water monitoring locations (5 co-located with air DATS)

Exhibit 4-2. Radiological and Non-Radiological Water Monitoring Stations

In the mid-1980's, the last comprehensive assessment of population distribution in the vicinity of PPPL was completed for the proposed Burning Plasma Experiment (BPX) Environmental Assessment (EA) [Be87a]. PPPL is situated in the metropolitan corridor between New York City to the northeast and Philadelphia to the southwest. Census data indicate that approximately 18 million people live within 50 miles radius (80 km) of the site and approximately 253,000 within 10 miles (16 km) of PPPL based on the 2000 population census.

The overall, integrated, effective-dose equivalent (EDE) from all sources (excluding natural background) to a hypothetical individual residing at the nearest business was calculated to be 0.0.31 mrem (3.10 µSv) for 2002 and 0.13 mrem (1.29 µSv) for 2003 (see Exhibits 5-& 5-2). Detailed person-rem 1 calculations for the surrounding population was not performed, because the value would be insignificant in comparison to the approximately 100 mrem (1 mSv) that each individual receives from natural background, excluding radon, in New Jersey.

Exhibit 4-4. Off-site Monitoring Locations

4.3 <u>Summary of Non-Radiological</u> <u>Monitoring Program</u>

During 2002 and 2003, PPPL operated under New Jersey Pollutant Discharge Elimination System (NJPDES) surface water permit, number NJ0023922, effective on June 4, 1999. As stated in the permit conditions, PPPL monitored monthly the discharge of the detention basin, DSN001. Monthly data exists for this location dating back to 1984.

Monthly water quality monitoring at DSN001:

```
Temperature, pH
Petroleum hydrocarbon (TPH)
Total suspended solids (TSS)
Chemical oxygen demand (COD)
Chlorine-produced oxidants (CPO)
Flow
Quarterly:
Total phosphate (Tot. P)
Tetrachloroethylene (PCE)
Annual:
Chronic Toxicity Testing
```

Monthly sampling for TPH, pH, and CPO continued at DSN003 – a filter backwash discharge located at the Delaware and Raritan Canal pump house. Quarterly monitoring included total suspended solids (TSS) at the discharge and intake (D&R Canal water designated as C1) without a limit for TSS (Exhibit 4-4).

As a requirement of the surface water permit, а chronic toxicity characterization study was conducted test the DSN001 effluent with the fathead minnow (Pimephales promelas) as the test organism. The annual study results were submitted for the September 2002 and October 2003 tests [PPPL02c & PPPL03h]. PPPL's discharge water and the control tests were the same - no mortality to the test specimens.

Ground water monitoring conducted under the Environmental Restoration program is discussed in Chapters 6.0 and 7.0.

4.4 <u>Environmental Requirements</u>

Environmental requirements, for which DOE and PPPL are held accountable, are listed in Exhibit 3-19 and are discussed in Chapters 3.0, "Environmental Compliance Summary" and 6.0, "Environmental Non-Radiological Program Information," of this report.

4.5 <u>Environmental Impact</u> <u>Statements and Environmental</u> <u>Assessments</u>

No Environmental Impact Statements or Environmental Assessments were prepared in 2002 or 2003.

4.6 <u>Summary of Significant</u> Environmental Activities at PPPL

4.6.1 Regulatory Inspections/Audits

In July 2002, a NJDEP Enforcement Inspector conducted the annual inspection of the Discharge to Surface Water Permit (NJPDES NJ0023922) [NJDEP99]. After reviewing the records and visually inspecting the two permitted outfalls, the result was an acceptable rating based on compliance with the permit conditions and no permit limits were exceeded during 2002.

In July 2003, a NJDEP Enforcement Inspector conducted the annual inspection of the Discharge to Surface Water Permit (NJPDES NJ0023922) [NJDEP99]. During the records check, the inspector noted that in August 2002, the chlorine-produced oxidant (CPO) concentration exceeded the permit limit. PPPL installed the new chlorine controller system for the D-site cooling tower, which became operational shortly after the CPO measurement was In June 2003, the chemical made. oxygen demand (COD) permit limit was exceeded, due to an accumulation of sediments in the basin. In August 2003, the basin was cleaned, and the majority of the sediments removed. A Notice of Violation (NOV) was written as a result of the two limits that were exceeded at the basin outfall.

Stony Brook Regional Sewerage Authority representative conducted an audit in May 2002. The audit scope was the discharge from the liquid effluent collection tanks (LECT), which are monitored for pH, temperature, COD, tritium, and gross beta. Volume is also reported each month. The SBRSA triennial inspection concluded with no findings.

4.6.2 Basin Management

As a condition of the NJPDES Ground Water Discharge Permit (DGW), PPPL prepared an Operations and Maintenance (O&M) Manual for the detention basin. The basin collects flow from C-site (Boilers 2 and 3 blowdown, cooling tower blow-down, non-contact cooling water, ground water from basement sumps, and stormwater) and D-site (ground water from basement sumps and stormwater). At the outfall of the basin, an ultrasonic transducer measures the water level above a weir and the flow rate is monitored and logged into a recorder. A slide gate allows the basin to drain was replaced with a new gate that crank operates its open/closed position.

As noted in the previous section, 4.5.1, the basin was cleaned in August 2003. Following the cleaning, a representative from the liner manufacturer inspected the basin liner for any tears, holes, or other problems that would render the liner dysfunctional. The liner inspector indicated no defects were detected in the liner since its installation in late 1994.

Exhibit 4-5. New Slide Gate

Exhibit 4-6. Basin Drained August 2003

4.6.3 Tritium in the Environment

Since TFTR deuterium-tritium (D-T) operations began in 1994, PPPL has been monitoring tritium in environmental samples as well as in the test cell and related stack (vent). Five monitoring wells and two ground-water sumps, ten on-site and six off-site rainwater-monitoring stations and surface water at one on-site and one offsite station were sampled monthly from 1995 through 2003 (Exhibits 4-7 & 4-8) [Lev04c].

Media	Location	Highest HTO	Stack Data (Date)
Air	T3 (SE D-site)	118pCi/m ³	1.01 Ci HTO (Apr. 17)
	R5 (SE of PPPL)	14.3 pCi/m ³	7.56 Ci HTO (Jan. 30)
	D-site Stack	8.21Ci	8.21HTO (Nov. 20)
Well	TW-8	479 pCi/L	7.56 Ci HTO(Jan. 30)
Rain water	R1S	3,921pCi/L	3.24 Ci HTO (Apr. 24)
	R2S	1,590,pCi/L	1.89 Ci HTO (Mat. 20)
Surface water	DSN001	2,090 pCi/L	1.10 Ci HTO (Apr. 3)
Ci = Curie	Curie pCi/L = picoCuries per Liter		HTO = tritiated water

Exhibit 4-7.	2002 Highest	Tritium Con	centrations in	Environmental	Samples
--------------	--------------	-------------	----------------	---------------	---------

Exhibit 4-8.	2003 Highest	Tritium	Concentrations	in Enviror	nmental Samples
--------------	--------------	---------	----------------	------------	-----------------

Media	Location	Highest HTO	Stack Data (Date)
Air	T3 (SE D-site)	20.5 pCi/m ³	1.00 Ci HTO (Jun.4)
	R6 (S of PPPL)	5.1 pCi/m ³	0.67 Ci HTO (Jull 16)
	D-site Stack	1.32 Ci	1.32 Ci HTO (Jan. 15)
Well	MW-12S	2,225 pCi/L	0.21 Ci HTO(Oct. 22)
Rain water	R1E	1,104pCi/L	0.27Ci HTO (Nov. 5)
	R2E	1,126,pCi/L	0.56 Ci HTO (Sept. 17)
Surface water	DSN001	451pCi/L	0.49Ci HTO (Sept. 3)
Ci = Curie	pCi/L = picoCu	iries per Liter	HTO = tritiated water

4.6.4 TFTR and PBX-M Removal Make Way for NCSX

On D-site, the three year project to dismantle and remove the Tokamak Fusion Test Reactor (TFTR) came to its end in September 2002 being completed within budget and on-schedule. The ten segments of the vacuum vessel and its associated coils (magnets used for plasma containment) were wrapped and shipped to Hanford, Washington for burial as low-level radioactive waste. Having been emptied with the exception of Neutral Beam boxes (to be used in the future), the Test Cell was readied for its next assignment as the Coil Winding Facility for the National Compact Stellarator Experiment (NCSX).

Exhibit 4-9. NCSX Plasma and Magnetic Coil Configuration

On C-site, the device, Princeton Beta Experiment-Modified (PBX-M), which operated from 1989 to 1994, was dismantled and removed following the TFTR D&D. PBX-M started life as the Poloidal Divertor Experiment (PDX) and operated from 1978 to 1985, when it was modified and renamed Princeton Beta Experiment (PBX 1985-1989). Unlike the TFTR vacuum vessel and other components, the PBX-M vessel and its parts weighing more than 352 tons were shipped off-site for metal recycling. In 2003, the PDX/PBX-M and the Princeton Large Torus (PLT) device test cells were emptied and await the fabrication of NCSX. Similar to PBX-M, PLT was removed and recycled in 2000.

As the chapter is completed for one major device, in this case, two devices, the door opens and reveals a new device waiting in the wings. Through PPPL's efforts and resourcefulness, not only are parts of the devices recycled by others and by PPPL, but the facilities (both test cells) infrastructure and the talent of PPPL's employees are being utilized to further the research for fusion as a viable energy source.

4.6.5 Occupation Safety and Health Administration-(OSHA) Inspection

From August 11-15, 2003, the Occupational, Safety, and Health Administration (OSHA) Compliance Audit Team conducted a comprehensive inspection of PPPL's facilities. Nine of the DOE Office of Science (SC) non-defense laboratories were included in OSHA's inspection program. The major focus of the compliance audits was the potentially high hazard areas of the laboratories. Compliance with safety and health standards requires daily diligence in the management's safety culture, ensuring safety and health is incorporated in all operations, work practices, and training. In addition, preventive maintenance and good housekeeping play a pivotal role in preventing accidents and injuries.

At the conclusion of the compliance audit, the OSHA Team identified 200 deficiencies throughout the laboratory that were either in violation of current regulation or recommendations for improvement. The list of deficiencies provided to PPPL's management was acted upon and approximately 100 of those listed items were corrected by the end of 2003. Action on the remaining 100 items continues with status reports submitted to DOE-PSO and SC offices (Ru04).

4.6.6 Environmental Training and College Interns

In 2002 and 2003, PPPL employees were provided with the opportunity to attend the 40-hour training "Health and Safety for Investigation Hazardous Waste Site Personnel" (HAZWOPER), the 8-hour refresher course or OSHA HAZWOPER refresher, and the 8-hour course for Supervisors of Hazardous Waste Operations. Through a grant from the Department of Energy, instructors from the Environmental and Occupational Health Sciences Institute (EOHSI) of the University of Medicine & Dentistry of New Jersey provided these training courses.

Exhibit 4-10. Drexel Intern Next to Slide Gate

In 2002, PPPL and Drexel University (Philadelphia, PA) continued its successful co-operative internship program at the Those selected students Laboratory. majoring in science or engineering spend six months at PPPL working in a department related to their major. PPPL's Environmental Restoration Waste Management Division has provided opportunities for students to work in the environmental field while giving them guidance and instruction in various areas of environmental management. 举

ENVIRONMENTAL RADIOLOGICAL PROGRAM INFORMATION

5.1 <u>Radiological Emissions and</u> <u>Doses</u>

For 2002 and 2003, the releases of tritium in air and water and the total effective dose equivalent (EDE) contribution at the site boundary and for the population within 80 kilometers

of PPPL are summarized in Exhibits 5-1 and 5-2 below. The calculated EDEs at the site boundary are three-tenths of one mrem for 2002, and less than threetwentieths of one mrem for 2003, far below the annual limit of 10 mrem per year [Lev04].

Exhibit 5-1.	Summary of 2002 Emissions and Doses from D Site Operations	

Radionuclide & Pathway	Source	Source Term Curies (Bq)	EDE in mrem/yr (mSv/yr) at Site Boundary	Percent of Total	Collective EDE w/in 80 km in person-rem (person-Sv)
Tritium (air)	D-site	HTO 96.495(3.57 x 10 ¹²)	0.2512000	81.03	2.2271000
	stack	HI 13.761 (5.09 x 10 ⁻¹)	(2.51 x 10 ⁻³)		(2.23 x 10 ⁻²)
Tritium (air)	RWHF	0.17855 (6.61 x 10 ⁹)	0.0490000	15.81	0.0158000
		0.60282 (2.23 x 10 ¹⁰)	(4.90 x 10 ⁻⁴)		(1.58 x 10 ⁻⁴)
Tritium (water)	LEC tank	0.453 (HTO)	0.0090600	2.92	0.0124000
		(1.68 x 10 ¹⁰)	(9.06 x 10 ⁻⁵)		(1.24 x 10 ⁻⁴)
Tritium	Surface	2090 pCi/L (basin outfall)	0.0007400	0.24	0.0010000
(water)	Ground	479 pCi/L (Test Well (TW) 8)	(7.40 x 10 ⁻⁶)		(1.00 x 10 ⁻⁵)
Direct/Scattered	NSTX	2.3X10 ¹⁶ DD neutrons +	0.0000268	<0.01	Negligible
neutron & Gamma		4.6X10 ¹⁴ DT neutrons	(2.68 x 10 ⁻⁷)		
Radiation					
Argon-41 (Air)	NSTX	0.000207 (7.66 x 10 ⁶)	0.0000025	<0.01	0.0000048
			(2.50 x 10 ⁻⁸)		(4.80 x 10 ⁻⁸)
Total			0.3100293		2.2563048
			(3.10 x 10⁻³)		(2.26 x 10 ⁻²)
Bq = Bequerel mSv = milli Sievert EDE = effective dose equivalent					
HT = elemental tritium HTO = tritium oxide LEC = liquid effluent collection tanks					
mrem = milli radiation equivalent man			Radioactive Was	te Handling Fo	acility-Compactor

& vial crusher

Estimated dose equivalent at the nearest business is 0.07245 mrem (7.25 x 10⁻⁴ mSv) due to tritium air emissions from the D-site stack and RWHF, Ar-41 air emissions from the NSTX Test Cell (from neutron activation of air from NSTX operations), and direct/scattered neutron and gamma radiation from NSTX operations. Using COMPLY (computer code) Level 4 for airborne emissions, this dose is equivalent is 0.1 mrem/yr (1.00 x 10⁻³ mSv/yr), compared to the NESHAPS standard of 10 mrem/yr (0.1 mSv/yr).

Annual limit is 10 mrem/year; background is about 360 mrem/year.

Half life of tritium (HTO & HT) is 12.3 years.

Airborne doses assume maximum exposed individual is in continuous residence at the site boundary; waterborne doses assume that maximum exposed individual uses the ultimate destination of liquid discharges (Millstone River) as sole source of drinking water.

Radionuclide & Pathway	Source	Source Term Curies (Bq)	EDE in mrem/yr (mSv/yr) at Site Boundary	Percent of Total	Collective EDE w/in 80 km in person-rem (person-Sv)
Tritium (air)	D-site	HTO 34.329(1.27 x 10 ¹²)	0.0893000	69.45	0.7295836
	stack	HT 1.789(6.62 x 10 ¹⁰)	(8.93 x 10 ⁻⁴)		(7.30 x 10 ⁻³)
Tritium (air)	RWHF	0.600 (2.22 x 10 ¹⁰)	0.0380000	29.55	0.0121200
			(3.80 x 10 ⁻⁴)		(1.21 x 10 ⁻⁴)
Tritium (water)	LEC tank	0.032 (HTO)	0.0006360	0.50	0.0008712
		(1.18 x 10 ⁹)	(6.36 x 10 ⁻⁶)		(8.71 x 10 ⁻⁶)
Tritium	Surface	451 pCi/L (basin outfall)	0.0006460	0.50	0.0008849
(water)	Ground	2225 pCi/L (Monitoring Well (MW) 12S)	(6.46 x 10 ⁻⁶)		(8.85 x 10 ⁻⁶)
Direct/Scattered	NSTX	3.4 x 10 ¹⁵ DD neutrons +	0.0000040	< 0.01	Negligible
neutron & Gamma		6.8 x 10 ¹³ DT neutrons	(4.00x 10 ⁻⁸)		
Radiation					
Argon-41 (Air)	NSTX	0.0000806 (2.98 x 10 ⁶)	0.0000010	<0.01	0.0000019
			(1.00 x 10 ⁻⁸)		(1.90 x 10 ⁻⁸)
Total			0.1285870		0.7434616
			(1.29 x 10⁻³)		(7.43 x 10 ⁻³)
Bq = Bequerel mSv = milli Sievert EDE = effective dose equivalent					
HT = elemental tritium HTO = tritium oxide LEC = liquid effluent collection tanks					

Exhibit 5-2. Summary of 2003 Emissions and Doses from D Site Operations

elemental tritium HIO = tritium oxide mrem = milli radiation equivalent man

Induid ettiluent collection tanks

RWHF = Radioactive Waste Handling Facility-Compactor & vial crusher

NOTES:

Estimated dose equivalent at the nearest business is 0.0266 mrem (2.66 x 10-4 mSv) due to tritium air emissions from the D-site stack and RWHF, Ar-41 air emissions from the NSTX Test Cell (from neutron activation of air from NSTX operations), and direct/scattered neutron and gamma radiation from NSTX operations. Using COMPLY (computer code) Level 4 for airborne emissions, this dose is equivalent is 0.0466 mrem/yr (4.66 x 10⁻⁴ mSv/yr), compared to the NESHAPS standard of 10 mrem/yr (0.1 mSv/yr).

Annual limit is 10 mrem/year; background is about 360 mrem/year.

Half life of tritium (HTO & HT) is 12.3 years.

Airborne doses assume maximum exposed individual is in continuous residence at the site boundary; waterborne doses assume that maximum exposed individual uses the ultimate destination of liquid discharges (Millstone River) as sole source of drinking water.

Laboratory policy states that when occupational exposures have the potential to exceed 1,000 mrem per year (10 mSv/y), the PPPL Environment, Safety, and Health (ES&H) Executive Board must be requested to approve an exemption. This value (1,000 mrem per year limit) is 20 percent of the DOE legal limit for occupational exposure. In addition, the Laboratory applies the "ALARA" (As Low As Reasonably Achievable) policy to all its operations. This philosophy for control of

occupational exposure means that environmental radiation levels for device operation are also very low. From all operational sources of radiation, the ALARA goal for maximum individual occupational exposure was less than 10 mrem per year (0.1 mSv/year) above natural background at PPPL.

5.1.1 Penetrating Radiation

The NSTX conducted experiments during 2002 and 2003 that generated radiation. neutron and gamma Experimental shots were conducted using neutral beam injection, which generated deuterium-deuterium (D-D) (2.5 MeV) neutrons. Approximately 2% of these shots are assumed to also generate deuterium-tritium (D-T) (14.1 MeV) neutrons. The total number of neutrons produced during NSTX experiments in 2002 was 2 x 1016 D-D neutrons in addition to 5 x 1014 D-T neutrons. The total number of neutrons produced during NSTX experiments in 2003 was 3 x 10¹⁵ D-D neutrons in addition to 7 x 1013 D-T neutrons (note that NSTX operations in 2003 were limited due to necessary repairs to magnetic field coil equipment). Gamma and x-ray radiation generated in the range of 0-10 MeV during these experiments contributed to the total penetrating radiation dose at the site boundary of 1 x 10-21 mrem from D-D neutrons and 8.2 x 10⁻²¹ mrem from D-T neutrons. [Lev04a].

5.1.2 Sanitary Sewage

Drainage from D site sumps in radiological areas is collected in the Liquid Effluent Collection (LEC) tanks; each of three tanks has a total capacity of 15,000 gallons. Prior to release of these tanks to the sanitary sewer system, *i.e.*, Stony Brook Regional Sewerage Authority (SBRSA), a sample is collected and analyzed for tritium concentration and gross beta. All samples for 2002 and 2003 showed effluent quantity and concentrations of radionuclides (tritium) to be within allowable limits established in New Jersey regulations (1 Ci/y for all radionuclides) (40 CFR 141.16 limit is 20,000 pCi/L) and DOE Order 5400.5 (2 x 10⁶pCi/liter for tritium).

As shown in Exhibit 5-3, the 2002 total amount of tritium released to the sanitary sewer was 0.453 Curies, about forty-five percent of the allowable 1.0-Curie per year limit. In Appendix A Table 13, the gross beta activity is reported; the gross beta activity ranges from <194 to 6,080 pCi/L.

The 2003 total amount of tritium released to the sanitary sewer was 0.032 Curies, about three percent of the allowable 1.0-Curies per year limit. In Appendix A, Table 13, the gross beta activity is reported; the gross beta activity was less than the lower limit of detectability of <194 to <195 pCi/L [Lev04a].

Exhibit 5-3. Total Annual Releases to
Sanitary System from 1994 to 2003

Calendar	Total Gallons	Total Activity
Year	Released	(Curies)
1994	273,250	0.299
1995	308,930	0.496
1996	341,625	0.951
1997	139,650	0.366
1998	255,450	0.071
1999	158,760	0.084
2000	165,900	0.081
2001	150,150	0.103
2002	190,200	0.453
2003	217,320	0.032

Exhibit 5-4

Total Annual Releases to Sanitary System 1994-2003

5.1.3 **Radioactive and Mixed Waste**

In 2002 and 2003, low-level radioactive wastes were stored on-site prior to off-site disposal in the Radioactive Waste Handling Facility (RWHF) (Exhibit 5-5). Low-level radioactive shipments made in 2003 consisted of removed systems from TFTR and compacted solid waste, including personal protective clothing. No low-level radioactive mixed waste was generated in 2002 or 2003 [Pu04b].

Exhibit 5-5. Total Low-Level Radioactive Waste 1997-2003

Year	Cubic feet	Total Activity in
	(ft ³)	Curies (Bq)
1997	1,997.7	31,903.0
1998	533.74	204.80
1999	1188	213.76
2000	4,235.7	50.0
2001	19,949.8	1,288.43 (47.58)
2002	858,568 kgs	4950.14 (192.44)
2003	8,208 kgs	0.03 (0.91)

Exhibit 5-6. **Radioactive Waste Packaging** (Duct Crushed and Warpped)

5.1.4 Airborne Emission - Differential Atmospheric Tritium Samplers (DATS)

PPPL uses the differential atmospheric tritium sampler (DATS) to measure elemental and oxide tritium at the D site stack and in the Radioactive Waste Handling Facility (RWHF)(Exhibit 5-7).

DATS are similarly used at eleven (11) environmental sampling stations: 4 located on D site facility boundary trailers (T1 to T4), 6 located at remote environmental air monitoring stations (R 1 to R6) (App. A, Tables 4-7). The baseline location was located in Roebling, N.J. (Burlington County). All of the aforementioned monitoring is performed continuously.

Exhibit 5-7. Preparing the DATS

Tritium (HTO and HT) was released and monitored at the D site stack (App. A, Table 3 and Exhibit 3-4). Projected dose equivalent at the nearest off-site business from airborne emissions of tritium was 0.1 mrem/year (1.0 x 10⁻³ mSv/year) in 2002 and 0.05 mrem/year (5.0 x 10⁻⁴ mSv/year) in 2003. Measurements at the D site facility boundary have measured concentrations in the range from 0.122 to 270 pCi/m³ elemental tritium (HT) and from 0.122 to 118 pCi/m³ oxide tritium (HTO) in 2002 and from 0.136 to 28.4 pCi/m³ elemental tritium (HT) and from 0.223 to 20.5 pCi/m³ oxide tritium (HTO) in 2003 (Appendix A, Tables 4 & 5). Measurements from off-site monitoring stations are shown in Appendix A, Tables 6 & 7 "Air Tritium (HT)" and "Air Tritium (HTO)," respectively.

The EDE at the site boundary was calculated based on annual tritium totals as measured at the stack and RWHF (DATS air) and water samples at the LEC tanks and highest measuremints from well and surface water during 2002 and 2003. The addition of the RWHF, which has no elevated stack, contributes more significantly to the EDE at the site boundary than to the EDE at the nearest business due to its close proximity to the site boundary (see Exhibit 4-3).

5.2 <u>Release of Property Containing</u> <u>Residual Radioactive Material</u>

Release of property containing residual radioactivity material is performed in accordance with PPPL ES&H Directives (ESHD) 5008, Section 10, Subpart L.

Such property cannot be released for unrestricted use unless it is demonstrated that contamination levels on accessible surfaces are less than the values in Appendix D of ES&HD 5008, Section 10, and that prior use does not suggest that contamination levels on inaccessible surfaces exceed Appendix D values. For tritium and tritiated compounds, the removable surface contamination value used for this purpose is 1,000 dpm/100 cm². No active or contaminated materials were free-released in 2002 or 2003. All materials were either reused in

controlled environments or properly disposed.

5.3 <u>Protection of Biota</u>

The highest measured concentrations of tritium in surface and ground water in 2002 and 2003 was 2,225 pCi/L (Well MW-12S). This concentration is a very small fraction of the water biota concentration guide (BCG) (for HTO) of 3 x10⁸ pCi/L for aquatic system evaluations, and the water BCG (for HTO) of 2 x 107 pCi/L for terrestrial system evaluations, per Draft DOE Standard ENVR-001 ("A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota").

5.4 <u>Unplanned Releases</u>

There were no unplanned radiological releases in 2002 and 2003.

5.5 <u>Environmental Radiological</u> <u>Monitoring</u>

5.5.1 Waterborne Radioactivity

A. Surface Water

Surface-water samples at nine locations (two on-site: DSN001, and E1; and seven off-site: B1, B2, C1, DSN003, M1, P1, and P2) have been analyzed for tritium (App. A, Table 8). Locations are indicated on Exhibits 4-3 (on-site) and 4-4 (off-site locations) (Ex. 5-9).

In April 2002, at on-site location DSN001, basin outfall tritium concentration was detected at 2,090 pCi/Liter, which was the highest in 2002 for surface water samples (App. A, Table 8). In September 2003, at on-site location, DSN001 basin outfall, the tritium concentration was detected at 451 pCi/L, which was the highest in 2003 for surface water samples. Rain water samples were collected and analyzed and ranged from below detection) to 3,921 pCi/liter in 2002 and 1,126 pCi/liter in 2003 (App. A , Tables 10 & 11), which are lower than the sixyear high of 61,660 pCi/liter. With the end of TFTR D&D project in September 2002, the decrease in rainwater tritium concentrations has mirrored the decreased tritium emissions measured at the D-site stack.

Based on this data and associated literature [Jo74, Mu77, Mu82, Mu90], it is believed that the observed increase in tritium concentrations in rain water is due to washout by precipitation of a portion of the tritium released from the D-site stack. Monitoring of tritium concentrations in rain water continues.

In April 1988, PPPL began precipitation measurements. On a weekly basis, onsite precipitation is measured by a rain gauge. Exhibit 5-8 shows the occurrence of dry and wet years compared to the 45-inch average (App. A, Table 2 for 2002 and 2003 weekly rainfall) [Ch03, Ch04]. While 2001 was the driest year since measurements began, the aboveaverage rainfall in 2002 and 2003 ended the drought and water emergency in New Jersey.

B. Ground Water

In August 1995, PPPL began to monitor tritium levels in on-site ground water more intensely. This increase in the scope of ground-water monitoring was prompted by the slight increase in tritium levels in well TW-1 (Ex. 5-10). An investigation into the potential sources began in the fall of 1995. Leak tests and checks of lines and equipment in the area near TW-1 (north side of Dsite) were performed; none were found to be leaking tritiated water into the

ground water.

Exhibit 5-8.

Rainfall collected in 1988 for 10 months; est. >40 inches.

Exhibit 5-9 Surface Water Monitoring

Exhibit 5-10. Ground Water Monitoring

In 2002, the highest concentrations of tritium were found in well TW-8 (479 In 2003, the highest pCi/L,). concentration of tritium was found in well MW-12S (2,225 pCi/L). From PPPL's environmental monitoring data and the available scientific literature [Jo74, Mu77, Mu83, Mu90], the most likely source of the tritium detected in the on-site ground water samples is from the atmospheric venting of tritium from the D-site stack and the resulting "wash-out' during precipitation Ground water monitoring of the wells and the foundation sump (dewatering sump for D-site buildings) will continue.

C. Drinking Water

Potable water is supplied by the public utility, Elizabethtown Water Company. In April 1984, a sampling point at the input to PPPL was established (E1 location) to provide baseline data for water coming onto the site. Radiological analysis has included gamma spectroscopy and tritiumconcentration determination. In 2002, tritium measurement of potable water was 27 pCi/liter. In 2003, tritium concentrations at this location ranged from 59 pCi/L to <189 pCi/liter).

5.5.2 Foodstuffs, Soil, and Vegetation

There were no foodstuffs, soil, or samples vegetation gathered for analysis in 2002 or 2003. In 1996, the Health Physics (HP) Manager reviewed the requirement for soil/biota sampling. At that time, a decision was made to discontinue the sampling program. Tritium was not detected in almost all samples and these data were not adding to the understanding of tritium transport in the environment. A heavier concentration was placed on water sampling and monitoring which produced more relevant results. *

ENVIRONMENTAL NON-RADIOLOGICAL PROGRAM INFORMATION

6.1 <u>New Jersey Pollutant Discharge</u> <u>Elimination System (NJPDES)</u> <u>Program</u>

6.1.1 Surface and Storm Water

To comply with permit requirements of the New Jersey Pollutant Discharge Elimination System (NJPDES) permit, NJ0023922, PPPL submitted to NJDEP monthly discharge monitoring reports (DMRs) for Discharge Serial Number (DSN)-DSN001 and DSN003 (App. A, Tables 22 & 23). During 2002, PPPL's discharges were within allowable limits for all testing parameters with the exception of one chlorine-produced oxidant concentration in August that exceeded the permit limit (0.016 mg/L). During 2003, the chemical oxygen demand (COD) limit of 50 mg/L was exceeded once in June and July and twice in November.

In 2002 and 2003, PPPL continued to monitor the total suspended solids concentration at DSN 003 and intake (at C1 -upstream of the D&R Canal pump house) quarterly. In 2002, new chlorine controllers were installed in the D&R Canal pump house and at the D-site cooling tower. A new chlorine storage tank was also installed in the D&R Canal pump house.

6.1.2 Chronic Toxicity Characterization Study

In 2002 and 2003, chronic toxicity testing for DSN001 effluent continued. In all chronic toxicity tests, *Pimephales promelas* (fathead minnow) was the only test species required [NJDEP95]. NJDEP chose the fathead minnow as the more sensitive species for the Chronic Toxicity Biomonitoring requirements.

As the result of the annual chronic toxicity test, the survival rate, as defined by the NJ Surface Water Quality Standards, was >100 percent (statistically possible) no observable effect concentration (NOEC) [PPPL02c & 03i]. The last unsuccessful test occurred in March 1995, the fathead minnows survived in the 50 percent dilution, *i.e.*, mortality was observed in the 100 percent effluent test (Ex. 6-1).

Exhibit 6-1. Summary of Chronic Toxicity
Testing (*One test result <100 NOEC failed))

Test Freq.	Bi- month	Quarter	Semi- annual	Annual
1994		4*		
1995		4*		
1996	3	2		
1997		4		
1998		3		
1999			1 (Mar.)	1(Oct.)
2000				1 (Dec.)
2001				1 (Nov.)
2002				1 (Sept.)
2003				1 (Oct.)

6.1.3 Ground Water

Since 1989, PPPL has monitored groundwater quality in seven wells in compliance with the NJPDES ground-water discharge permit, NJ0086029; four of the seven wells are located on PPPL C and D sites, and three wells are located on A and B sites. The wells on A & B sites are not on DOEleased property, but are on the adjacent James Forrestal Campus property. The two inflows to the on-site basin are included in the monitoring requirements.

The permit was issued effective April 1, 1989, and the expiration date was extended to December 31, 1996. In July 1994, DOE-PAO submitted to NJDEP the NJPDES permit renewal application. In May 2001, the renewal of the discharge to ground water permit was issued. The requirement to monitor ground water wells and at the detention basin inflows PPPL is required to was removed. continue monitoring ground water through Remediation program the [NJDEP01].

A. NJPDES Ground Water Program in 2002 and 2003

PPPL is no longer required to collect quarterly ground water samples as a condition of this permit. PPPL maintains compliance through its Operation and Maintenance Manual for the detention basin.

As discussed in Chapter 7, "Site Hydrology, Ground Water and Public Drinking Water Protection," the volatile organic compounds detected in the ground water monitoring wells adjacent to the basin are not believed to originate from the detention basin, but rather are the result of historical contamination in the Former Annex Building Area (FABA).

An estimated 35.3 and 62.8 million gallons of water were discharged from the detention basin in 2002 and 2003, respectively. Beginning in December 2000, flow from the basin was measured using an ultrasonic flow transducer; data are downloaded to a data spreadsheet from which total daily and daily average flows were calculated. The lined detention basin operates with a permanent oil boom, an oil detection .system that is capable of sending an signal to Security alarm and automatically closing the discharge valve, and a chain-link fence around the perimeter of the basin. The detention basin is operated in a flow-through mode

B. Regional Ground Water Monitoring Program

1993, Memorandum of In а Understanding (MOU) was signed between Princeton University, the landowner of the James Forrestal Campus, and the NJ Department of Environmental Protection (NJDEP). For sites. the Remedial С and D Investigation is discussed in Section 3.2.3 and is fully documented in the Remedial Investigation and Remedial Action Selection Report (RI & RASR) approved by NJDEP in 2000 [PPPL00a]. The Remedial Action Work Plan (RAWP) was submitted by the DOE-PPPL in May 2000 and conditionally approved by NJDEP in June 2000 [PPPL00b].

In 2002 and 2003, ground water monitoring activities were continued in the area of potential environmental concern (APEC) near the location of the former PPPL Annex Building in the wooded area southwest of CAS/RESA. (Exhibits 4-3 7 6-2, and App. A, Tables 38-Exhibit 6-2. Ground Water Monitoring Equipment

Volatile organic compounds (VOCs) probably from degreasing solvents were detected above both the NI Ground Water Standards in 5 of the 12 wells/sumps sampled and in 2 wells in estimated concentrations lower than the ground water standard. The highest concentrations of tetrachloroethylene (PCE) were found in well MW-19S at 96.2 μ g/L, which is lower than in 2000 (205 μ g/L). The PCE concentration at D-site MG sump was 50.7 μ g/L, which is lower than in 2000 (75.6 μ g/L). The de-watering sumps located in the D-site MG and TFTR basements draw ground water radially from the shallow aquifer, controlling ground water flow and, thus, preventing off-site contaminant migration and slowly extracting contaminated ground water.

6.2 <u>Non-Radiological Programs</u>

The following sections briefly describe PPPL's environmental programs required by federal, state, or local agencies. These programs were developed to comply with regulations governing air, water, wastewater, soil, land use, and hazardous materials, as well as with DOE orders or programs. 39) [Sh01, Sh03, Sh04].

6.2.1 Non-Radiological Emissions Monitoring Programs

A. Airborne Effluents

PPPL maintains New Jersey Department of Environmental Protection (NJDEP) air permits for its four boilers located on C site. The permit were modified in 2003 to include the burning of No.2 fuel oil in addition to No.4 fuel oil and natural gas. The boiler permits were part of NJDEP's inspection of the facility; the facility was determined to be in compliance of the air regulations and permit requirements (Exhibit 6-3).

Measurements of actual boiler emissions are not required. To optimize boiler efficiency and to reduce fuel cost in accordance with DOE Order 4330.2D, "In-House Energy Management," [DOE88] PPPL utilizes an outside contractor to tune all the boilers on an annual basis and provide a report for The report includes the each boiler. boiler efficiency, oxygen content, fluegas temperature and carbon dioxide content of the stack gas for both oil (# 4) and natural gas fuels. The PPPL boiler operations Chief Engineer maintains records of this information [Kir03 & Kir04].

PPPL maintains the following equipment that requires air permits:

Exhibit 6-3. Air-Permitted Equipment

Type of Air Permit	Location
Dust collectors	M&O woodworking shop
	CAS metalworking area
	Shop wood working area
Storage tanks vents	25,000 gal. No. 2 & 4 oil
	15,000 gal. No. 1 oil
Diesel generators	D-site generator
	C-site generator
Utility boilers	Units 2,3,4, & 5 in M&OD

B. Drinking Water

Potable water is supplied by the public utility, Elizabethtown Water Co. The PPPL used approximately 15.2 and 24 million gallons in 2002 and 2003 (Exhibits 6-4 and 6-5) [Kir03 and 04]. In 1994, a cross-connection was installed beneath the water tower to provide back-up potable water to the tower for the fire-protection system and other systems. In 2003, PPPL's shut-down of canal water (non-potable) for the elevated water tower project caused an increase in potable water usage for three months; this increase in the total of potable and a decrease in non-potable are seen in Exhibits 6-4, 6-5 and 6-6.

Exhibit 6-4 PPPL's Potable and Non-Potable Water Use from 1995 to 2003

Exhibit 6-5. PPPL Potable Water Use

СҮ	In million gallons
1995	40.69
1996	27.82
1997	24.56
1998	27.12
1999	23.01
2000	20.6
2001	23.6
2002	15.18
2003	23.97

C. Process (non-potable) Water

In 1987, PPPL made a changeover from potable water to Delaware & Raritan (D&R) Canal non-potable water for the cooling-water systems. Non-potable water is pumped from the D&R Canal as authorized by a permit agreement with the New Jersey Water Supply Authority (Exhibits 6-4 and 6-6) [Kir04]. The present agreement gives PPPL the right to draw up to half a million gallons of water per day for process and fire-fighting purposes.

Exhibit 6-6 PPPL Non-Potable Water Use

СҮ	In million gallons
1995	67.2
1996	96.2
1997	32.8
1998	30.9
1999	41.55
2000	39.98
2001	38.71
2002	44.89
2003	24.87

Filtration to remove solids and the addition of chlorine and a corrosion inhibitor are the primary water treatment at the canal pump house. Discharge serial number DSN003, located at the canal pump house filterbackwash, is a separate discharge point in the NJPDES surface-water permit and is monitored monthly (App. A, Tables 27 & 36). A sampling point (C1) was established to provide baseline data for surface water that is pumped from the D&R Canal for non-potable uses. Appendix A Tables 21 & 30 summarizes results of water quality analysis at the canal.

D. Surface Water

Surface water is monitored for potential non-radioactive pollutants both on-site and at surface-water discharge pathways (upstream and downstream) off-site. Other sampling locations – Bee Brook (B1 & B2), Elizabethtown Water Co. (potable water supplier-E1), Delaware & Raritan Canal (C1), Millstone River (M1), and Plainsboro (P1 & P2) sampling points (App. A Tables 19-36) – are not required by regulation, but are a part of PPPL's environmental surveillance program.

E. Sanitary Sewage

Sanitary sewage is discharged to the Publicly-Owned Treatment Works (POTW) operated by South Brunswick Township, which is part of the Stony Brook Regional Sewerage Authority During 1994, (SBRSA). due to malfunctioning metering devices, PPPL, South Brunswick Sewerage Authority, who is part of SBRSA system, and the Township of Plainsboro agreed upon an estimated volume of sewage discharged. The estimated volume was based on historical data of approximate flow rates from PPPL. This volume was adjusted for the interconnections with Forrestal Campus A and B sites and a private business. For 2002 and 2003, PPPL estimates a total discharge of 8.40 million gallons of sanitary sewage to the South Brunswick sewerage treatment plant [Kir04].

In 1996, Stony Brook Regional Sewerage Authority (SBRSA) issued an Industrial Discharge License (22-96-NC) to PPPL and DOE-PSO. The license requires monthly measurement of radioactivity, flow, pH and temperature at the LEC tanks (designated compliance and sampling location) and monthly sampling for chemical oxygen demand (COD).

During 2002 and 2003, PPPL continued monthly radiological and nonradiological analyses to meet the license requirements (App. A. Table 13).

In May 2003, a SBRSA representative inspected PPPL's records and discharge location. PPPL split a sample for chemical oxygen demand analysis.

F. Spill Prevention Control and
Counter-measure

Spill Prevention Control and Countermeasure PPPL maintains a Spill Prevention Control and Countermeasure Plan (SPCC), which was revised in June 2003 by a Professional Engineer within the PPPL Materiel and Environmental Services Division [MESD] rather than an outside architect-engineering firm. This revised SPCC was reviewed internally by all the owners of equipment covered by the SPCC and Quality Assurance. The current SPCC is approved by both the Head of Materiel & Environmental Services and the Head ES&H and Infrastructure Support (PPPL03e).

The SPCC Plan is incorporated as a supplement to the PPPL Emergency Preparedness Plan. Besides the 5-year major revision as required by the EPA, the PPPL ESD will complete a review every year and make any minor changes required to the SPCC.

G. Herbicides and Fertilizers

During 2002 and 2003, PPPL's Maintenance & Operations (M&O) Division managed the use of herbicides by outside contractors. These materials are applied in accordance with state and federal regulations. Chemicals are applied by certified applicators.

In addition to the fertilizer, the quantities applied during 2002 were as follows: herbicides - Dimension (98 gal.), Roundup (2 gal.), and Momentum (15.6 gal.) [Kin03]. In 2003, Roundup (15.4 gals) and Malathion (1.7 gals.) were used at PPPL [Kin04]. No herbicides or fertilizers are stored on site; therefore, no disposal of these types of regulated chemicals is required by PPPL.

H. Polychlorinated Biphenyls (PCBs) At the end of 2002 and 2003, PPPL's inventory of equipment included 5 polychlorinated biphenyl (PCB)-regulated capacitors. 640 regulated-PCB capacitors were removed from PPPL in 1998. [Pu04].

I. Hazardous Wastes

The Hazardous Waste Generator Annual Report (EPA ID No. NJ1960011152) was submitted to the NJDEP for 2001-2002. A description of Resource Conservation and Recovery Act (RCRA) compliance is found in Section 3.1.2 of this report.

6.2.2 Continuous Release Reporting

Under CERCLA's reporting requirements for the release of a listed hazardous substances in quantities equal to or greater than its reportable quantity, the National Response Center is notified and the facility is required to report annually to EPA. Because PPPL has not released any CERCLA-regulated hazardous substances, no "Continuous Release Reports" have been filed with EPA.

6.2.3 Environmental Occurrences

During CY2002 and 2003, two and four, respectively, unplanned releases of hazardous or petroleum substances occurred. In April and May 2002, PPPL reported to the NJDEP Hotline that PPPL released hydraulic oil from the Lwing elevator (~35 gallons) and D-site diesel generator (~2 quarts). The elevator hydraulic lift leaked sufficiently that it was taken out of service until repairs could be made; prior to repairs, the elevator shaft required clean-up of the hydraulic oil. A bio-based or vegetable-based oil replaced the

petroleum-based hydraulic oil in the lift. The D-site diesel generator leaked hydraulic oil from a fuel line that spilled onto the concrete pad and adjacent gravel. PPPL cleanup the area and repaired the line.

In 2003, PPPL reported four releases to the NJDEP Hotline. Two involved lubricating oil - in February 2003, a ventilation, and air heating, conditioning unit (HVAC) line ruptured and released oil (~2 quarts) to the gravel and soil. In April 2003, the D-site diesel generator released lubricating oil (<2 gallons) onto the gravel and adjacent The third release involved an soil. employee's vehicle, which leaked gasoline (<2 gallons) onto the paved parking surface during a rain event in March 2003 causing the gasoline to runoff into a stormdrain. Lastly in September 2003, a subcontractor's backhoe ruptured a hydraulic line that released oil (~8 ounces) onto a grassed area. All of the above releases were cleaned up by PPPL personnel, and the contaminated gravel/soil was drummed and removed off-site by subcontractor waste removal company.

6.2.4 SARA Title III Reporting Requirements

NIDEP administers the Superfund Amendments and Reauthorization Act (SARA) Title III (also known as the Emergency Reporting and Community Right-to-Know Act) reporting for EPA Region II. The modified Tier I form includes SARA Title III and NJDEPspecific reporting requirements. PPPL submitted the SARA Title III Report to NIDEP in March 2002 and 2003 [PPPL03b & PPPL04]. No significant changes from the previous year were The SARA Title III reports noted. included information about eleven compounds used at PPPL as listed in Exhibit 3-16.

Though PPPL does not exceed threshold amounts for chemicals listed on the Toxic Release Inventory (TRI), PPPL completed the TRI cover page and laboratory exemptions report for 1996, and submitted these documents to DOE. Since PPPL did not exceed the threshold amounts, no TRI submittal was completed for 2002 or 2003. ☆

SITE HYDROLOGY, GROUND WATER, AND DRINKING WATER PROTECTION

PPPL is located within the Bee Brook Watershed. Bee Brook is a tributary to the Millstone River, which is part of the Raritan River Watershed (Exhibit 7-1). NJDEP has developed a watershedbased management program for prospective environmental planning and has divided the State of New Jersey into twenty watershed basins. Locally, the Bee Brook Watershed encompasses approximately 700 acres within the Princeton Forrestal Center and James Forrestal Campus tracts. It begins at College Road East (approximately 1600 feet east of US Route 1), flows south in a wide flood plain, and then discharges into Devil's Brook at the entrance to Mill Pond [Sa80].

Exhibit 7-1 Millstone River Watershed Basin

PPPL is situated on the eastern edge of the Piedmont Physiographic Province, approximately one-half mile from the western edge of the Atlantic Coastal Plain Province. The site is underlain largely by gently dipping and faulted sedimentary rock of the Newark Basin. The Newark Basin is one of several rift basins that were filled with sedimentary material during the Triassic Period. At PPPL, bedrock is part of the Stockton Formation, which is reportedly more than 500 feet thick and consists of fractured red siltstone and sandstone [Lew87]. Regionally, the formation strikes approximately north 65 degrees east, and dips approximately 8 degrees to the northwest. The occurrence of limited amounts of clean sand near the surface indicates the presence of the Pennsauken Formation. This alluvial material was probably deposited during the Aftonian Interglacial period of the Pleistocene Ice Age.

Within 25 miles, there are a number of documented faults: the closest of which is the Hopewell fault located about 8 miles from the site. The Flemington Fault and Ramapo Faults are located within 20 miles. None of these faults are determined to be "active" by the U.S. Geological Survey. This area of the country (eastern central US) is not earthquakeprone, despite the occurrence of minor earthquakes that have caused little or no damage.

The Millstone River and its supporting tributaries geographically dominate the region. The wellwatered soils of the area have

provided a wealth of natural resources including good agricultural lands from prehistoric times to the present. Land use was characterized by several small early centers of historic settlement and dispersed farmland. It has now been developed into industrial parks, housing developments, apartment complexes and shopping centers [Gr 77].

The topography of the site is relatively flat and open with elevations ranging from 110 feet in the northwestern corner to 80 feet above mean sea level along the southern boundary. The low-lying topography of the Millstone River drainage reflects the glacial origins of the surface soils; sandy loams with varying percents of clay predominate.

Two soil series are recognized for the immediate environs of the site. Each reflects differences in drainage and subsurface water tables. Along the lowlying banks of stream tributaries, Bee Brook, the soils are classified Nixon-Nixon Variant and Fallsington Variant Association and Urban Land [Lew87].

This series is characterized by nearly level to gently sloping upland soils, deep, moderate to well drained, with a loamy subsoil and substratum. The vellowish-white sands contain patches mottled caused of coloring bv prolonged wetness. On a regional scale, the water table fluctuates between 1.5 and 2.5 feet below the surface in wet periods and drops below 5 feet during drier months.

In the slightly higher elevations (above 70 feet), the sandy loams are

better drained and belong to the Sassafras series. The extensive farmlands and nurseries in the area indicate this soil provides a good environment for agricultural purposes, both today and in the past.

An upland forest type with dominant Oak forest characterizes vegetation of the site. Associated with the various oaks are Red Maple, Hickories, Sweetgums, Beech, Scarlet Oak, and Ash. Red, White, and Black Oaks are isolated in the lower poorly drained areas. Along the damp borders of Bee Brook, a bank of Sweetgum, Hickory, Beech, and Red Maple define the watercourse. The forest throughout most of the site has been removed either for farmland during the last century or recently for the construction of new facilities. Grass has replaced much of the open areas.

The under-story of the wooded areas is partially open with isolated patches of shrubs, vines, and saplings occurring mostly in the uplands area. The poorly drained areas have a low ground cover of ferns, grasses, and leaf litter.

All of PPPL's storm water runoff flows to Bee Brook, either directly via the detention basin (DSN001) or along the western swale to the wetlands south of the site. Approximately 45 % of the total site's area is covered by impervious surfaces buildings, roadways and parking lots, and storage trailers.

PPPL's Stormwater Management Plan allows for a maximum impervious coverage of 60 % of the developable land, which excludes wetlands – 18 acres of the 88.5 acres (Exhibit 3-14) [PPPL 98].

Exhibit 7-2. Generalized Potentiometric Surface of the Bedrock Aquifer at PPPL [Le87]

Also, the 500-year flood plain elevation (85 ft above mean sea level) delineates the storm protection corridor, which is vital to the flood and water quality control program for PPPL as well as the Princeton Forrestal Center site. This "corridor" is preserved and protected development from by Princeton Center Forrestal in the Site Development Plan [PFC80].

The general direction of ground-water flow on the site is from the northwest of PPPL toward the southeast in the direction of Bee and Devil's Brooks. The operation of several building foundation drain sump pumps creates a local and shallow cone of depression radially toward the sumps (Exhibits 7-2 & 7-4).

Ground water is pumped from the sumps into the detention basin, which flows into Bee Brook. Bee Brook is hydraulically connected with ground water; during flooding stages, the brook recharges ground water and during low-flow periods, ground water discharges to the brook.

Under several regulatory programs administered by NJDEP, PPPL has performed ground water investigations to address potential impacts from former underground storage tanks (USTs), a formerly unlined detention basin, and in areas where spills occurred or may have occurred in the past. In all, PPPL has installed a total of 44 wells to monitor ground-water quality. Remedial Investigations and Remedial Alternative Assessment (RI/RAA) studies were conducted to delineate shallow ground water contamination and identify a suitable remedy as required by conditions of the Memorandum of Understanding (MOU) between Princeton University and NJDEP. A Remedial Action Work Plan was approved by NJDEP in 2000. Ground water monitoring continues as part of the selected remedy.

In September 2003, PPPL sealed 13 monitoring wells that were no longer needed for specific or site-wide monitoring programs. The wells were sealed by a New Jersey-licensed well driller using methods approved by NJDEP regulations. NJDEP approval was granted prior to the closure of these wells.

Ground-water monitoring results show that tetrachloroethylene, trichloroethylene (PCE, TCE), and their natural degradation products are present in a number of shallow and intermediate-depth wells on C site (Exhibit 7-5). These VOCs are commonly contained in solvents or metal degreasing agents.

By mid-1995, all USTs at PPPL were removed with the exception of one tank that was abandoned in-place with NJDEP's approval. PPPL replaced all USTs with above ground storage tanks. PPPL determined that the hazard of digging up one tank, buried next to a high-voltage electrical transformer yard, was too great a risk. The tank passed a tightness-test; soil borings around the tank showed no indications of any leakage from the tank or its associated piping. It was then emptied, cleaned, and filled with concrete in accordance with NJDEP regulations.

Foundation de-watering sumps located on D-site influence ground-water flow across the site. The sumps create a significant cone of depression drawing ground water toward them. Under natural conditions, ground-water flow is to the southsoutheast toward Bee Brook; it appears that ground water beneath the site (except in the northwestern corner) is drawn radially toward the D site sumps.

During Phase 1 and 2 of the Remedial Investigation, samples from wells and other ground water characterization activities lead to the identification of a new area of potential environmental concern (APEC) near the Former Annex Building Area (FABA). This finding expanded the site boundaries by 16.5 acres for a total of 88.5 acres. Characterization of soil and ground water in the former Annex Building area was conducted during 1997 and 1998 [HLA98].

Phase 3 activities were conducted to:

- Baseline Ecological Evaluation;
- Investigate soil and ground water quality at the Former Annex Building Area (FABA);
- Further assess PCE and other VOC concentrations and distribution in ground water.

In the Remedial Action Selection Report, PPPL proposed to NJDEP that no active ground water remediation beyond the capture and extraction performed by the building dewatering system should be implemented at the site. The natural attenuation processes in the subsurface building augments foundationdewatering system. In a letter dated March 28, 2000, NJDEP approved the Remedial Investigation and Remedial Action Selection Reports [Sh99]. response, PPPL prepared and submitted a Remedial Action Work Plan (RAWP) outlining continual operation of the ground water extraction system and a long-term monitoring program [Sh00]. The RAWP was submitted to NJDEP in May 2000 and is being implemented [HLA98, Sh00, Sh01, Sh03].

2002 Aquifer In January an Classification Exception Area (CEA) Request was submitted to NJDEP. The CEA designation identifies specific areas where state-wide Ground Water Quality Standards are not met and will not be met for some time. CEAs are granted for a specific area and aquifer and for specific contaminants. The CEA for PPPL is shown on Figure 7-3 and only addresses specific VOCs in the shallow (<60 feet deep) aquifer. The CEA request was approved by NJDEP in August 2002.

In 2002 and 2003, RAWP activities accomplished the following:

- 1. Quarterly ground water monitoring was conducted through October 2003, at which time an annual sampling schedule was adopted upon approval by NJDEP;
- 2. Examination of analytical data and water level measurements indicates an inverse relationship between ground water level and VOC concentration;
- Some natural attenuation (anaerobic biodegradation) occurs in the wetlands adjacent to CAS/RESA;
- 4. Contaminated ground water is captured by building sumps and is not migrating off-site.
- 5. VOCs in ground water do not pose a risk to site workers or the surrounding public.

Natural attenuation processes are active as evidenced by presence of degradation compounds in ground water down gradient of source. PCE is degraded into trichloroethylene (TCE) and cis-1,2dichloroethlyene (c-1,2-DCE), and the presence of dissolved methane, reduced dissolved oxygen levels and negative redox values also provides definitive evidence of on-going biological degradation (See App. A, Tables 38-39) [Sh03, Sh04]

The second investigation began in 1995, when the tritium August concentration from well TW-1, located north of the TFTR stack, was found to be above the background or baseline concentration, 789 versus 150 pico Curies/Liter (pCi/L), respectively. As a result of this finding, PPPL began looking into the cause of the concentration increase. More wells and ground water sumps were sampled, underground utilities were tested for leaks, soil was tested, and roof drains were sampled. In addition, rainwatersampling stations were established and sampled.

The results of this program were that no leaks were found emanating from underground utilities; soil results and utility testing inspections supported this finding. Drain samples from the liquid effluent collection tank roof showed that tritium concentrations were elevated as were soil samples next to drain spouts.

Based on site-specific studies and a review of the scientific literature, PPPL determined the most likely source of tritium detected in the ground water was atmospheric releases of tritium and

the subsequent "wash out" and percolation of tritium into the subsurface. A number of published and un-published studies have described the effect of tritium releases and rain. Rain droplets act as a scrubber and wash tritiated water vapor (HTO) out of the plume from the stack [Mu90]. The water infiltrates into the ground, and eventually, some of the tritium reaches the ground water table and the monitoring wells.

During 2002 and 2003, the highest concentrations of tritium in the ground water were detected at well TW-5 in July 2003 (3,365 pCi/L). This is less than 20% of the USEPA Drinking Water standard of 20,000 pCi/L. Results of nearly eight years of tritium monitoring show a pattern of elevated ground water concentrations between three and six months after elevated tritium levels are detected in precipitation. The ground water results showed that the tritium concentrations fluctuate over PPPL believes that tritium time. in the atmosphere, concentrations amount of precipitation (rainfall), and time of year all have an effect on the concentration of tritium detected in the ground water. PPPL continues to monitor tritium concentrations in atmospheric releases, precipitation, ground water and surface water as part radiological environmental its of surveillance program. 举

QUALITY ASSURANCE

In 2002 and 2003, analyses of environmental samples for radioactivity and other parameters were conducted by PPPL's on-site analytical laboratory (Exhibits 8-1 and 8-2).

Exhibit 8-1. PPPL Technician analyzing Chemical Oxygen Demand samples at PEARL facility

The PEARL procedures follow the DOE's Environmental Measurements Laboratory's EML HASL-300 Manual [Vo82], EPA's Methods and Guidance for Analysis of Water [EPA99] and Standard Methods of Water and Wastewater Analysis [SM92] that are nationally recognized standards. PPPL's approved procedures are documented on Health Physics web page. [PPPL00e].

To maintain its radiological certification, PPPL participates in the DOE

Environmental Monitoring Laboratory (EML) program and New Jersey Department of Environmental Protection (NJDEP) Laboratory Certification For nonprogram. radiological PPPL. parameters, participates in NJDEP Laboratory Certification program (NJ ID #12471).

A requirement of the certification program is to analyze within the acceptance range the quality control (QC) and proficiency test (PT) samples that are purchased from outside laboratory suppliers. These PT samples are provided as blind samples for analysis; the test results are submitted prior to the end of the study.

Exhibit 8-2. PPPL Technician analyzing samples for tritium at PEARL facility

Results are supplied to PPPL and NJDEP to confirm a laboratories' ability to correctly analyze those parameters being tested [see App. A, Table 40]. In 2003, PEARL dropped its certification for Orthophosphate, Nitrate-nitrogen, and Turbidity as PPPL has no requirements to analyze for these parameters.

Beginning in 1984, PPPL participated in a NJDEP certification program initially through the USEPA Quality Assurance (QA) program. In March 1986, EPA/Las Vegas and NJDEP reviewed PPPL's procedures and inspected its The laboratory became facilities. certified for tritium analysis in urine (bioassays) and water. In 2001, USEPA turned the QA program over to the states; NJDEP chose a contractor laboratory, ERA, supply to the radiological proficiency tests. Results in Appendix A, Tables 40 & 41, show that PEARL's results were in the acceptable range.

In 2002 and 2003, PEARL performed EML semi-annual performance evaluation tests for radionuclides in water. PEARL results were close to EML's test results for tritium (though the results were not reported). Gamma spectroscopy instruments were operational in 2002 and 2003.

PPPL followed its internal procedures, EM-OP-31—"Surface Water Sampling Procedure," and EM-OP-38-"Ground Water Sampling Procedures." These procedures provide detailed descriptions of all NJPDES permitrequired sampling and analytical methods for collection of samples, analyses of these samples, and quality assurance/quality control requirements. Chain-of-custody forms are required for all samples; holding times are closely checked to ensure that analyses are performed within established holding times and that the data is valid; trip blanks are required for all organic compound analyses.

Subcontractor laboratories used by PPPL are certified by NJDEP and participate in the state's QA program; the subcontractor laboratories must also follow their own internal quality assurance plans.

ACKNOWLEDGMENTS

ES&H and Infrastructure Support Department: Jack Anderson - review and comments on this report Jim Graham - providing web site assistance Margaret Kevin-King - fertilizer, herbicide, and pesticide data and the recycling data Charlie Kircher - fuel consumption data and on-site water-utilization Jerry Levine - NEPA data, safety statistics, and dose calculations Materiel & Environmental Services Division: John Bennevich – rainwater collection and supplying many photos Tom McGeachen -SPCC, Earth Day, and pollution prevention data

- Maria Pueyo TSCA data, hazardous and radiological waste data Keith Rule – OSHA Inspection
- Summary Rob Sheneman - ground water data, review and comments on this report

Drexel University Co-operative Students: Jennifer Mkywawa – surface and ground water sampling and data table generation.

Health Physics Branch: George Ascione - radiological and calibration data Keith Case - meteorological data Carl Szathmary - in-house radiochemical and water analyses

Quality Assurance Division: Lynne Yager - OSHA Statistics

Site Protection Division: Bill Slavin - SARA Title III and Toxic Release Inventory information

Information Services Division: Elle Starkman - Photos of NSTX, PBX-M, and Earth Day Poster Patti Wieser – Earth Day articles

This work is supported by the U.S. Department of Energy Contract No. DE-AC02-76CHO3073. \clubsuit

Chapter **10**

REFERENCES

Am98	Amy S. Greene Environmental Consultants, Inc., 1998, Baseline Ecological Evaluation Princeton Plasma Physics Laboratory, Plainsboro Township, Middlesex County, New Jersey.
Be87a	Bentz, L. K., and Bender, D. S., 1987, <i>Population Projections</i> , 0-50 <i>Mile Radius from the CIT Facility: Supplementary Documentation for an Environmental Assessment for the CIT at PPPL</i> , EGG-EP-7751, INEL, Idaho Falls, Idaho.
Be87b	Bentz, L. K., and Bender, D. S., 1987, <i>Socioeconomic Information, Plainsboro Area, New Jersey: Supplementary Documentation for an Environmental Assessment for the CIT at PPPL</i> , EGG-EP-7752, INEL, Idaho Falls, Idaho.
Ch03	Chase, K., January 2003, Annual Precipitation Report (2002)," Princeton Plasma Physics Laboratory, PPPL internal memo.
Ch04	Chase, K., January 2004, Annual Precipitation Report (2003)," Princeton Plasma Physics Laboratory, PPPL internal memo.
Co81	Corley, J. P. <u>et al</u> ., 1982, <i>A Guide for: Environmental Radiological Surveillance at U.S. Department of Energy Installations</i> , DOE/EP-023, (National Technical Information Service).
DOE88	DOE Order 4330.2C, 3/23/88, In-House Energy Management.
DOE92	Department of Energy, January 1992, Environmental Assessment for the Tokamak Fusion Test Reactor D-T Modifications and Operations, DOE/E-0566.
DOE93a	DOE Order 5400.5, 1/7/93, Radiation Protection of the Public and the Environment.
DOE93b	Department of Energy, 1993, Environmental Assessment: the Tokamak Fusion Test Reactor Decommissioning and Decontamination and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory, DOE/EA-0813.
DOE99a	DOE-Chicago Operations Office, June 1999, Vol.1, <i>Integrated Safety Management System Verification</i> .
DOE99b	DOE Order 435.1, July 9, 1999, Radioactive Waste Management.

DOE00	DOE Order 474.1, November 20, 2000, <i>Control & Accountability of Nuclear Material</i> .
DOE 03a	DOE Order 450.1, January 15, 2003, Environmental Protection Program.
DOE 03b	DOE Order 231.1A, August 13, 2003, Environment, Safety and Health Reporting.
Dy93	Dynamac Corporation, August 1993, CERCLA Inventory Report, prepared for Princeton Plasma Physics Laboratory.
En87	Envirosphere Company, 1987, <i>Ecological Survey of Compact Ignition Tokamak Site and Surroundings at Princeton University's Forrestal Campus</i> , Envirosphere Company, Division of Ebasco, Report to INEL for the CIT.
EPA98	Environmental Protection Agency, Region II, March 13, 1998, SPCC Field Inspection Report, C. Jimenez, SPCC Coordinator, letter to R. Sheneman, PPPL.
EPA99	Environmental Protection Agency, Office of Water, June 1999, <i>Methods and Guidance for Analysis of Water</i> , EPA 821-C-99-004.
ERDA75	Energy Research & Development Administration, 1975, Final Environmental Statement for the Tokamak Fusion Test Reactor Facilities, ERDA-1544.
Fi94	Finley, V., June 1994, Ground Water Quality Report for the NJPDES Permit Renewal Application Permit No. NJ0086029.
FSAR82	<i>Final Safety Analysis Report, Tokamak Fusion Test Reactor Facilities,</i> Princeton Plasmas Physics Laboratory, 1982.
Gr77	Grossman, J. W., 1977, Archaeological and Historical Survey of the Proposed Tokamak Fusion Test Reactor, Rutgers University.
HLA 97	Harding Lawson Associates, March 28, 1997, Remedial Investigation/Remedial Action Report Phase I and II, Princeton University Plasma Physics Laboratory, James Forrestal Campus, Plainsboro, New Jersey.
HLA98	Harding Lawson Associates, September 25, 1998, Remedial Investigation/Remedial Action Report Addendum, Phase 3 Activities, Princeton Plasma Physics Laboratory, James Forrestal Campus, Plainsboro, New Jersey, 17 volumes.
Jo74	Jordan, C. F., Stewart, M., and Kline, J., 1974, <i>Tritium Movement in Soils: The Importance of Exchange and High Initial Dispersion</i> , <u>Health Physics</u> <u>27</u> : 37-43.
Kin03a	King, M., 2003, Annual (2002) Solid Waste Data, worksheet.

Kin03b	King, M., 2003, 2002 PPPL Fertilizer, Pesticide, and Herbicide Report, personal communication
Kin04a	King, M., 2004, Annual (2003) Solid Waste Data, worksheet.
Kin04b	King, M., 2004, 2003 PPPL Fertilizer, Pesticide, and Herbicide Report, personal communication.
Kir03	Kircher, C., 2003, 2002 <i>PPPL Fuel Use in Boilers 2-5 and Water Usage Data</i> personal communication.
Kir04	Kircher, C., 2004, 2003 <i>PPPL Fuel Use in Boilers 2-5 and Water Usage Data,</i> personal communication.
Lev04a	Levine, J., 2004, 2002 and 2003 Effective Dose Equivalent Calculations for PPPL <i>Operations</i> , personal communication.
Lev04b	Levine, J., 2004, 2002 and 2003 NEPA Status, and 2001 Safety Statistics, personal communication.
Lev04c	Levine, J., 2004, 2002 and 2003 <i>Tritium Environmental Data and D site Stack Tritium Release Data</i> , personal communication.
Lew87	Lewis, J. C. and Spitz, F. J., 1987, <i>Hydrogeology, Ground-Water Quality, and The Possible Effects of a Hypothetical Radioactive-Water Spill, Plainsboro Township, New Jersey</i> , U.S. Geological Survey Water-Resources Investigations Report 87-4092, West Trenton, NJ.
McG02b	McGeachen, T., 2004, 2002 and 2003 Pollution Prevention and Waste Management Annual Report, personal communication,
Mu77	Murphy, C. E., Jr., Watts, J. R., and Corey, J. C., 1977, <i>Environmental Tritium Transport from Atmospheric Release of Molecular Tritium</i> , <u>Health Physics 33</u> :325-331.
Mu82	Murphy, C. E., Jr., Sweet, C. W., and Fallon, R. D., 1982, <i>Tritium Transport Around Nuclear Facilities</i> , <u>Nuclear Safety</u> 23:667-685.
Mu90	Murphy, C. E., Jr., 1990, <i>The Transport, Dispersion, and Cycling of Tritium in the Environment,</i> Savannah River Site Report, WSRC-RP-90-462, UC702, 70 pp.
NJB97	NJ Breeding Bird Atlas Report, 1997, A New Jersey Breeding Bird Atlas Data Base Inquiry for Plainsboro Township, Middlesex County, New Jersey, Cape May Bird Observatory (Letter), January 13, 1998.
NJDEP84	NJ Department of Environmental Protection, December 1984, <i>Bee Brook - Delineation of Floodway and Flood Hazard Area</i> .

NJDEP95a	NJ Department of Environmental Protection, May 12, 1995, <i>Chronic Toxicity</i> <i>Requirement</i> R. DeWan, Chief of Standard Permitting, letter to V. Finley, PPPL.
NJDEP95b	New Jersey Department of Environmental Protection, November 1, 1995, <i>Boiler Units 2,3,4, and 5 (ID 1592 stacks 006, 007, 008, and 010)</i> , P. W. Zigrand, Section Chief, New Source Review, letter to M. Johnson USDOE.
NJDEP97	New Jersey Department of Environmental Protection, Natural Heritage Program, 1997, A Natural Heritage Data Base Inquiry for Plainsboro Township, Middlesex County, New Jersey, NJDEP Natural Heritage Program (Letter), NHP file No. 97-4007435.
NJDEP98a	New Jersey Department of Environmental Protection, June 2, 1998, <i>Determination of Non-Major Facility Status</i> , D. Jennus, Chief, Field Verification Section, to H. A. Wrigley, USDOE.
NJDEP98b	New Jersey Department of Environmental Protection, July 31,1998, <i>Compliance Evaluation and Assistance Inspection</i> , J. Olko, Enforcement Inspector, letter to H.A. Wrigley, USDOE .
NJDEP99	NJ Department of Environmental Protection, June 1999, <i>New Jersey Pollutant Discharge Elimination System (NJPDES) Surface Water Permit</i> , NJ0023922.
NJDEP01	NJ Department of Environmental Protection, July 27, 2001, <i>New Jersey Pollutant Discharge Elimination System (NJPDES) Ground Water Renewal Permit Action, Category "J": Surface Impoundment – Industrial NJ0086029 PI ID # 47029</i> , B. Chalofsky, Bureau Chief, Nonpoint Pollution Control, letter and permit to V. Finley, PPPL.
NJDEP03a	NJ Department of Environmental Protection, December 5, 2003, <i>New Jersey Pollutant Discharge Elimination System (NJPDES) Surface Water Permit,</i> NJ0023922.
NJDEP03b	NJ Department of Environmental Protection, August 28, 2003, <i>Compliance Evaluation and Assistance Inspection ,Princeton Plasma Physics Laboratory (PPPL)</i> <i>PI# 47029, NJPDES No. NJ002392 – DSW, NJPDES No. NJ0086029 – DGW and Notice Of Violation, J. Olko, Principal Environmental Specialist, letter to H.A. Wrigleyl, USDOE.</i>
PFC80	Princeton Forrestal Center, 1980, Storm Water Management Plan Phase I, prepared by Sasaki Associates, Inc.
PPPL95	Princeton Plasma Physics Laboratory, March 1995, Proposed Site Treatment Plan [PSTP] for Princeton Plasma Physics Laboratory [PPPL].

PPPL98a	Princeton Plasma Physics Laboratory, April 22, 1998, <i>Laboratory Mission</i> , O-001, Rev.1.
PPPL98b	Princeton Plasma Physics Laboratory, August 10, 1998, <i>Non-Emergency Environmental Release –Notification and Reporting</i> Procedure ESH-013.
PPPL98c	Princeton Plasma Physics Laboratory, August 31, 1998, Environmental Restoration & Waste Management Division, EM-CP-21, <i>Low-level Radioactive</i> <i>and Mixed Waste Certification Plan</i> .
PPPL98d	Princeton Plasma Physics Laboratory, <i>Nuclear Materials Control and Accountability (MC&A) Plan,</i> HP-PP-06. Rev. 4.
PPPL99a	Princeton Plasma Physics Laboratory, June 1999, PPPL Integrated Safety Management Policy, Rev. 1.
PPPL99b	Princeton Plasma Physics Laboratory, July 1999, Environmental Monitoring Plan, Rev. 2.
PPPL00a	Princeton Plasma Physics Laboratory, 2000, Remedial Investigation (RI) and Remedial Action Selection Report (RASR).
PPPL00b	Princeton Plasma Physics Laboratory, June 2000, Ground Water Protection Plan (GWPP).
PPPL00c	Princeton Plasma Physics Laboratory, November 13, 2000, ESHD 5008, Section 10, <i>Radiation Safety, Subparts L, "Release of Materials & Equipment from Radiological Areas</i> , and P, <i>Radiological Environmental Monitoring Program</i> .
PPPL00d	Princeton Plasma Physics Laboratory, November 2000, <i>Radiation Protection Plan</i> .
PPPL00e	Princeton Plasma Physics Laboratory, 2000, Health Physics Procedures (Calibration, Dosimetry, Environmental, Field Operations, Laboratory, Material Control and Accountability, and Radiological Laboratory).
PPPL01a	Princeton Plasma Physics Laboratory, 2001, NSTX Safety Assessment Document.
PPPL01b	Princeton Plasma Physics Laboratory, September 2001, Information Bulletin – National Compact Stellarator Experiment.
PPPL02a	Princeton Plasma Physics Laboratory, April 2002, L-Wing Elevator Hydraulic Release Incident, NJDEP Case No. 02-04-04-1042-18.
PPPL02b	Princeton Plasma Physics Laboratory, June 2002, <i>D-site Diesel Generator Oil Release</i> , NJDEP Case No. 02-06-17-1430-14.

PPPL02c	Princeton Plasma Physics Laboratory, September 2002, Chronic Toxicity Biomonitoring Tests for DSN001 Report.
PPPL03a	Princeton Plasma Physics Laboratory, January 2003, <i>Lubricating Oil from Mock-up HVAC Unit</i> , NJDEP Case No. 03-02-03-1100-51.
PPPL03b	Princeton Plasma Physics Laboratory, March 2003, SARA Title III, Section 312-2002 Annual Report.
PPPL03c	Princeton Plasma Physics Laboratory, March 2003, <i>Gasoline Release in Lower Parking Lot</i> , NJDEP Case No. 03-03-20-1514-22.
PPPL03d	Princeton Plasma Physics Laboratory, April 2003, <i>D-site Diesel Generator Lubricating Oil Release</i> , NJDEP Case No. 03-04-17-1010-52.
PPPL03e	Princeton Plasma Physics Laboratory, April 2003, Spill Prevention Control and Countermeasure (SPCC) Plan.
PPPL03f	Princeton Plasma Physics Laboratory, September 2003, <i>Hydraulic Fluid at the C-Site Cooling Tower Release</i> , NJDEP Case No. 03-09-23-1143-11.
PPPL03g	Princeton Plasma Physics Laboratory, September 29 2003, Chemical Oxygen Demand Report in response to the Notice of Violation, at Outfall DSN001.
PPPL03h	Princeton Plasma Physics Laboratory, October 2003, Chronic Toxicity Biomonitoring Tests for DSN001 Report.
PPPL03i	Princeton Plasma Physics Laboratory, November 2003, New Jersey Pollutant Discharge Elimination System (NJPDES) Surface Water Renewal Permit Application, NJ0023922 - DSW.
PPPL04	Princeton Plasma Physics Laboratory, March 2004, SARA Title III, Section 312-2003 Annual Report.
PSAR78	Preliminary Safety Analysis Report, Princeton Plasma Physics Laboratory Tokamak Fusion Test Reactor, 1978.
Pu04a	Pueyo, M., 2004, PCB Inventory.
Pu04b	Pueyo, M., 2004, 2002 and 2003 Hazardous and Radioactive Waste Report, personal communication.
Ru04	Rule. Keith, 2004, Occupation Safety and Health Administration (OSHA) Inspection Summary Report.

Sa80	Sasaki Associates, February 1980, Princeton Forrestal Center, Storm Water Management Plan for Bee Brook Watershed, prepared for Delaware & Raritan Canal Commission.
Sh99	Sheneman, R., October 1999, Princeton Plasma Physics Laboratory - Phase IV Remedial Investigation Report and Remediation Action Selection Report.
Sh00	Sheneman, R., May 2000, Princeton Plasma Physics Laboratory Remedial Action Work Plan.
Sh01	Sheneman, R., August 2001, Princeton Plasma Physics Laboratory Remedial Action Monitoring Report.
Sh03	Sheneman, R., July 2003, Princeton Plasma Physics Laboratory - Remedial Action Monitoring Report.
Sh04	Sheneman, R., July 2004, Princeton Plasma Physics Laboratory - Remedial Action Monitoring Report.
SE96	Smith Environmental Technologies, Corp., February 29, 1996, Final Site-Wide Storm Water Management Plan, Princeton Plasma Physics Laboratory, James Forrestal Campus, Plainsboro Township, Middlesex County, New Jersey.
SM92	American Public Health Association, American Water Works Association, and Water Environment Federation, 1992 (16 th edition) and 1998 (18 th edition), <i>Standard Methods for the Examination of Water and Wastewater</i> .
St82	Strenge, D. L., Kennedy, W. E., Jr., and Corley, J. P., 1982, <i>Environmental Dose</i> Assessment Methods for Normal Operations of DOE Nuclear Sites, PNL-4410/UC- 11.
Vo82	Volchok, H. L., and de Planque, G., 1982, <i>EML Procedures Manual HASL 300</i> , Department of Energy, Environmental Measurements Laboratory, 376 Hudson St., NY, NY 10014.

TABLES		
Table #	Title	Page
Table 1.	PPPL Radiological Design Objectives and Regulatory Limits	80
Table 2.	Annual Precipitation Data for 2002	81
Table 3.	Annual Precipitation Data for 2003	82
Table 4.	D-Site Stack Tritium Releases in Curies in 2002	83
Table 5.	D-Site Stack Tritium Releases in Curies in 2003	84
Table 6.	Air Tritium (HT&HTO) Concentrations Collected On-Site and Off-site in 2002	85
Table 7.	Air Tritium (HT&HTO) Concentrations Collected On-Site and Off-site in 2003	85
Table 8.	Surface Water Tritium Concentrations for 2002	86
Table 9.	Surface Water Tritium Concentrations for 2003	87
Table 10.	Ground Water Tritium Concentrations for 2002	88
Table 11.	Ground Water Tritium Concentrations for 2003	88
Table 12.	Rain Water Tritium Concentrations Collected On-site in 2002	89
Table 13.	Rain Water Tritium Concentrations Collected Off-site in 2002	89
Table 14.	Rain Water Tritium Concentrations Collected On-site in 2003	90
Table 15.	Rain Water Tritium Concentrations Collected Off-site in 2003	91
Table 16.	Annual Range of Tritium Concentrations at PPPL in Precipitation	
	from 1985 to 2003	91
Table 17.	Liquid Effluent Collection Tank Release Data for 2002	92
Table 18.	Liquid Effluent Collection Tank Release Data for 2003	92
Table 19.	Surface Water Analysis for Bee Brook, B1, in 2002	93
Table 20.	Surface Water Analysis for Bee Brook, B2, in 2002	93
Table 21.	Surface Water Analysis for Delaware & Raritan Canal, C1, in 2002	93
Table 22.	Surface Water Analysis for Millstone River, M1, in 2002	94
Table 23.	Surface Water Analysis for Elizabethtown Water, E1, in 2002	94
Table 24.	Surface Water Analysis for Cranbury Brook (Plainsboro), P1, in 2002	94
Table 25.	Surface Water Analysis for Devil's Brook (Plainsboro), P2, in 2002	94
Table 26.	DSN001 - Detention Basin Outfall Surface Water Results	
	(NJPDES NJ0023922) in 2002	95
Table 27.	D&R Canal Pump House - DSN003, Surface Water Analysis	
	(NJPDES NJ0023922) in 2002	96
Table 28.	Surface Water Analysis for Bee Brook, B1, in 2003	97
Table 29.	Surface Water Analysis for Bee Brook, B2, in 2003	97
Table 30.	Surface Water Analysis for Delaware & Raritan Canal, C1, in 2003	97
Table 31.	Surface Water Analysis for Millstone River, M1, in 2003	98
Table 32.	Surface Water Analysis for Elizabethtown Water, E1, in 2003	98
Table 33.	Surface Water Analysis for Cranbury Brook (Plainsboro), P1, in 2003	98
Table 34.	Surface Water Analysis for Devil's Brook (Plainsboro), P2, in 2003	98
Table 35.	DSN001 - Detention Basin Outfall Surface Water Results	
	(NJPDES NJ0023922) in 2003	99
Table 36.	D&R Canal Pump House - DSN003, Surface Water Analysis	
	(NJPDES NJ0023922) in 2003	100
Table 37.	Summary of Ground Water Sampling Results - 2002	

	Target Volatile Organic Compounds	
Table 38.	Summary of Ground Water Sampling Results -2003	
	Target Volatile Organic Compounds	
Table 39.	Quality Assurance Data for Radiological and Non-Radiological	
	Samples for 2002	
Table 40.	Quality Assurance Data for Radiological and Non-Radiological	
	Samples for 2003	

CONDITION		PUBLIC	EXPOSURE ^(b)	OCCUPA- TIONAL	EXPOSURE
		REGULATORY LIMIT	DESIGN OBJECTIVE	REGULATORY LIMIT	DESIGN OBJECTIVE
ROUTINE OPERATION Dose equivalent to an individual from routine operations (rem per year, unless otherwise indicated)	NORMAL OPERATIONS	0.1 Total, 0.01 ^(c) Airborne, 0.004 Drinking Water	0.01 Total	5	1
	ANTICIPATED EVENTS (1 > P ≥ 10 ⁻²)	0.5 Total (including normal operation)	0.05 per event		
ACCIDENTS Dose equivalent to an individual from an accidental release (rem per event)	UNLIKELY EVENTS 10 ⁻² > P ≥ 10 ⁻⁴	2.5	0.5	(e)	(e)
	EXTREMELY UNLIKELY EVENTS $10^{-4} > P \ge 10^{-6}$	25	₅ (d)	(e)	(e)
	INCREDIBLE EVENTS 10 ⁻⁶ > P	NA	NA	NA	NA

Table 1. PPPL Radiological Design Objectives and Regulatory Limits^(a)

P = Probability of occurrence in a year.

^(a) All operations must be planned to incorporate radiation safety guidelines, practices and procedures included in PPPL ESHD 5008, Section 10.

⁽b) Evaluated at PPPL site boundary.

⁽C) Compliance with this limit is to be determined by calculating the highest effective dose equivalent to any member of the public at any offsite point where there is a residence, school, business or office

⁽d) For design basis accidents (DBAs), i.e., postulated accidents or natural forces and resulting conditions for which the confinement structure, systems, components and equipment must meet their functional goals, the design objective is 0.5 rem.

⁽e) See PPPL ESHD-5008, Section 10, Chapter 10.1302 for emergency personnel exposure limits.

		Table 2.	Annual Precipitation Da	ata for 2002	
START DATE	WEEK	INCH	INCH/MONTH	MONTH	ACCUMLATION
1-Jan-02	1	0.000			0.000
7-Jan-02	2	1.525			1.525
14-Jan-02	3	0.400			1.925
21-Jan-02	4	0.475			2.400
28-Jan-02	5	0.550	2.9500	January	2.950
4-Feb-02	6	0.350			3.300
11-Feb-02	7	0.000			3.300
18-Feb-02	8	0.075			3.375
25-Feb-02	9	1.050	1.475	February	4.425
4-Mar-02	10	0.200			4.625
11-Mar-02	11	1.175			5.800
18-Mar-02	12	1.250			7.050
25-Mar-02	13	1 050	3.675	March	8 100
1-Apr-02	14	0,000	0.010	indion	8 100
8-Apr-02	15	0.000			8 300
15 Apr 02	16	0.200			0.000
13-Apr-02	10	0.300			10.000
22-Apr-02	17	2.250			10.850
29-Apr-02	18	1.150	3.9000	April	12.000
6-May-02	19	1.1000			13.100
13-May-02	20	2.075			15.175
20-May-02	21	0.075			15.250
27-May-02	22	0.250	3.500	Мау	15.500
3-Jun-02	23	1.950			17.450
10-Jun-02	24	1.990			19.440
17-Jun-02	25	0.175			19.615
24-Jun-02	26	0.700	4.815	June	20.315
1-Jul-02	27	0.000			20.315
8-Jul-02	28	0.050			20.365
15-Jul-02	29	1.650			22.015
22-Jul-02	30	0.000			22.015
29-Jul-02	31	1 100	2,800	July	23 115
5-Aug-02	32	1 250			24 365
12_Aug-02	22	0.000			24.365
12-Aug-02	24	0.000			24.303
19-Aug-02	34	0.900	5 050	A	23.203
26-Aug-02 2-Sep-02	35	3.800	5.950	August	29.065
9-Sep-02	37	0 700			29 765
16-Sen-02	38	0 000			29 765
22-Son 02	20	2 100			21.965
30-Sep-02	39 40	0.0750	2.875	September	31.940
7-Oct-02	41	3.400		•	35.340
14-Oct-02	42	0.700			36.040
21-Oct-02	43	1.450			37.490
28-Oct-02	44	0.475	6.025	October	37.965
4-Nov-02	45	0.800			38.765
11-Nov-02	46	2.750			41.515
18-Nov-02	47	0.550			42.065
25-Nov-02	48	0.350	4.450	November	42.415
2-Dec-02	49	0.505			42.920
9-Dec-02	50	1.850			44.770
16-Dec-02	51	0.650			45.420
23-Dec-02	52	1.250			46.670
30-Dec-02	53	1.250	5.505	December	47.920

2002 & 2003 SITE ENVIRONMENTAL REPORT

		Table 3.	Annual Precipitation Da	ta for 2003	
START DATE	WEEK	INCH	INCH/MONTH	MONTH	ACCUMLATION
1-Jan-03	1	0.150			0.150
6-Jan-03	2	0.100			0.250
13-Jan-03	3	0.050			0.300
20-Jan-03	4	0.000			0.300
27-Jan-03	5	0.100	0.400	January	0.400
3-Feb-03	6	0.700			1.100
10-Feb-03	7	0.700			1.800
17-Feb-03	8	2.350			4.150
24-Feb-03	9	0.900	4.650	February	5.050
3-Mar-03	10	1.100			6.150
10-Mar-03	11	0.050			6.200
17-Mar-03	12	1.650			7.850
24-Mar-03	13	0.855			8 705
31-Mar-03	14	0.000	3 655	March	8 705
8-Apr-03	15	1 900	0.000	indion	10.605
14 Apr 03	10	0.000			10.005
14-Apr-03	10	0.000			10.005
21-Apr-03	17	0.350		• • • • •	10.955
28-Apr-03	18	0.450	2.700	April	11.405
5-May-03	19	0.450			11.855
12-May-03	20	0.600			12.455
19-May-03	21	3.250			15.705
26-May-03	22	3.150	7.450	Мау	18.855
2-Jun-03	23	0.000			18.855
9-Jun-03	24	1.650			20.505
16-Jun-03	25	2.300			22.805
23-Jun-03	26	0.000			22.805
30-Jun-03	27	0.150	4.100	June	22.955
7-Jul-03	28	0.000			22.955
14-Jul-03	29	2.100			25.055
21-Jul-03	30	1.700			26.755
28-Jul-03	31	0 450	4,250	July	27 205
4-Aug-03	32	4 150		ouly	31 355
4-Aug-03	22	0.250			21.605
11-Aug-03	33	0.250			31.005
18-Aug-03	34	0.000	5.000	A	31.605
25-Aug-03 1-Sen-03	35	0.900	5.300	August	32.505
8-Sep-03	37	1 750			35.005
15-Cop-03	28	1 750			36 755
13-3ep-03	20	1.750			20 555
23-Sep-03 29-Sep-03	39 40	0.000	6.050	September	38.555
6-Oct-03	41	0.000			38.555
13-Oct-03	42	1.500			40.055
20-Oct-03	43	1.950			42.005
27-Oct-03	44	1.300	4.750	October	43.305
3-Nov-03	45	1.775			45.080
10-Nov-03	46	0.400			45.480
17-Nov-03	47	2.350			47.830
24-Nov-03	48	0.850	5.375	November	48.680
1-Dec-03	49	0.600			49.280
8-Dec-03	50	3.450			52.730
15-Dec-03	51	0.4650			53.180
22-Dec-03	52	1.550			54.730
29-Dec-03	53	0.000	6.050	December	54.730

2002 & 2003 SITE ENVIRONMENTAL REPORT

Baseline 1/2/02 0 0 0 0 0 9-Jan-02 3.64 0.175 3.815 3.815 16-Jan-02 3.39 1.87 5.26 13.677 30-Jan-02 7.56 0.191 7.751 January 21.428 6-Feb-02 6.65 0.105 6.755 32.973 20-Feb-02 1.76 0.066 1.825 34.798 27-Feb-02 4.74 0.068 4.808 February 39.606 6-Mar-02 4.6 1.27 5.87 45.476 13-Mar-02 1.89 0.078 1.969 March 51.943 3-Apr-02 1.1 3.29 56.333 10-Apr-02 0.71 0.653 1.363 64.152 1-May-02 0.872 0.026 0.898 April 65.05 17-Apr-02 1.71 0.051 1.181 67.934 24-Apr-02 3.24 2.19 5.43 Act152 1-May-02 0.842	Week Ending	HTO (Ci)	HT (Ci)	Weekly total (Ci)	Month	Annual Total (Ci)
9-Jan-02 3.64 0.175 3.815 3.815 16-Jan-02 4.45 0.152 4.602 8.417 30-Jan-02 7.56 0.191 7.751 January 21.428 6-Feb-02 4.53 0.26 4.79 26.218 13-Feb-02 6.65 0.105 6.755 32.973 20-Feb-02 1.76 0.066 1.825 34.798 27-Feb-02 4.74 0.068 4.808 February 39.606 6-Mar-02 4.6 1.27 5.87 45.476 13-Mar-02 2.38 0.15 2.53 44.006 20-Mar-02 1.9 0.069 1.966 49.974 27-Mar-02 1.1 3.29 4.39 56.333 10-Apr-02 1.05 0.021 1.026 58.722 24-Apr-02 3.24 2.19 5.43 64.152 1-May-02 1.5 0.203 1.703 66.753 15-May-02 0.844 0.045	Baseline 1/2/02	0	0	0	0	0
16-Jan-02 4.45 0.152 4.602 8.417 23-Jan-02 7.56 0.191 7.751 January 21.428 6-Feb-02 4.53 0.26 4.79 26.218 13-Feb-02 6.65 0.105 6.755 32.973 20-Feb-02 1.76 0.065 1.825 34.798 27-Feb-02 4.74 0.068 4.808 February 39.606 6-Mar-02 1.89 0.078 1.968 49.974 27-Mar-02 1.9 0.069 1.969 March 51.943 3-Apr-02 1.1 3.29 4.39 56.333 10-Apr-02 0.71 0.653 1.363 67.696 17-Apr-02 1.05 0.021 1.026 58.722 24-Apr-02 3.24 2.19 5.43 64.152 1-May-02 0.872 0.026 0.898 April 65.05 8-May-02 1.13 0.051 1.181 67.934 24-Apr-02 0.846	9-Jan-02	3.64	0.175	3.815		3.815
23-Jan-02 3.39 1.87 5.26 13.677 30-Jan-02 7.56 0.191 7.751 January 21.428 6-Feb-02 4.53 0.26 4.79 26.218 13-Feb-02 6.65 0.105 6.755 32.973 20-Feb-02 1.76 0.065 1.825 34.793 27-Feb-02 4.74 0.068 4.808 February 39.606 6-Mar-02 2.38 0.15 2.53 45.076 13-Mar-02 1.8 0.073 1.968 49.974 27-Mar-02 1.9 0.069 1.969 March 51.943 30-Apr-02 1.1 3.29 4.39 56.333 10-43 10-42r-02 0.27 0.026 0.898 April 65.05 24-Apr-02 3.24 2.19 5.43 64.152 1-May-02 1.43 0.051 1.181 67.934 22-May-02 0.844 0.025 24-May-02 0.844 0.0	16-Jan-02	4.45	0.152	4.602		8.417
30-Jan-02 7.56 0.191 7.751 January 21.428 6-Feb-02 4.53 0.26 4.79 26.218 13-Feb-02 1.76 0.065 1.825 34.798 27-Feb-02 1.76 0.065 1.825 34.798 27-Feb-02 4.74 0.066 4.808 February 39.606 6-Mar-02 2.38 0.15 2.53 48.006 20-Mar-02 1.89 0.078 1.969 March 61.943 3-Apr-02 1.1 3.29 4.39 56.333 10-Apr-02 0.71 0.653 1.363 64.152 1-May-02 0.71 0.653 1.363 64.152 1.43 64.152 1-May-02 0.872 0.026 0.889 April 66.05 33 15-May-02 1.13 0.051 1.181 67.934 22-May-02 0.844 0.025 0.859 May 69.684 5-Jun-02 0.864 0.039 0.903 <td< td=""><td>23-Jan-02</td><td>3.39</td><td>1.87</td><td>5.26</td><td></td><td>13.677</td></td<>	23-Jan-02	3.39	1.87	5.26		13.677
6-Feb-02 4.53 0.26 4.79 26.218 13 -Feb-02 6.65 0.105 6.755 32.973 20 -Feb-02 1.76 0.065 1.825 34.798 27 -Feb-02 4.74 0.068 4.808 February 39.606 6 -Mar-02 4.8 0.15 2.53 46.006 20 -Mar-02 1.89 0.078 1.968 49.974 27 -Mar-02 1.9 0.069 1.969 March 51.943 $3-Apr-02$ 1.1 3.29 4.39 56.333 10 - $Apr-02$ 1.005 0.021 1.026 58.722 24 - $Apr-02$ 3.24 2.19 5.43 64.152 $1-May-02$ 1.3 0.025 0.889 April 66.05 8 -May-02 1.43 0.025 0.859 May 69.684 $5-Jun-02$ 0.864 0.039 0.9077 71.564 $19-Jun-02$ <td>30-Jan-02</td> <td>7.56</td> <td>0.191</td> <td>7.751</td> <td>January</td> <td>21.428</td>	30-Jan-02	7.56	0.191	7.751	January	21.428
13-Feb-02 6.65 0.105 6.755 32.973 20-Feb-02 1.76 0.065 1.825 34.798 27-Feb-02 4.74 0.066 4.808 February 39.606 6-Mar-02 4.6 1.27 5.87 45.476 13-Mar-02 2.38 0.15 2.53 46.006 20-Mar-02 1.9 0.069 1.969 March 51.943 3-Apr-02 1.1 3.29 4.39 56.333 10-Apr-02 0.71 0.653 1.363 57.696 17-Apr-02 1.005 0.021 1.026 58.722 24.4pr-02 3.24 2.19 5.43 64.152 1-May-02 0.872 0.026 0.898 April 65.05 53 15-May-02 1.13 0.051 1.181 67.934 22-May-02 0.846 0.045 0.891 68.825 20-May-02 0.846 0.0025 0.859 May 69.684 5-Jun-02 0.864 0.027	6-Feb-02	4.53	0.26	4.79	.	26.218
20-Feb-02 1.76 0.065 1.825 34.798 27-Feb-02 4.74 0.068 4.808 February 39.606 6-Mar-02 4.6 1.27 5.87 45.476 13-Mar-02 2.38 0.15 2.53 48.006 20-Mar-02 1.89 0.078 1.969 March 51.943 3-Apr-02 1.1 3.29 4.39 56.333 10-Apr-02 0.71 0.653 1.363 57.696 17-Apr-02 1.025 0.021 1.026 58.722 24-Apr-02 1.5 0.023 1.703 66.753 15-May-02 1.5 0.203 1.703 66.753 15-May-02 0.846 0.045 0.891 68.825 29-May-02 0.846 0.025 0.859 May 69.684 5-Jun-02 0.864 0.039 0.903 70.588 12-Jun-02 0.864 0.039 1.181 54.41 10-Jun-02 0.439 <td< td=""><td>13-Feb-02</td><td>6.65</td><td>0.105</td><td>6.755</td><td></td><td>32.973</td></td<>	13-Feb-02	6.65	0.105	6.755		32.973
27-Feb-02 4.74 0.068 4.808 February 39.606 6-Mar-02 4.6 1.27 5.87 45.476 13-Mar-02 2.38 0.15 2.53 48.006 20-Mar-02 1.89 0.078 1.968 March 51.943 3-Apr-02 1.1 3.29 4.39 56.33 1 10-Apr-02 0.71 0.663 1.363 57.696 17-Apr-02 3.24 2.19 5.43 64.152 1-May-02 0.872 0.026 0.898 April 65.05 8 8-May-02 1.5 0.203 1.703 66.753 15-May-02 0.814 0.045 0.891 68.825 29-May-02 0.846 0.039 0.903 70.588 12-Jun-02 0.864 0.039 0.903 70.588 12-Jun-02 0.439 0.034 0.473 74.261 10-Jul-02 0.439 0.034 0.473 74.261 75.388 31-Jul-02 0.439 0.034	20-Feb-02	1.76	0.065	1.825		34,798
6-Mar-02 4.6 1.27 5.87 45.476 13-Mar-02 2.38 0.15 2.53 48.006 20-Mar-02 1.89 0.078 1.968 49.974 27-Mar-02 1.9 0.069 1.969 March 51.943 3-Apr-02 1.1 3.29 4.39 56.333 10-Apr-02 0.71 0.653 1.363 57.696 17-Apr-02 1.005 0.021 1.026 58.722 24-Apr-02 3.24 2.19 5.43 64.152 1-May-02 0.872 0.026 0.898 April 65.05 8-May-02 1.3 0.051 1.181 67.934 22.448 0.025 0.859 May 69.684 5-Jun-02 0.834 0.025 0.859 May 69.684 19-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 0.932 0.004 0.973 74.261 10-Jul-02 0.439 0.034 0.473 7	27-Feb-02	4.74	0.068	4.808	February	39.606
13-Mar-02 2.38 0.15 2.53 48.006 20-Mar-02 1.89 0.078 1.968 49.974 27-Mar-02 1.9 0.069 1.969 March 51.943 3-Apr-02 1.1 3.29 4.39 56.333 10-Apr-02 0.71 0.653 1.363 57.696 17-Apr-02 3.24 2.19 5.43 64.152 1-May-02 0.872 0.026 0.898 April 65.05 8-May-02 1.5 0.203 1.703 66.753 15-May-02 0.846 0.045 0.891 68.825 29-May-02 0.846 0.045 0.891 68.825 29-May-02 0.846 0.045 0.891 68.84 5-Jun-02 0.864 0.039 0.903 70.588 12-Jun-02 0.439 0.034 0.473 74.261 19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.439 0.034 0.473 74.734 17-Jul-02 0.423 0.028	6-Mar-02	4.6	1.27	5.87	/	45.476
20-Mar-02 1.89 0.078 1.968 49.974 27-Mar-02 1.9 0.069 1.969 March 51.943 3-Apr-02 1.1 3.29 4.39 56.333 10-Apr-02 0.71 0.653 1.363 57.696 17-Apr-02 3.24 2.19 5.43 64.152 1-May-02 0.872 0.026 0.898 April 65.05 8-May-02 1.5 0.203 1.703 66.753 15-May-02 0.846 0.045 0.891 68.825 29-May-02 0.846 0.039 0.903 70.588 12-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 0.439 0.034 0.473 74.261 10-Jul-02 0.439 0.034 0.473 74.261 10-Jul-02 0.439 0.034 0.473 74.261 75.185 24-Jul-02 0.439 0.024 0.473 74.261 75.485 3-Jul-02 0.439 0.034 <td>13-Mar-02</td> <td>2.38</td> <td>0.15</td> <td>2.53</td> <td></td> <td>48.006</td>	13-Mar-02	2.38	0.15	2.53		48.006
27.Mar-02 1.9 0.069 1.969 March 51.843 3-Apr-02 1.1 3.29 4.39 56.333 10-Apr-02 0.71 0.653 1.363 57.696 17-Apr-02 1.005 0.021 1.026 58.722 24-Apr-02 3.24 2.19 5.43 64.152 1-May-02 0.872 0.026 0.898 April 65.05 8-May-02 1.13 0.051 1.181 67.934 22-May-02 0.846 0.045 0.891 68.825 29-May-02 0.846 0.045 0.891 68.825 29-May-02 0.846 0.039 0.903 70.588 12-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.734 74.734 17	20-Mar-02	1.89	0.078	1.968		49.974
3-Apr-02 1.1 3.29 4.39 56.333 10-Apr-02 0.71 0.653 1.363 57.696 17-Apr-02 1.005 0.021 1.026 58.722 24-Apr-02 3.24 2.19 5.43 64.152 1-May-02 0.872 0.026 0.898 April 65.05 8-May-02 1.5 0.203 1.703 66.753 15-May-02 0.846 0.045 0.891 68.825 29-May-02 0.846 0.045 0.891 68.825 29-May-02 0.864 0.039 0.903 70.588 12-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.261 10-Jul-02 0.439 0.034 0.473 74.261 10-Jul-02 0.439 0.011 0.202 75.388 31-Jul-02 0.166 0.013 0.179	27-Mar-02	1.9	0.069	1.969	March	51.943
Di-Apr-02 Di-Apr-02 <thdi-apr-02< th=""> <thdi-apr-02< th=""> <thd< td=""><td>3-Apr-02</td><td>1 1</td><td>3 29</td><td>4.39</td><td></td><td>56,333</td></thd<></thdi-apr-02<></thdi-apr-02<>	3-Apr-02	1 1	3 29	4.39		56,333
17-Apr-02 1.005 0.021 1.026 58.722 24-Apr-02 3.24 2.19 5.43 64.152 1-May-02 0.872 0.026 0.898 April 65.05 8-May-02 1.5 0.203 1.703 66.753 15-May-02 1.3 0.051 1.181 67.934 22-May-02 0.846 0.045 0.891 68.825 29-May-02 0.846 0.045 0.891 68.825 29-May-02 0.846 0.045 0.891 68.825 29-May-02 0.864 0.039 0.903 70.588 12-Jun-02 0.932 0.045 0.977 71.664 19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.734 17-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013	10-Apr-02	0.71	0.653	1.363		57 696
11-April 02 1.000 0.021 1.020 0.0122 124-April 02 0.872 0.026 0.898 April 65.05 8-May-02 1.5 0.203 1.703 66.753 15-May-02 1.13 0.051 1.181 67.934 22-May-02 0.834 0.025 0.859 May 69.684 5-Jun-02 0.864 0.039 0.903 70.588 12-Jun-02 0.864 0.039 0.907 71.564 19-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 0.423 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.261 10-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.069 0.019 0.088 75.484 14-Aug-02 0.655 0.71 August 76.834 21-Aug-02 0.665 0.055 0.71 August 78.84 14	17-Apr-02	1.005	0.000	1.000		58 722
1-May-02 0.8.77 0.102 0.8.98 April 65.05 8-May-02 1.5 0.203 1.703 66.753 15-May-02 1.13 0.051 1.181 67.934 22-May-02 0.846 0.045 0.891 68.825 29-May-02 0.834 0.025 0.859 May 69.684 5-Jun-02 0.864 0.039 0.903 70.588 12-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.734 17-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02	24-Apr-02	3.24	2 10	5.43		6/ 152
Hurry 02 0.012 0.020 Hyrr 0.030 Hyrr 0.030 8-May-02 1.15 0.021 1.703 66.753 15-May-02 0.846 0.045 0.891 68.825 29-May-02 0.834 0.025 0.859 May 69.684 5-Jun-02 0.864 0.039 0.903 70.588 12-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.734 17-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.655 0.055 0.71 August 76.384 <	1-May-02	0.872	0.026	0.898	April	65.05
0-May-02 1.3 0.203 1.703 00.733 15-May-02 1.13 0.051 1.181 67.934 22-May-02 0.846 0.045 0.891 68.825 29-May-02 0.846 0.039 0.903 70.588 12-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.261 10-Jul-02 0.439 0.034 0.473 74.734 17-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.655 0.755 0.71 August 76.384 4-Sep-02 1.16	9 May 02	1.5	0.020	1 702	Арш	66 752
13-May-02 1.13 0.031 1.181 67.934 22-May-02 0.846 0.045 0.891 68.825 29-May-02 0.834 0.025 0.859 May 69.684 5-Jun-02 0.864 0.039 0.903 70.588 12-Jun-02 0.932 0.045 0.977 71.664 19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.439 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.261 10-Jul-02 0.439 0.034 0.473 75.185 24-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.009 July 75.388 31-Jul-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.655 0.055 0.71 August 76.384 14-Sep-02 1.16 0.067 1.427 87.09 79.823	0-11/12y-02	1.0	0.203	1.703		67.024
22+May-02 0.844 0.025 0.859 May 69.684 5-Jun-02 0.864 0.039 0.903 70.588 12-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.734 17-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.049 0.008 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.655 0.055 0.71 August 76.384 4-Sep-02 2.16 0.066 2.22 78.604 11-Sep-02 1.16 0.059 1.219 79.823 18-Sep-02 1.36	15-May-02	1.13	0.051	1.101		67.934
29-May-02 0.834 0.025 0.859 May 69.684 5-Jun-02 0.864 0.039 0.903 70.588 12-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.261 10-Jul-02 0.439 0.034 0.473 74.734 17-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.423 0.028 0.451 75.388 31-Jul-02 0.069 0.001 0.009 July 75.388 21-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.655 0.055 0.71 August 76.384 4-Sep-02 2.16 0.066 2.22 78.604 11-Sep-02 1.16 0.059 1.219 79.823	22-May-02	0.846	0.045	0.891	Mari	68.825
5-JUn-02 0.864 0.039 0.903 70.588 12-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.734 17-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.423 0.028 0.451 75.484 14-Aug-02 0.069 0.011 0.009 July 75.396 7-Aug-02 0.069 0.011 0.009 July 75.633 21-Aug-02 0.011 0 0.011 75.674 28-Aug-02 0.655 0.055 0.71 August 76.384 4-Sep-02 1.16 0.059 1.219 79.823 18-5663 25-Sep-02 1.36 0.067 1.427 87.09 2-0ct-02 0.962 0.661 1.023 September 88.112 9-	29-May-02	0.834	0.025	0.859	way	69.684
12-Jun-02 0.932 0.045 0.977 71.564 19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.734 10-Jul-02 0.439 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.008 0.001 0.009 July 75.396 7-Aug-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.674 28-Aug-02 0.655 0.055 0.71 August 76.384 14-Sep-02 1.16 0.069 1.219 79.823 18-Sep-02 1.16 0.067 1.427 87.09 2-Oct-02 0.962 0.061 1.023 September 88.112 9-Oct-02 1.36 0.076 1.436 89.548 16-Oct-02 1.62 0.566 1.676 91.225 23-Oct-02 1.19 <	5-Jun-02	0.864	0.039	0.903		70.588
19-Jun-02 1.22 0.059 1.279 72.843 26-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.261 10-Jul-02 0.439 0.028 0.451 75.185 24-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.065 0.055 0.71 August 76.384 4-Sep-02 2.16 0.06 2.22 78.604 11-8 85.663 25-Sep-02 1.36 0.067 1.427 87.09 2-0ct-02 0.962 0.061 1.023 September 88.112 9-Oct-02 1.36 0.076 1.436 89.548 16-0ct-02	12-Jun-02	0.932	0.045	0.977		71.564
26-Jun-02 0.943 0.002 0.945 June 73.788 3-Jul-02 0.439 0.034 0.473 74.261 10-Jul-02 0.439 0.034 0.473 74.734 17-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.655 0.055 0.71 August 76.384 4-Sep-02 2.16 0.066 2.22 78.604 11-Sep-02 1.16 0.059 1.219 79.823 18-Sep-02 1.36 0.067 1.427 87.09 2-Oct-02 0.962 0.061 1.023 September 88.112 9-Oct-02 1.36 0.076 1.436 89.548 16-Oct-02 1.62 0.056 1.676 91.225 23-Oct-02 1.94 <td>19-Jun-02</td> <td>1.22</td> <td>0.059</td> <td>1.279</td> <td></td> <td>72.843</td>	19-Jun-02	1.22	0.059	1.279		72.843
3-Jul-02 0.439 0.034 0.473 74.261 10-Jul-02 0.439 0.034 0.473 74.734 17-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.008 0.001 0.009 July 75.396 7-Aug-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.655 0.055 0.71 August 76.384 4-Sep-02 2.16 0.06 2.22 78.604 11-Sep-02 1.16 0.059 1.219 79.823 18-Sep-02 1.36 0.067 1.427 87.09 2-Oct-02 0.962 0.061 1.023 September 88.112 9-Oct-02 1.36 0.076 1.436 89.548 16-Oct-02 1.62 0.056 1.676 91.225 23-Oct-02 1.94 0.036 1.076 October 93.558 6-Nov-02	26-Jun-02	0.943	0.002	0.945	June	73.788
10-Jul-02 0.439 0.034 0.473 74.734 17-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.008 0.001 0.009 July 75.396 7-Aug-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.655 0.055 0.71 August 76.384 4-Sep-02 2.16 0.06 2.22 78.604 11-Sep-02 1.16 0.059 1.219 79.823 18-Sep-02 1.36 0.067 1.427 87.09 2-Oct-02 0.962 0.061 1.023 September 88.112 9-Oct-02 1.36 0.076 1.436 89.548 16-Oct-02 1.62 0.056 1.676 91.225 23-Oct-02 1.90 0.036 1.076 October 93.558 6-Nov-02 0.904 0.056 0.96 94.518 13-Nov-02	3-Jul-02	0.439	0.034	0.473		74.261
17-Jul-02 0.423 0.028 0.451 75.185 24-Jul-02 0.191 0.011 0.202 75.388 31-Jul-02 0.008 0.001 0.009 July 75.396 7-Aug-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.655 0.055 0.71 August 76.384 4-Sep-02 0.655 0.055 0.71 August 76.384 4-Sep-02 2.16 0.06 2.22 78.604 11-Sep-02 1.16 0.059 1.219 79.823 18-Sep-02 4.43 1.41 5.84 85.663 25-Sep-02 1.36 0.067 1.427 87.09 2-Oct-02 0.962 0.061 1.023 September 88.112 9-Oct-02 1.36 0.076 1.436 89.548 16-Oct-02 1.62 0.056 1.676 91.225 23-Oct-02 1.04 0.036 1.076 October 93.558 <t< td=""><td>10-Jul-02</td><td>0.439</td><td>0.034</td><td>0.473</td><td></td><td>74.734</td></t<>	10-Jul-02	0.439	0.034	0.473		74.734
24-Jul-020.1910.0110.20275.38831-Jul-020.0080.0010.009July75.3967-Aug-020.0690.0190.08875.48414-Aug-020.1660.0130.17975.66321-Aug-020.01100.01175.67428-Aug-020.6550.0550.71August76.3844-Sep-022.160.062.2278.60411-Sep-021.160.0591.21979.82318-Sep-024.431.415.8485.66325-Sep-021.360.0671.42787.092-Oct-020.9620.0611.023September88.1129-Oct-021.360.0761.43689.54816-Oct-021.620.0561.67691.22523-Oct-021.990.0671.25792.48230-Oct-021.040.0361.076October93.55813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November105.2264-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	17-Jul-02	0.423	0.028	0.451		75.185
31-Jul-02 0.008 0.001 0.009 July 75.396 7-Aug-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.055 0.055 0.71 August 76.384 4-Sep-02 0.655 0.055 0.71 August 76.384 4-Sep-02 2.16 0.06 2.22 78.604 11-Sep-02 1.16 0.059 1.219 79.823 18-Sep-02 4.43 1.41 5.84 85.663 25-Sep-02 1.36 0.067 1.427 87.09 2-Oct-02 0.962 0.061 1.023 September 88.112 9-Oct-02 1.62 0.056 1.676 91.225 23-Oct-02 1.90 0.067 1.257 92.482 30-Oct-02 1.04 0.036 1.076 October 93.558 6-Nov-02 0.904 0.056 0.96 94.518	24-Jul-02	0.191	0.011	0.202		75.388
7-Aug-02 0.069 0.019 0.088 75.484 14-Aug-02 0.166 0.013 0.179 75.663 21-Aug-02 0.011 0 0.011 75.674 28-Aug-02 0.655 0.055 0.71 August 76.384 4-Sep-02 2.16 0.06 2.22 78.604 11-Sep-02 1.16 0.059 1.219 79.823 18-Sep-02 4.43 1.41 5.84 85.663 25-Sep-02 1.36 0.067 1.427 87.09 2-Oct-02 0.962 0.061 1.023 September 88.112 9-Oct-02 1.36 0.076 1.436 89.548 16-Oct-02 1.62 0.056 1.676 91.225 23-Oct-02 1.19 0.067 1.257 92.482 30-Oct-02 1.04 0.036 1.076 October 93.558 6-Nov-02 0.904 0.056 0.96 94.518 13-Nov-02 0.579 0.028 0.607 95.125 20-Nov-02 8.21	31-Jul-02	0.008	0.001	0.009	July	75.396
14-Aug-020.1660.0130.17975.66321-Aug-020.01100.01175.67428-Aug-020.6550.0550.71August76.3844-Sep-022.160.062.2278.60411-Sep-021.160.0591.21979.82318-Sep-024.431.415.8485.66325-Sep-021.360.0671.42787.092-Oct-020.9620.0611.023September88.1129-Oct-021.360.0761.43689.54816-Oct-021.620.0561.67691.22523-Oct-021.190.0671.25792.48230-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November4-Dec-020.9780.041.018106.24411-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	7-Aug-02	0.069	0.019	0.088		75.484
21-Aug-020.01100.01175.67428-Aug-020.6550.0550.71August76.3844-Sep-022.160.062.2278.60411-Sep-021.160.0591.21979.82318-Sep-024.431.415.8485.66325-Sep-021.360.0671.42787.092-Oct-020.9620.0611.023September9-Oct-021.360.0761.43689.54816-Oct-021.620.0561.67691.22523-Oct-021.190.0671.25792.48230-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November4-Dec-020.9780.041.018106.24411-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	14-Aug-02	0.166	0.013	0.179		75.663
28-Aug-020.6550.0550.71August76.3844-Sep-022.160.062.2278.60411-Sep-021.160.0591.21979.82318-Sep-024.431.415.8485.66325-Sep-021.360.0671.42787.092-Oct-020.9620.0611.023September9-Oct-021.360.0761.43689.54816-Oct-021.620.0561.67691.22523-Oct-021.190.0671.25792.48230-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November105.2264-Dec-020.9780.041.018106.24411-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	21-Aug-02	0.011	0	0.011		75.674
4-Sep-022.160.062.2278.60411-Sep-021.160.0591.21979.82318-Sep-024.431.415.8485.66325-Sep-021.360.0671.42787.092-Oct-020.9620.0611.023September9-Oct-021.360.0761.43689.54816-Oct-021.620.0561.67691.22523-Oct-021.190.0671.25792.48230-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.966-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November4-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	28-Aug-02	0.655	0.055	0.71	August	76.384
11-Sep-021.160.0591.21979.82318-Sep-024.431.415.8485.66325-Sep-021.360.0671.42787.092-Oct-020.9620.0611.023September88.1129-Oct-021.360.0761.43689.54816-Oct-021.620.0561.67691.22523-Oct-021.190.0671.25792.48230-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November4-Dec-020.9780.041.018106.24411-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	4-Sep-02	2.16	0.06	2.22		78.604
18-Sep-024.431.415.8485.66325-Sep-021.360.0671.42787.092-Oct-020.9620.0611.023September88.1129-Oct-021.360.0761.43689.54816-Oct-021.620.0561.67691.22523-Oct-021.190.0671.25792.48230-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November105.2264-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	11-Sep-02	1.16	0.059	1.219		79.823
25-Sep-021.360.0671.42787.092-Oct-020.9620.0611.023September88.1129-Oct-021.360.0761.43689.54816-Oct-021.620.0561.67691.22523-Oct-021.190.0671.25792.48230-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November105.2264-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	18-Sep-02	4.43	1.41	5.84		85.663
2-Oct-020.9620.0611.023September88.1129-Oct-021.360.0761.43689.54816-Oct-021.620.0561.67691.22523-Oct-021.190.0671.25792.48230-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November4-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	25-Sep-02	1.36	0.067	1.427		87.09
9-Oct-021.360.0761.43689.54816-Oct-021.620.0561.67691.22523-Oct-021.190.0671.25792.48230-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November4-Dec-020.9780.041.018106.24411-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	2-Oct-02	0.962	0.061	1.023	September	88.112
16-Oct-021.620.0561.67691.22523-Oct-021.190.0671.25792.48230-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November4-Dec-020.9780.041.018106.24411-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	9-Oct-02	1.36	0.076	1.436		89.548
23-Oct-021.190.0671.25792.48230-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November105.2264-Dec-020.9780.041.018106.24411-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	16-Oct-02	1.62	0.056	1.676		91.225
30-Oct-021.040.0361.076October93.5586-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November4-Dec-020.9780.041.018106.24411-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	23-Oct-02	1.19	0.067	1.257		92.482
6-Nov-020.9040.0560.9694.51813-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November4-Dec-020.9780.041.018106.24411-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	30-Oct-02	1.04	0.036	1.076	October	93.558
13-Nov-020.5790.0280.60795.12520-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November105.2264-Dec-020.9780.041.018106.24411-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	6-Nov-02	0.904	0.056	0.96		94.518
20-Nov-028.210.2848.494103.61927-Nov-021.570.0371.607November105.2264-Dec-020.9780.041.018106.24411-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	13-Nov-02	0.579	0.028	0.607		95.125
27-Nov-021.570.0371.607November105.2264-Dec-020.9780.041.018106.24411-Dec-020.9640.0310.995107.23918-Dec-021.090.0381.128108.36727-Dec-021.130.0351.165109.5332-Jan-030.7010.0220.723December110.256	20-Nov-02	8.21	0.284	8.494		103.619
4-Dec-02 0.978 0.04 1.018 106.244 11-Dec-02 0.964 0.031 0.995 107.239 18-Dec-02 1.09 0.038 1.128 108.367 27-Dec-02 1.13 0.035 1.165 109.533 2-Jan-03 0.701 0.022 0.723 December 110.256	27-Nov-02	1.57	0.037	1.607	November	105.226
11-Dec-02 0.964 0.031 0.995 107.239 18-Dec-02 1.09 0.038 1.128 108.367 27-Dec-02 1.13 0.035 1.165 109.533 2-Jan-03 0.701 0.022 0.723 December 110.256	4-Dec-02	0.978	0.04	1.018		106.244
18-Dec-02 1.09 0.038 1.128 108.367 27-Dec-02 1.13 0.035 1.165 109.533 2-Jan-03 0.701 0.022 0.723 December 110.256	11-Dec-02	0.964	0.031	0.995		107.239
27-Dec-02 1.13 0.035 1.165 109.533 2-Jan-03 0.701 0.022 0.723 December 110.256	18-Dec-02	1.09	0.038	1,128		108.367
2-Jan-03 0.701 0.022 0.723 December 110.256	27-Dec-02	1.00	0.035	1 165		109 533
	2- Jan-03	0 701	0.000	0.723	December	110 256
96 495 13 76 110 256 Total 2002 110 256	2 001 00	96 495	13 76	110 256	Total 2002	110 256

 Table 4. D-Site Tritium Stack Releases in Curies in 2002

Week Ending	HTO (Ci)	HT (Ci)	Weekly total (Ci)	Month	Annual Total (Ci)
Baseline 1/2/02	0	0	0	0	0
8-Jan-03	0.689	0.022	0.711		0.711
15-Jan-03	1.32	0.056	1.376		2.087
22-Jan-03	1.14	0.051	1.191		3.277
29-Jan-03	0.937	0.055	0.992	January	4.269
5-Feb-03	0.825	0.033	0.858		5.127
12-Feb-03	1.12	0.042	1.162		6.289
19-Feb-03	0.636	0.051	0.687		6.977
26-Feb-03	0.748	0.036	0.784	February	7.761
5-Mar-03	0.702	0.03	0.732		8.493
12-Mar-03	0.755	0.04	0.795		9.288
19-Mar-03	0.745	0.021	0.766		10.054
26-Mar-03	0.727	0.137	0.864	March	10.918
2-Apr-03	0.921	0.055	0.976		11 894
9-Apr-03	0.975	0.048	1 023		12 917
16-Apr-03	0.891	0.019	0.91		13 827
23-Apr-03	0.893	0.041	0.934		14 761
30-Apr-03	0.889	0.009	0.898	Δpril	15 659
7-May-03	1 17	0.000	1 225	Арш	16.884
14-May-03	1.17	0.035	1.225		18.14
21-May-03	1.22	0.030	1.250		10.14
21-May-03	1.07	0.033	1.103	May	20.378
20-1viay-03	0.009	0.000	1.100	iviay	20.370
4-Jun-03	0.996	0.032	1.03		21.406
11-Jun-03	1.13	0.020	1.100		22.566
16-Jun-03	0.492	0.051	0.043	lum a	23.109
25-Jun-03	0.62	0.017	0.037	June	23.740
2-Jul-03	0.617	0.029	0.646		24.392
9-Jul-03	0.704	0.021	0.725		25.117
16-Jul-03	0.674	0.03	0.704		25.821
23-Jul-03	0.8	0.029	0.829		26.65
29-Jui-03	0.85	0.03	0.88	July	27.53
6-Aug-03	0.78	0.024	0.804		28.334
13-Aug-03	0.237	0.008	0.245		28.579
20-Aug-03	0.265	0.006	0.271		28.85
27-Aug-03	0.441	0.029	0.47	August	29.32
3-Sep-03	0.486	0.033	0.519		29.839
10-Sep-03	0.366	0.026	0.392		30.231
17-Sep-03	0.56	0.041	0.601		30.832
24-Sep-03	0.563	0.058	0.621		31.453
1-Oct-03	0.748	0.041	0.789	September	32.242
8-Oct-03	0.731	0.043	0.774		33.016
15-Oct-03	0.768	0.028	0.796		33.812
22-Oct-03	0.205	0.072	0.277		34.089
29-Oct-03	0.031	0.001	0.032	October	34.121
5-Nov-03	0.266	0.037	0.303		34.424
12-Nov-03	0.235	0.011	0.246		34.67
19-Nov-03	0.183	0.049	0.232		34.902
25-Nov-03	0.18	0.006	0.186	November	35.088
3-Dec-03	0.222	0.041	0.263		35.351
10-Dec-03	0.22	0.009	0.229		35.58
17-Dec-03	0.188	0.026	0.214		35.794
23-Dec-03	0.133	0.005	0.138		35.932
30-Dec-03	0.163	0.023	0.186	December	36.118
	34.329	1,789	36,118	Total 2003	

Table 5. D-Site Tritium Stack Releases in Curies in 2003

Station	HTO pCi/m3	HT pCi/m3
T1	0.419- 14.1	0.419 - 16.9
T2	0.678 - 105	0.816 - 167
Т3	1.82 - 118	1.82 - 270
Τ4	0.122 - 22.8	0.122 - 42.1
R1	0.00172 - 3.30	0.0176 - 2.66
R2	0.0638 - 7.37	0.0899 - 12.8
R3	0.0554 - 6.67	0.0554- 8.05
R4	0.0834 - 11.4	0.0834 - 33.5
R5	0.0696- 14.3	0.0696 - 57.7
R6	0.259 - 13.3	0.423 - 18.4
BM1	0.3 - 3.03	0.3 - 7.97

Table 6. Ranges of Air Tritium Concentrations (in pCi/m3) Collected On-Site (T1-T4) and Off-Site (R1-R6 & BM1) in 2002

Table 7. Ranges of Air Tritium Concentrations (in pCi/m3) Collected On-Site (T1-T4) and Off-Site (R1-R6 & BM1) in 2003

Station	HTO pCi/m3 (Ci)	HT pCi/m3
T1	0.435 -9.76	0.454 - 7.22
T2	0.532 - 15.4	0.829 - 15.4
Т3	0.223 - 20.5	0.136 - 28.4
T4	0.224 - 10.6	0.224 - 15.9
R1	0.13 - 4.01	0.117 - 15.1
R2	0.0348 - 3.4	0.0492 - 3.03
R3	0.148 - 4.02	0.148 - 5.73
R4	0.296 - 4.55	0.296 - 6.33
R5	0.19 - 4.59	0.36 - 8.4
R6	0.0824 - 5.1	0.0985 - 3.19
BM1	0.166 - 1.4	0.305 - 1.77

Sample Location	Bee Brook (B1)	Bee Brook (B2)	PPPL Basin (DSN001)
January			110
February	279	270	877
March			225
April			2090
Мау	127	145	274
June			
July			
August			
September			336
October			291
November	<155	33	354
December			232

Table 8. Surface Water Tritium Concentrations for 2002(in picoCuries/Liter)

Sample Location	D&R Canal (C1)	D&R Canal (DSN003)	Potable Water (E1)
January		<130	
February	<343	<343	27
March		64	
April		20	
May	<81	14	
June		<203	
July		<131	
August			
September			
October		42	
November	<155	32	
December		<104	

Sample Location	Millstone River (M1)	Cranbury Brook (P1)	Devil's Brook (P2)
January			
February	<343	<343	14
March			
April			
May	40	36	35
June			
July			
August		170	165
September			
October			
November	20	<155	15
December			

BOLD indicates above the level of detection.

Sample Location	Bee Brook (B1)	Bee Brook (B2)	PPPL Basin (DSN001)
January			305
February	54	151	237
March			248
April			
Мау	23	86	159
June			265
July			179
August	32	32	186
September			451
October			117
November	50	149	257
December			

Table 9. Surface Water Tritium Concentrations for 2003(in picoCuries/Liter)

Sample Location	D&R Canal (C1)	D&R Canal (DSN003)	Potable Water (E1)
January		35	
February	25	62	59
March		<116	
April		<142	
Мау	13	49	<183
June		46	
July		<117	
August	<189	<222	<189
September		<222	
October			
November	14		<131
December			

Sample Location	Millstone River (M1)	Cranbury Brook (P1)	Devil's Brook (P2)
January			
February	40	62	71
March			
April			
Мау	<183	<183	<183
June			
July			
August	<189	<189	<189
September			
October			
November	<131	32	<131
December			

BOLD indicates above the level of detection.

Well No.	Well	Well	Well	Well	Well	Air Shaft	D-site
or	TW-1	TW-5	TW-8	MW-12S	D-12	Sump	MG
Sump Location							Sump
January	210	115	479			214	
February						180	
March						296	
April	297	321	105	167	40	311	229
Мау						350	273
June						<203	<203
July							
August						152	
September						277	
October						352	
November	159	161	144	145	98	355	
December	146	177	133	71	67	263	

Table10. Ground Water Tritium Concentrations for 2002 (in picoCuries/liter)

BOLD indicates highest concentrations above background levels.

Well No. or Sump Location	Well TW-1	Well TW-5	Well TW-8	Well MW-12S	Well D-12	Air Shaft Sump	D-site MG Sump
January						401	
February						176	
March						214	
April	489	479	487	26	<142		
Мау			397	<139	378	244	
June	501	439	435	9	<117	402	
July	499	364	337	44	18	212	
August	500	414	392	36	54	226	
September	374	189	221	<222	<222	225	
October	824	478	851	2225	1050	196	
November	275	50	158	<122	<112		
December	579	299	355	42	<113	81	

Table 11. Ground Water Tritium Concentrations for 2003 (in picoCuries/liter)

BOLD indicates highest concentrations above background levels.

250 feet from	R1E	R1W	R1S	R1N	R1ND
Stack	(East)	(West)	(South)	(North)	(Duplicate)
March 18	2291	1397	3024	1693	1490
April 29	398	1129	3921	673	457
May 22	1752	373	2071	308	311
July 22	1222	102	677	402	401
September 06	637	133	2306	125	128
October 16	412	283	1155	109	129
November 12	708	206	624	89	56

Table 12. Rain Water Tritium Concentrations (in picoCuries/liter) Collected On-Site in 2002

500 feet from Stack	R2E (East)	R2W (West)	R2S (South)	R2N (North)	R3N (Far field)
March 18	1369	1201	1590	1216	270
April 29	229	212	212	519	
May 22	120	319	758	239	
July 22	240	<131	<131	302	
September 06	304	238	1369	57	
October 16	179	783	644	403	
November 12	82	255	389		

BOLD indicates highest concentrations above background levels.

Table 13. Rain Water Tritium Concentrations (ir	picoCuries/liter) Collected Off-Site in 2002
---	--

	REAM 1	REAM 2	REAM 4	REAM 5	REAM 6	RW Baseline
January 14					27	
January 24	347	328		40	56	
March 14	101	168				
March 21		225	152	24		
April 30	86	48	43	48	113	
May 24		202	<203	45		
May 29					149	
June 11	<203					
June 12				<203		
September 10	64			72		
October 07			81	35		
October 17	59	<215	<215	<215	67	
November 14	82	28		72	153	

250 feet from	R1E	R1W	R1S	R1N	R1ND
Stack	(East)	(West)	(South)	(North)	(Duplicate)
March 18	980	24	968	70	5
May 01	334	470	379	203	103
June 02	860	437	502	259	265
June 23		564	127	241	368
July 22	1040	279	527	276	250
August 12	485		127	653	619
September 18	896	649	644	505	545
October 24	45	514	383	86	320
November 07	1104				
November 10		58	525	472	434
December 11	539	228	596	241	345
500 feet from	R2E	R2W	R2S	R2N	R3N
SIACK	(East)	(West)	(South)	(North)	(Far field)
March 18		243	555	93	270
May 01	68	310	378	23	
June 02		593	328	245	
June 23	144	632	282	88	
July 22	224	186		220	
August 12	96	93	83	711	
September 18	1126	996	568	194	
October 24	806	144	369	604	
November 07	329			487	
November 10		261	209		
December 11	137	3	120	138	

Table 14. Rain Water Tritium Concentrations (in picoCuries/liter)Collected On-Site in 2003

BOLD indicates highest concentrations above background levels.

					DEAME	DW/
			REAW 4			Baseline
March 18		<116		<116		
April 16				54	<142	
June 05				81	55	
June 09		41				
June 16	54			40		
June 23		26		12	50	
July 21				<117		
July 28				59		
August 06		34		<189	<189	
August 07	28					
August 13				<222		
September 05		<222	36	18	45	
September 24	23	<148		<148		
October 28			<131	<148	9	

Table 15. Rain Water Tritium Concentrations (in picoCuries/liter) Collected Off-Site in 2003

Table 16. Annual Range of Tritium Concentration at PPPL in Precipitationfrom 1985 to 2003

Year	Tritium Range picoCuries/Liter	Precipitation In Inches	Difference from Middlesex County Avg. Precipitation of 46.5 inches/yr
1985	40 to 160		
1986	40 to 140		
1987	26 to 144		
1988	34 to 105		
1989	7 to 90	55.4	+8.8
1990	14 to 94	50.3	+3.8
1991	10 to 154	45.1	-1.5
1992	10 to 838	41.9	-4.6
1993	25 to 145	42.7	-3.8
1994	32 to 1,130	51.3	+4.8
1995	<19 to 2,561	35.6	-10.9
1996	<100 to 21,140	61.0	+14.5
1997	131 to 61,660	42.0	-4.5
1998	<108 to 26,450	42.9	-3.6
1999	<58 to 7,817	47.3	+0.8
		(38.7 w/out Floyd)	(-7.8)
2000	<31 to 3,617	38.7	-7.8
2001	153 to 14,830	32.8	-13.7
2002	24 to 3,921	47.9	+1.4
2003	9 to 1,126	54.7	+8.2

Sample Date	Gallons Released	COD (mg/l)	Tritium Sample LLD (pCi/L)	Tritium Sample Activity (pCi/L)	Total Tank Activity (Ci)	Annual Cumulative Activity (Ci)	Gross Beta Sample LLD (pCi/L)	Gross Beta Sample Activity (pCi/L)
2/8/2002	12,750	65.4	226	83,900	0.00405	0.00405	195	<195
3/1/2002	10,500	30.1	236	44,100	0.00175	0.00580	194	<194
4/11/2002	12,150	22.8	227	58,000	0.00267	0.00847	194	<194
5/9/2002	12,450	7.2	195	329,000	0.01550	0.02400	194	1,120
6/10/2002	12,750	20.6	216	195,000	0.00941	0.03340	195	472
6/26/2002	12,750	51.4	192	204,000	0.00985	0.04330	194	472
7/5/2002	12,750	68.8	195	144,000	0.00695	0.05020	195	<195
7/22/2002	11,550	207.5	192	618,000	0.02700	0.07720	195	2,130
7/30/2002	10,800	63.8	211	1,540,000	0.06300	0.14000	194	6,080
8/5/2002	10,800	59.6	218	1,080,000	0.04400	0.18400	195	3,900
8/19/2002	12,150	52.4	185	1,280,000	0.05910	0.24300	195	2,300
8/26/2002	11,250	24.3	199	1,040,000	0.04440	0.28800	195	1,600
9/4/2002	12,300	35.0	195	1,460,000	0.06780	0.35600	194	5,080
9/19/2002	12,300	53.6	206	1,150,000	0.05370	0.40900	195	3,900
10/9/2002	12,750	63.9	209	650,000	0.03140	0.44100	194	1,240
10/28/2002	10,200	78.5	228	312,000	0.01200	0.45300	194	649
Total Gallons	190,200							

 Table 17. Liquid Effluent Collection Tank Release Data for 2002

Table 18. Liquid Effluent Collection Tank Release Data for 2003

Sample Date	Gallons Released	COD (mg/l)	Tritium Sample LLD (pCi/L)	Tritium Sample Activity (pCi/L)	Total Tank Activity (Ci)	Annual Cumulative Activity (Ci)	Gross Beta Sample LLD (pCi/L)	Gross Beta Sample Activity (pCi/L)		
1/22/2003	11,250	57.5	185	104,000	0.004440	0.00444	194	<194		
3/21/2003	14,850	31.6	199	36,800	0.002070	0.00650	195	<195		
4/9/2003	3,000	21.8	190	48,400	0.000549	0.00705	194	<194		
5/13/2003	10,350	2,551.6	188	54,700	0.002140	0.00920	195	<195		
5/13/2003	12,000	6.5	183	64,200	0.002920	0.01210	194	<194		
6/30/2003	12,000	18.5	180	48,600	0.002210	0.01430	195	<195		
7/11/2003	12,000	69.3	187	36,100	0.001640	0.01600	195	<195		
7/24/2003	12,000	21.4	181	31,800	0.001440	0.01740	194	<194		
8/1/2003	12,000	14.8	180	32,300	0.001470	0.01890	194	<194		
8/12/2003	12,000	51.4	193	30,700	0.001390	0.02030	194	<194		
8/15/2003	12,000	52.6	182	29,900	0.001360	0.02160	194	<194		
8/21/2003	12,000	0.0	196	29,100	0.001320	0.02290	195	<195		
9/3/2003	12,000	18.8	191	18,400	0.000836	0.02380	195	<195		
9/9/2003	12,000	6.0	217	17,200	0.000783	0.02460	195	<195		
9/23/2003	12,000	3.5	205	14,000	0.000635	0.02520	195	<195		
10/16/2003	12,000	8.3	202	69,600	0.003160	0.02840	195	<195		
11/19/2003	12,000	-	178	53,000	0.002410	0.03080	195	<195		
11/21/2003	12,000	168.7	193	17,200	0.000781	0.03150	195	<195		
12/2/2003	9,870	28.6	199	7,030	0.000263	0.03180	195	<195		
Total Gallons	217,320									
Table	19	Surface	Water	Analysis	for	Ree	Brook	R1	in	2002
-------	-----	---------	-------	-----------------	-----	-----	--------	----	----	------
lane	17.	Junace	water	Allalysis	101	рее	DIOOK,	Ы,		2002

Sample Date	2/6/02	5/3/02	8/7/02	11/6/02*
Ammonia nitrogen as N, mg/L		<0.10		
Chemical Oxygen Demand, mg/L	<5.0	14.354	<5.0	9.49
Oxidation-Reduction Potential, mV	-28	76	11	53
pH, standard units	6.75	5.63	6.90	6.10
Phosphorus, total, mg/L	0.334	< 0.0500	0.199	0.096
Temperature, °C	2.90	13.6	18.8	7.7
Total Suspended Solids, mg/L	58.00	22.00	3.00	2.00
Total Organic Carbon			6.24	

Location B1 = Bee Brook upsteam of PPPL basin discharge See Exhibit 4-3 for location.

Table 20. Surface Water Analysis for Bee Brook, B2, in 20)02
---	-----

Sample Date	2/6/02	5/3/02	8/7/02	11/6/02*
Ammonia nitrogen as N, mg/L		<0.10		
Chemical Oxygen Demand, mg/L	<5.0	5.32	5.214	10.443
Oxidation-Reduction Potential, mV	-28	50	76	44
pH, standard units	7.53	6.10	8.44	6.25
Phosphorus, total, mg/L	0.267	0.074	0.321	0.079
Temperature, ° C	6.70	19.4	19.7	8.6
Total Suspended Solids, mg/L	5.00	3.00	8.00	3.00
Total Organic Carbon			3.32	

Location B2 = Bee Brook downstream of PPPL basin discharge

١

Table 21. Surface Water Analysis for Delaware & Raritan Canal, C1, in 2002

Sample Date	2/6/02	5/3/02	8/7/02	11/6/02
Ammonia nitrogen as N, mg/L		0.150		
Chemical Oxygen Demand, mg/L	<5.00	<5.00	<5.00	
Oxidation-Reduction Potential, mV	29	29	-9	7.0
pH, standard units	6.49	6.67	7.23	6.92
Phosphorus, total, mg/L	0.082	0.083	0.119	0.070 0.062
Temperature, ° C	4.80	16.0	27.8	7.4
Total Suspended Solids, mg/L	5.00	4.00	3.00	2.00 <2.00
Total Organic Carbon			3.69	
Chlorine Produced Oxidants		0.23		

Location C1 = Delaware & Raritan Canal State Park at Mapleton Avenue, Plainsboro midway on pedestrian bridge See Exhibit 4-3 for location.

Sample Date	2/6/02	5/3/02	8/7/02	11/6/02*
Ammonia nitrogen as N, mg/L		0.360		
Chemical Oxygen Demand, mg/L	<5.00	27.766	<5.00	<5.00
Oxidation-Reduction Potential, mV	38		15	32
pH, standard units	6.42	6.69	6.81	6.45
Phosphorus, total, mg/L	0.091	0.133	0.174	1.60
Temperature, ° C	4.80	28.1	23.9	8.30
Total Suspended Solids, mg/L	6.00	9.00	7.00	76.00
Total Organic Carbon			6.91	

Table 22. Surface Water Analysis for Millstone River, M1, in 2002

Location M1 = Millstone River at Delaware & Raritan Canal State Park at Mapleton Road, mid-span on bridge across Millstone River

See Exhibit 4-3 for location.

Table 23. Surface Water Analysis for Elizabethtown Water, E1, in 2002

Sample Date	2/6/02	5/3/02	8/7/02	11/6/02*
Ammonia nitrogen as N, mg/L		NS		
Chemical Oxygen Demand, mg/L	14.0			<0.50
Oxidation-Reduction Potential, mV	25		-60	35
pH, standard units	6.89		6.96	6.51
Phosphorus, total, mg/L	< 0.050		0.195	0.192
Total Suspended Solids, mg/L	<2.00		<2.00	3.00
Total Organic Carbon			2.55	

Location E1 = Elizabethtown Water (potable) collected at Main Gate Security Booth NS = Not sampled

Table 24. Surface Water Analysis for Cranbury Brook (Plainsboro), P1, in 2002

Sample Date	2/6/02	5/3/02	8/7/02	11/6/02*
Ammonia nitrogen as N, mg/L		<0.10		
Chemical Oxygen Demand, mg/L	<5.00	<5.00	<5.00	22.129
Oxidation-Reduction Potential, mV	67	26	63	53
pH, standard units	5.68	6.66	5.98	6.08
Phosphorus, total, mg/L	0.091	0.074	0.165	0.070
Temperature	4.6	17.7	25.8	7.8
Total Suspended Solids, mg/L	7.0	10.0	7.00	9.00
Total Organic Carbon			8.23	

Location P1 = Cranbury Brook at George Davison Road, Plainsboro mid-span on bridge southbound

Table 25. Surface Water Analysis for Devil's Brook (Plainsboro), P2, in 2002

Sample Date	2/6/02	5/3/02	8/7/02	11/6/02*
Ammonia nitrogen as N, mg/L		<0.10		
Chemical Oxygen Demand, mg/L	<5.00	7.827	<5.00	18.350
Oxidation-Reduction Potential, mV	80	44	73	64
pH, standard units	5.510	6.34	5.79	5.89
Phosphorus, total, mg/L	< 0.050	< 0.050	0.111	< 0.0500
Temperature, ° C	3.7	16.6	22.7	8.10
Total Suspended Solids, mg/L	2.0	3.0	9.0	<2.00
Total Organic Carbon			7.82	

Location P2 = Devil's Brook at Schalks Road overpass, adjacent to Amtrak railroad tracks

Permit Limit	Units	Parameters	1/3/02	2/6/02	3/6/02	4/4/02	5/3/02	6/10/02
NIA	mall	Ammonia N					0.0010	
50 mg/L	mg/L	Chemical Oxygen	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
NL	mg/L	Chlorine Produced Oxidants	0.18	0.21	0.16	0.22	0.23	0.11
100	percer	Chronic Toxicity Test nt NOEC (% effluent)) <i>Pimephales</i> promelas						
NA	mgd	Flow	0.0518	0.0226	0.0713	0.0758	0.1321	0.1135
NA	mV	Oxidation-Reduction Potential	-41	-38	-33	-48	5	-43
10 mg/L	mg/L	Petroleum Hydrocarbons	0.78	<0.500	<0.500	<0.500	<0.500	<0.500
6.0-9.0	S.U.	pH	7.85	7.81	7.71	7.96	6.94	8.20
	mg/L	Phosphorus, Total		0.334			0.091	
	µg/L	Tetrachloroethylene		<0.700			0.74J	
30 ∘ C max.	۰C	Temperature	5.9	9.3	8.1	14.3	16.2	21.2
NA	mg/L	Total Dissolved Solids						
50 mg/L	mg/L	. Total Suspended Solids	<2.00	<2.00	<2.00	<2.00	13.00	4.00
			-	-		<u> </u>		
Permit	Unite	Deremetere	7/10/00	0/7/00	0/4/02	10/0/0	0 11/4/0	
LITTIC	UTIILS	Parameters	//10/02	8/1/02	9/4/UZ	10/0/0	2 11/0/0	02 12/4/
	UTIIIS	Parameters	//10/02	8/1/02	9/4/02	10/6/0	2 11/0/0)2 12/4/
NA	mg/L	Ammonia-N	//10/02	8/1/02	9/4/02	10/ 8/ 0	2 11/0/0)2 12/4/
NA 50 mg/L	mg/L mg/L	Ammonia-N Chemical Oxygen	<5.00	36.9	<5.00	<5.00	<5.00) 11.C
NA 50 mg/L	mg/L mg/L	Ammonia-N Chemical Oxygen Demand	<5.00	36.9	<5.00	<5.00	<5.00) 11.0
NA 50 mg/L 0.016	mg/L mg/L mg/L	Ammonia-N Chemical Oxygen Demand Chlorine Produced	<5.00 <0.1	36.9 0.17	<5.00 <0.1	<5.00	<5.00) <u>2 12/4/</u>) 11.C <0.1
NA 50 mg/L 0.016	mg/L mg/L mg/L	Ammonia-N Chemical Oxygen Demand Chlorine Produced Oxidants	<5.00 <0.1	36.9 0.17 0.11	<5.00 <0.1	<5.00 <0.1	<5.00) 11.C <0.1
NA 50 mg/L 0.016 100	mg/L mg/L mg/L	Ammonia-N Chemical Oxygen Demand Chlorine Produced Oxidants Chronic Toxicity Test NOEC (% effluent) Pimenhales, prometas	<5.00 <0.1	36.9 0.17 0.11	<5.00 <0.1 >100	<5.00 <0.1	<5.00) 11.C <0.1
NA 50 mg/L 0.016 100	mg/L mg/L mg/L perce nt	Ammonia-N Chemical Oxygen Demand Chlorine Produced Oxidants Chronic Toxicity Test NOEC (% effluent) <i>Pimephales promelas</i>	<5.00 <0.1	36.9 0.17 0.11	<5.00 <0.1 >100	<5.00	<5.00) 11.0 <0.1
NA 50 mg/L 0.016 100 NA NL	mg/L mg/L mg/L perce nt mgd mV	Ammonia-N Chemical Oxygen Demand Chlorine Produced Oxidants Chronic Toxicity Test NOEC (% effluent) <i>Pimephales promelas</i> Flow Oxidation-Reduction Potential	<5.00 <0.1 0.0885	36.9 0.17 0.11 0.1320 -105	<5.00 <0.1 >100 0.1279	<5.00 <0.1 0.1390 -55	 <5.00 <0.1 0.1112 78) 11.C <0.1 2 0.094 -42
NA 50 mg/L 0.016 100 NA NL 10 mg/L	mg/L mg/L mg/L perce nt mgd mV mg/L	Ammonia-N Chemical Oxygen Demand Chlorine Produced Oxidants Chronic Toxicity Test NOEC (% effluent) <i>Pimephales promelas</i> Flow Oxidation-Reduction Potential Petroleum Hydrocarbons	<5.00 <0.1 0.0885 <0.500	36.9 0.17 0.11 0.1320 -105 <0.500 <0.500	<5.00 <0.1 >100 0.1279 <0.500	<5.00 <0.1 0.1390 -55 <0.500	 <5.00 <0.1 0.1112 78 0.84) 11.C <0.1 2 0.094 -42 0.91
NA 50 mg/L 0.016 100 NA NL 10 mg/L 6.0-9.0	mg/L mg/L mg/L perce nt mgd mV mg/L	Ammonia-N Chemical Oxygen Demand Chlorine Produced Oxidants Chronic Toxicity Test NOEC (% effluent) <i>Pimephales promelas</i> Flow Oxidation-Reduction Potential Petroleum Hydrocarbons pH	<5.00 <0.1 0.0885 <0.500 8.39	36.9 0.17 0.11 0.1320 -105 <0.500 <0.500 8.95	<5.00 <0.1 >100 0.1279 <0.500 &11	<5.00 <0.1 0.1390 -55 <0.500 8.03	 <5.00 <0.1 0.1112 78 0.84 7.34 	2 12/4/ 11.0 <0.1 2 0.094 -42 0.91 7.78
NA 50 mg/L 0.016 100 NA NL 10 mg/L 6.0-9.0	mg/L mg/L mg/L perce nt mgd mV mg/L S.U. mg/L	Ammonia-N Chemical Oxygen Demand Chlorine Produced Oxidants Chronic Toxicity Test NOEC (% effluent) <i>Pimephales promelas</i> Flow Oxidation-Reduction Potential Petroleum Hydrocarbons pH Phosphorus, Total	<5.00 <0.1 0.0885 <0.500 8.39	36.9 0.17 0.11 0.1320 -105 <0.500 <0.500 8.95 0.241 0.262	<5.00 <0.1 >100 0.1279 <0.500 8.11	<5.00 <0.1 0.1390 -55 <0.500 8.03	 <5.00 <0.1 0.1112 78 0.84 7.34 0.105) 11.0 <0.1 2 0.094 -42 0.91 7.78
NA 50 mg/L 0.016 100 NA NL 10 mg/L 6.0-9.0	mg/L mg/L mg/L perce nt mgd mV mg/L S.U. mg/L µg/L	Ammonia-N Chemical Oxygen Demand Chlorine Produced Oxidants Chronic Toxicity Test NOEC (% effluent) <i>Pimephales promelas</i> Flow Oxidation-Reduction Potential Petroleum Hydrocarbons pH Phosphorus, Total Tetrachloroethylene	<5.00 <0.1 0.0885 <0.500 8.39	36.9 0.17 0.11 0.1320 -105 <0.500 <0.500 <0.500 8.95 0.241 0.262 <0.600 <0.600	<5.00 <0.1 >100 0.1279 <0.500 8.11	<5.00 <0.1 0.1390 -55 <0.500 8.03	 <5.00 <0.1 0.1112 78 0.84 7.34 0.105 <0.600 	2 12/4/ 11.0 <0.1 2 0.09 ² -42 0.91 7.78 5 0
NA 50 mg/L 0.016 100 NA NL 10 mg/L 6.0-9.0 30 ∘ C mgx.	mg/L mg/L mg/L perce nt mgd mV mg/L S.U. mg/L yg/L o C	Ammonia-N Chemical Oxygen Demand Chlorine Produced Oxidants Chronic Toxicity Test NOEC (% effluent) <i>Pimephales promelas</i> Flow Oxidation-Reduction Potential Petroleum Hydrocarbons pH Phosphorus, Total Tetrachloroethylene	<5.00 <0.1 0.0885 <0.500 8.39 24.2	36.9 0.17 0.11 0.1320 -105 <0.500 <0.500 <0.500 8.95 0.241 0.262 <0.600 <0.600 21.6	<5.00 <0.1 >100 0.1279 <0.500 8.11 23.5	<5.00 <0.1 0.1390 -55 <0.500 8.03	 <5.00 <0.1 <0.1112 78 0.84 7.34 0.105 <0.600 11.4 	2 12/4/ 11.0 <0.1 2 0.09 ² -42 0.91 7.78 5 0 5.9
NA 50 mg/L 0.016 100 NA NL 10 mg/L 6.0-9.0 30 ∘ C max. NA	mg/L mg/L mg/L mg/L perce nt mg/L mg/L S.U. mg/L µg/L o C mg/L	Ammonia-N Chemical Oxygen Demand Chlorine Produced Oxidants Chronic Toxicity Test NOEC (% effluent) <i>Pimephales promelas</i> Flow Oxidation-Reduction Potential Petroleum Hydrocarbons pH Phosphorus, Total Tetrachloroethylene Temperature	<pre><5.00 <0.1 0.0885 <0.500 8.39 24.2</pre>	36.9 0.17 0.11 0.1320 -105 <0.500 <0.500 <0.500 8.95 0.241 0.262 <0.600 <0.600 21.6 3.27 4.47	<5.00 <0.1 >100 0.1279 <0.500 8.11 23.5	<5.00 <0.1 0.1390 -55 <0.500 8.03	 <5.00 <0.1112 78 0.84 7.34 0.105 <0.600 11.4 1.7 	2 12/4/ 11.0 <0.1 2 0.092 -42 0.91 7.78 5 0 5.9

Table 26. DSN001 - Detention Basin Outfall 2002 Surface Water Analysis (NJPDES NJ0023922)

Blank indicates no measurement

NA = not applicable

NL = no limit

* Low flow due to 1) new flow meter installed that measures fulltime, and 2) little precipitation fell in December 2000.

Permit Monthly Avg.	Limit Daily Max.	Units	Parameters	1/3/02	2/6/02	3/6/02	4/4/02	5/3/02	6/10/02
NA	NA	mg/L	Ammonia-N					0.160	
NA	NA	mg/L	Chemical Oxygen Demand		<5.00			<5.00	
NL	NL	mg/L	Chlorine Produced Oxidants	0.11	0.14	0.17	0.27	0.26 0.16	<0.1
			Oxidation-	3	18	9	26	45	31
NL	NL	mV	Reduction Potential						
10 mg/L	15 mg/L	mg/L	Petroleum Hydrocarbons	<0.500	3.10	<0.500	<0.500	<0.500	<0.500
NA	6.0-9.0	S.U.	рН	7.01	6.71	6.88	6.53	6.33	6.51
NA		mg/L	Phosphorus, Total		0.317			0.125	
NA	NA	٥C	Temperature	1.70	3.80	7.20	14.4	16.4	26.6
NA	NA	mg/L	Total Organic Carbon						
20 mg/L	60 mg/L	mg/L	Total Suspended Solids		23.0			4.00	

Table 27. D&R Canal Pump House - DSN003 2002 Monthly Surface Water Analysis (NJPDES NJ0023922)

Permit Monthly Avg.	Limit Daily Max.	Units	Parameters	7/15/02	8/7/02	9/4/02	10/8/02	11/6/02	12/4/02
NA	NA	mg/L	Ammonia-N						
NA	NA	mg/L	Chemical Oxygen Demand		<5.00			<5.00	
NL	NL	mg/L	Chlorine Produced Oxidants	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
			Oxidation-					13	27
NL	NL	mV	Reduction Potential		-6	9		14	
10 mg/L	15 mg/L	mg/L	Petroleum Hydrocarbons	0.510	<0.500	0.690	<0.500	1.60	<0.5
NA	6.0-9.0	S.U.	pH	7.02	7.18	6.85	7.05	6.77	6.64
NA	NA	mg/L	Phosphorus, Total		0.132			0.062	
NA	NA	° C	Temperature	27.1	28.2	23.7	18.7	6.8	0.3
NA	NA	mg/L	Total Organic Carbon		3.90				
NL	NL	mg/L	Total Suspended Solids		5.00			2.00	

Flow = 250 gallons per minute X 2 minutes per cycle X 10 cycles per day = 5,000 gallons per day * Permit changed from monthly to quarterly monitoring and no limit for Total suspended solids Blank indicates no measurement NA = not applicable

NL = no limit

Table 28. Surface Water Analysis for Bee Brook, B1, in 2003

Sample Date	2/6/03	5/8/03	8/8/03	11/7/03 11/24/03*	12/11/03
Ammonia nitrogen as N, mg/L		0.240		<0.010	
Biochemical Oxygen Demand, 5- day total, mg/L			<2.60	<3.10	
Chemical Oxygen Demand, mg/L	<5.0	32.819	25.031	65.649 32.418	35.3 46
Oxidation-Reduction Potential, mV	35	53	29	68	
pH, standard units	6.38	6.14	6.54	5.88	
Phosphorus, total, mg/L	<0.050	0.054	0.085	0.116	
Temperature, °C	-0.6	14.4	21.1	14.6	
Total Dissolved Solids, mg/L				120	
Total Suspended Solids, mg/L	<2.00	8.00	3.00	4.00	
Total Organic Carbon, mg/L				32.3	10.6, 13

Location B1 = Bee Brook upsteam of PPPL basin discharge See Exhibit 4-3 for location.

Table 29. Surface Water Ana	lysis for Bee Brook, B2, in 2003
-----------------------------	----------------------------------

Sample Date	2/6/03	5/8/03	8/8/03	11/7/03/	12/11/03
				11/24/03*	
Ammonia nitrogen as N, mg/L		0.230		<0.100	
Biochemical Oxygen Demand, 5- day total, mg/L				<3.10	
Chemical Oxygen Demand, mg/L	<5.0	85.959	18.363	79.801	38.4
				32.731	31
Oxidation-Reduction Potential, mV	-1	29	7	42	
pH, standard units	7.06	6.57	6.954	6.31	
Phosphorus, total, mg/L	<0.050	<0.050	0.085	0.074	
Temperature, °C	2.8	15.1	21.2	15.0	
Total Dissolved Solids, mg/L				157	
Total Suspended Solids, mg/L	4.00	9.00	6.00	6.00	
Total Organic Carbon, mg/L				22.2	10.3, 11

Location B2 = Bee Brook downstream of PPPL basin discharge

Table30. Surface Water Analysis for Delaware & Raritan Canal, C1, in 2003

Sample Date	2/6/03	5/8/03	8/7/03	8/27/03	11/7/03
· · · · · · · · · · · · · · · · · · ·		5/20/03	8/11/03		
Ammonia nitrogen as N, mg/L		<0.100			<0.100
BOD-5-Day, total, mg/L					<3.10
Chemical Oxygen Demand, mg/L	<5.00	<5.00	<5.00		35.498
Oxidation-Reduction Potential,	17	26	20	12	7.0
mV		25, 12	35		
pH, standard units	6.74	6.62	6.77	6.85	6.92
		6.98, 6.99	6.61		
Phosphorus, total, mg/L	<0.050	< 0.050	0.076		0.099
			0.119		
Temperature, ° C	0.4	16.0	24.9	26.30	16.6
		17.8	25		
Total Dissolved Solids, mg/L					123
Total Suspended Solids, mg/L	<2.00	5.00	9.00	6.00	10.8
		7.00	10.0		
Total Organic Carbon, mg/L				3.28	10.9
Chlorine Produced Oxidants			<0.1		

Location C1 = Delaware & Raritan Canal State Park at Mapleton Avenue, Plainsboro midway on pedestrian bridge See Exhibit 4-3 for location.

Table 31. Surface Water Analysis for Millstone River, M1	, in 2003
--	-----------

Sample Date	2/6/03	5/8/03	8/7/03	11/7/03*
Ammonia nitrogen as N, mg/L		0.420		<0.100
BOD 5-day total, mg/L				<3.10
Chemical Oxygen Demand, mg/L	<5.00	<5.00	69.156	29.905
Oxidation-Reduction Potential, mV	52	44	46	48
pH, standard units	6.04	6.36	6.32	6.20
Phosphorus, total, mg/L	0.0641	0.071	0.118	0.132
Temperature, °C	1.9	167	24.2	15.6
Total Dissolved Solids, mg/L				114
Total Suspended Solids, mg/L	7.00	9.00	75.00	12.00
Total Organic Carbon, mg/L				15.0

Location M1 = Millstone River at Delaware & Raritan Canal State Park at Mapleton Road, mid-span on bridge across Millstone River See Exhibit 4-3 for location.

Table 32. Surface Water Analysis for Elizabethtown Water, E1, in 2003

Sample Date	2/6/03	5/8/03	8/8/03	11/7/03*
Ammonia nitrogen as N, mg/L		0.200		<0.100
BOD- 5-day total, mg/L				<3.10
Chemical Oxygen Demand, mg/L	<5.00.0	<5.00	<5.00	12.013
Oxidation-Reduction Potential, mV	52	36	-3	3
pH, standard units	6.22	6.39	7.07	7.01
Phosphorus, total, mg/L	0.080	0.113	0.076	0.149
Total Dissolved Solids, mg/L, mg/L				240
Total Suspended Solids, mg/L	<2.00	<2.00	<2.00	<2.00
Total Organic Carbon, mg/L				2.24

Location E1 = Elizabethtown Water (potable) collected at Main Gate Security Booth

Table 33. Surface Water Analysis for Cranbury Brook (Plainsboro), P1, in 2003

Sample Date	2/6/03	5/8/03	8/7/03	11/7/03*
Ammonia nitrogen as N, mg/L		0.250		<0.100
BOD 5-day total, mg/L				<3.10
Chemical Oxygen Demand, mg/L	<5.00	<5.00	19.949	18.170
Oxidation-Reduction Potential, mV	1	38	60	72
pH, standard units	6.30	5.90	6.06	5.81
Phosphorus, total, mg/L	<0.050	0.054	0.052	0.140
Temperature	1.3	18.5	24.2	15.4
Total Dissolved Solids, mg/L				111
Total Suspended Solids, mg/L	11.00	15.0	5.00	14.5
Total Oraanic Carbon, ma/L				9.00

Location P1 = Cranbury Brook at George Davison Road, Plainsboro mid-span on bridge southbound

Table 34. Surface Water Analysis for Devil's Brook (Plainsboro), P2, in 2003

Sample Date	2/6/03	5/8/03	8/7/03	11/7/03*
Ammonia nitrogen as N, mg/L		0.150		<0.100
BOD-5 day, total, mg/L				<3.10
Chemical Oxygen Demand, mg/L	10.892	<5.00	55.552	43.493
Oxidation-Reduction Potential, mV	74	67	74	74
pH, standard units	5.61	5.90	5.83	5.71
Phosphorus, total, mg/L	<0.050	<0.050	0.101	<0.0500
Temperature, ° C	1.3	16.1	22.0	14.4
Total Dissolved Solids, mg/L				108
Total Suspended Solids, mg/L	7.00	4.00	12.0	7.00
Total Organic Carbon, mg/L				22.8

Location P2 = Devil's Brook at Schalks Road overpass, adjacent to Amtrak railroad tracks BOD-5-day, total is Biochemical Oxygen Demand, 5-day test

Table 35. Table 22. DSN001 - Detention Basin Outfall 2003 Surface Water Analysis (NJPDES NJ0023922)

Permit								
Limit	Units	Parameters	1/7/03	2/6/03	3/5/03	4/2/03	5/8/03	6/6/03
		Oxidation-Reduction			25	-7	2	
NL	mV	Potential	35	-29	19	-6		
NA	mg/L	Ammonia-N					0.240	
NA	mg/L	BOD-5-day, total						
50 mg/L	mg/L	Chemical Oxygen Demand	<5.00	<5.00	<5.00	<5.00	<5.00	126.611 32.036
0.016	mg/L	Chlorine Produced Oxidants	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
>100	percent	Chronic Toxicity Test NOEC (% effluent)) <i>Pimephales</i> <i>promelas</i>						
NA	mgd	Flow Monthly Avg.	0.077	0.099	0.188	0.146	0.151	0.345
10 mg/L	mg/L	Petroleum Hydrocarbons	<0.500	<0.500	0.650	1.20	<0.500	1.40
6.0-9.0	S.U.	рН	7.24	7.60	6.56	7.18	7.04	6.88
	mg/L	Phosphorus, Total		0.0560			0.088	
	µg/L	Tetrachloroethylene		1.16			<0.800	
30 ° C max.	۰C	Temperature	9.0	6.9	10.55	14.5	17.3	16.9
NA	mg/L	Total Dissolved Solids						
50 mg/L	mg/L	Total Suspended Solids	<2.00	3.00	21.00	3.00	12.0	3.00

Permit Limit								
	Units	Parameters	7/1/03	8/1/03 8/27/03	9/4/03	10/6/03	11/7/03	12/11/03
NL	mV	Oxidation-Reduction Potential	-33	-61,-61 -55, -56	-29, -29	-31	2	35
NA	mg/L	Ammonia-N					<0.100	
NA	mg/L	BOD-5-day, total					<2.30	
50 mg/L	mg/L	Chemical Oxygen Demand	<10,15.04 73.308 <21.130	14.242	<5.00	6.061	118.33 48.63 58.421 15.752	37.893
0.016	mg/L	Chlorine Produced Oxidants	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
>100	perce nt	Chronic Toxicity Test NOEC (% effluent) <i>Pimephales</i> promelas				>100		
NA	mgd	Flow Monthly Avg.	0.192	0.201	0.161	0.148	0.153	0.205
10 mg/L	mg/L	Petroleum Hydrocarbons	0.570	<0.500	<0.500	<0.500	<0.500	0.76
6.0-9.0	S.U.	рН	7.61	8.16 8.36	7.57	7.58	7.02	6.39 6.42
	mg/L	Phosphorus, Total		0.06			0.058	
	µg/L	Tetrachloroethylene		0.4			0.58J	
30 ∘C max.	۰C	Temperature	19.8	21.7 21.9	21.7	19.2	17.3	13.2
NA	mg/L	Total Organic Carbon		2.34			2.26	5.09 6
	mg/L	Total Dissolved Solids					234	
50 mg/L	mg/L	Total Suspended Solids	<2.00	3.00	8 00	2.00	3.20	24.0 24.0

Blank indicates no measurement

NA = not applicable

NL = no limit

* Average concentration for Nov. 2003 COD 11/7 (118.33); 11/11 (48.63); 11/19 (58.421); 11/20 (15.75.2); and 11/21 (22.002) (mg/L).

J = Present yet below the method detection limit.

Table 36. DSN003 D&R Canal Pump House - 2003 Monthly Surface Water Analysis (NJPDES NJ0023922)

Permit	Limit								
Monthly	Daily	Units	Parameters	1/3/03	2/6/03	3/5/03	4/2/03	5/20/03	6/6/03
Avg.	Max.								
			Oxidation-				30	25	42
NL	mV		Reduction Potential	35	13	43	30	12	
NA	NA	mg/L	Ammonia-N					<0.100	
NA	NA	mg/L	Biochemical Oxygen Demand						
NA	NA	mg/L	Chemical Oxygen Demand		<5.00			<5.00	
0.016	NL	mg/L	Chlorine Produced Oxidants	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10 mg/L	15 mg/L	mg/L	Petroleum Hydrocarbons	<0.500	3.10	0.590	0.890	<0.500	<0.500
NA	6.0-9.0	S.U.	рН	6.40	6.82	6.12	6.45 6.53	6.91	6.33
NA		mg/L	Phosphorus, total		<0.050			0.071	
NA	NA	٥C	Temperature	2.1	0.2		12.1	16.4	18.0
NA	NA	mg/L	Total Dissolved Solids						
20 mg/L	60 mg/L	mg/L	Total Suspended Solids		<2.00			6.00	

Permit Monthly Avg.	Limit Daily Max.	Units	Parameters	7/7/03	8/11/03 8/27/03	9/4/03	10/03	11/03	12/23/03
NL		mV	Oxidation- Reduction Potential	-2	-10, -19 -3, -3	-5, -5			20
NA	NA	mg/L	Ammonia-N						
NA	NA	mg/L	Biochemical Oxygen Demand						
NA	NA	mg/L	Chemical Oxygen Demand		<5.00				<10
0.016	NL	mg/L	Chlorine-Produced Oxidants	<0.1	<0.1 <0.1	<0.1	NODI	NODI	<0.1
10 mg/L	15 mg/L	mg/L	Petroleum Hydrocarbons	<0.500	<0.500 <0.500	<0.500	NODI	NODI	<0.500
NA	6.0-9.0	S.U.	рН	7.00	7.34 7.14	7.15	NODI	NODI	6.50 6.84
NA	NA	mg/L	Phosphorus, total		0.932				
NA	NA	° C	Temperature	21.4	21.4 24.9	21.7	NODI	NODI	3.8
NA	NA	mg/L	Total organic carbon		3.41				4.82
NL	NL	mg/L	Total Suspended Solids		17.0 8.00				

*Flow = 250 gallons per minute X 2 minutes per cycle X 10 cycles per day = 5,000 gallons per day * Permit changed from monthly to quarterly monitoring and no limit for Total suspended solids Blank indicates no measurement*

NA = not applicable

NL = no limit

NODI = No discharge

				c-1,2-DCE	1,1-DCE	1,1,1-TCA
Location	Date		(ug/L)			
NJ GWQS		1.0	1.0	70.0	2.0	30.0
MW-13I	4/25/2002	34 1	< 0.8	< 1.0	< 0.8	1 82 J
	7/29/2002	38.2	0.52 J	< 0.6	0.76 J	2.96 J
	11/21/2002	23.7	< 0.4	< 0.4	< 0.4	1.58 J
MW-13S	4/24/2002	50.9	1.41 J	< 0.8	< 0.8	1.75 J
	7/29/2002	51.4	1.57 J	4.5 NJ	<0.4	1.72 J
	11/21/2002	36.4	1.72 J	6.32 NJ	< 0.4	0.95 J
MW-18	4/24/2002	< 0.7	< 0.8	< 0.8	< 0.8	< 0.8
	7/30/2002	0.62 J	0.5 J	< 0.8	< 0.8	< 0.8
	11/21/2002	0.76 J	0.59 J	< 0.6	< 0.7	< 0.5
MW-19I	4/25/2002	< 0.7	< 0.8	< 0.8	< 0.8	< 0.8
	7/30/2002	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
	11/20/2002	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
	11/20/2002		1 010			
MW-19S	4/25/2002	151	8.64 J	41.1	< 1.6	< 1.6
	7/30/2002	135	9.75	27.8	< 0.8	< 0.8
	11/20/2002	214	12.8	61.2	< 0.7	0.55 J
MW-22S	4/25/2002	< 0.7	< 0.8	< 0.8	< 0.8	< 0.8
	7/30/2002	< 0.8	< 0.8	< 0.8	< 0.8	0.68 J
	11/20/2002	< 0.6	0.25	< 0.6	< 0.7	0.84 J
MW-23S	4/25/2002	< 0.7	< 0.8	< 0.8	< 0.8	< 0.8
	7/30/2002	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
	11/20/2002	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
MW-24S	4/25/2002	< 0.6	<0.5	<0.5	< 0.4	< 0.7
	7/30/2002	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
	11/20/2002	< 0.6	< 0.6	< 0.6	< 0.6	< 0.7
MW-25	4/24/2002	0.86.1	<0.5	3.86 N.I	< 0.7	<0.8
1111-25	7/30/2002	0.62.1	<0.5	3 37 N.I	< 0.8	< 0.8
	11/21/2002	0.90 J	< 0.6	4 21	< 0.6	< 0.0
	11/21/2002	0.000	1010			
D-Site MG	4/24/2002	84.3	6.19	3.23 NJ	2.19 J	1.53 J
Building Sump	7/29/2002	88.6	6.31	3.61 NJ	2.01 J	1.36 J
	11/21/2002	75.8	5.39	5.24 NJ	1.80 J	1.45 J
		- ·- ·				
D-site Air Shaft	4/25/2002	2.17 J	< 0.8	< 0.8	< 0.8	< 0.8
Building Sump	7/29/2002	2.88 J	< 0.8	< 0.8	< 0.8	< 0.8
	11/21/2002	3.23 J	<0.4	<0.4	<0.4	<0.4

Table 37. Summary of Ground Water Sampling Results - 2002Target Chlorinated volatile Organic Compounds

Notes:

"J" indicates a value that is greater than the MDL but lower than the lowest standard.

"N" indicates presumptive evidence of a compound.

PCE – Tetrachloroethene TCE – Trichloroethene

PRINCETON PLASMA PHYSICS LABORATORY 101

Lesstian	Data			c-1,2-DCE	1,1-DCE	1,1,1-TCA
Location	Date		(<i>u</i> g/L)		(ug/L)	
NJ GWQS		1.0	1.0	70.0	2.0	30.0
MW-13I	3/26/2003	16	1.41	< 0.8	< 0.6	1.16
	6/17/2003	13.7	< 0.8	< 0.6	< 0.6	0.89 J
	10/20/2003	38.7	3.42	3.04 NJ	<1.2	2.9
MW-13S	3/26/2003	64.2	2.19	4.47 NJ	1.03	1.97
	6/17/2003	80.1	6.85	5.59 NJ	0.85 J	2.15
	10/20/2003	75.5	315	10.4 NJ	<1.2	1.68
MW-18	3/26/2003	0.82 J	< 0.8	< 0.8	< 0.6	< 0.7
	6/17/2003	< 0.8	< 0.8	< 0.7	< 0.6	< 0.7
	10/20/2003	0.74 J	0.54 J	< 0.7	< 1.2	< 0.7
MNA/ 401	2/25/2002	< 0.9	- 0.0	- 0 7	< 0.6	< 0.7
10100-191	3/25/2003	< 0.8	< 0.8	< 0.7	< 0.6	< 0.7
	0/17/2003	< 0.0	< 0.0	< 0.7	< 0.0	< 0.7
	10/21/2003	< 0.4	< 0.5	< 1.0	< 1.2	< 0.9
MW-19S	3/25/2003	125	6.6	18.3 NJ	< 0.6	< 0.7
	6/17/2003	188	10.6	31.2 NJ	< 0.6	< 0.7
	10/21/2003	229	14.9	52.5	< 6.0	< 4.5
MW-22S	3/25/2003	< 0.8	< 0.8	< 0.7	< 0.6	0.91 J
	6/17/2003	< 0.8	< 0.8	< 0.7	< 0.6	< 0.7
	10/21/2003	< 0.4	< 0.3	< 1.0	< 1.2	< 0.9
MW-23S	3/25/2003	< 0.8	< 0.8	< 0.7	< 0.6	< 0.7
	6/17/2003	< 0.8	< 0.8	< 0.8	< 0.6	< 0.7
	10/21/2003	< 0.4	< 0.3	< 1.0	< 1.2	< 0.9
MW 248	2/25/2002	< 0.9	< 0.9	< 0.7	< 0.6	107
10100-243	5/25/2003	< 0.8	< 0.8	< 0.7	< 0.6	< 0.7
	10/21/2003	< 0.0	< 0.0	< 0.7	< 0.0	< 0.7
	12:00 AM	< 0.4	< 0.3	< 1.0	< 1.2	< 0.9
MW-25	3/25/2003	< 0.8	< 0.8	< 0.7	< 0.6	< 0.7
	6/17/2003	< 0.8	< 0.8	< 0.7	< 0.6	< 0.7
	10/21/2003	0.9 J	0.5 J	5.31 NJ	0.6 J	< 0.7
	0/05/2222	40.0	0.00	~ -	4.00	
D-Site MG	3/25/2003	49.2	3.09	< 0.7	1.33	< 0.7
Building Sump	6/18/2003	35.4	2.07	< 0.7	< 0.6	< 0.7
	10/21/2003	11.5	5./6	3.81 NJ	1.52	0.93 J
D-site Air Shaft	3/25/2003	1 50	< 0.8	< 0.7	~06	< 0.7
Building Sump	6/18/2003	5 10	< 0.0 < 0.8	< 0.7	< 0.0	< 0.7
	10/21/2003	< 0.3	2.73	< 0.7	< 1.2	< 0.9

Table 38. Summary of Ground Water Sampling Results - 2003Target Chlorinated Volatile Organic Compounds

Table 39. Quality Assurance Data for Radiological and Non-Radiological Samples for 2002

Laboratory, Program, and Parameter	Reported Value	Actual Value	Acceptance Range
PPPL DOE-EML Tritium in water (Bequerel/Liter))			
QAP-56 (0203)	275.600	283.700	Not reported
QAP-57 (0209)	225.110	227.300	Not reported
ERA (picoCuries/Liter)			
RAD-49	15,300	17,400	14,400-20,400
RAD-51	9350	10200	8440-12000
PPPL Test Results- WP0102			
Total residual chlorine (mg/L)	3.845	4.46	3.69-5.23
pH (S.U.)	9.12	9.04	8.77-9.31
Chemical oxygen demand (mg/L)	104.594	105	78.2-123
Specific conductance (µmhos/cm)	786	843	773-913
WP0202			
Chemical oxygen demand (mg/L)	155.15	173	133-197
Specific conductance (µmhos/cm)	905.5	910	834-986
pH (S.U.)	5.62	5.62	5.50-5.74
Total residual chlorine (mg/L)	3.875	3.88	3.20-4.56
Turbidity NTU	9.25	6.80	5.50-8.50
WP Iupo 2002			
Chlorine residual (ma/L)	2315	2.21	1725
pH (S II)	7 39	7.41	7.21.7.61
Chemical oxygen demand (mg/L)	126 373	122	92-1/1
Specific conductance (umbos/cm)	453	464	426-500
Nitrate-+Nitrogen as N	11 899	8.08	6.38-9.62
Turbidity NTU	3.123	1.25	0.857-1.48

Table 40. Quality Assurance Data for Radiological and Non-Radiological Samples for 2003

			-
Laboratory, Program, and Parameter	Reported	Actual	Acceptance
	Value	Value	Range
PPPL DOE-EML Tritium in water (Bequerel/Liter))			
QAP-58 (0303)	384370	390.00	Not reported
QAP-57 (0209)	225.110	227.300	Not reported
ERA (picoCuries/Liter)			
RAD-53	1150	1250	678-1820
PPPL Test Results- WP 3006 June 2003			
Total residual chlorine (mg/L)	2.053	2.27	1.77-2.59
рН (S.U.)	9.54	9.6	9.3-9.89
Chemical oxygen demand (mg/L)	139.79	156	120-178
Specific conductance (µmhos/cm)	407	351	319-371
Turbidity NTU	7.50	1.66	1.33-1.99
Nitrate-+Nitrite as N	10.45	16.9	13.4-20.14
Orthophosphate as P	2.72	3.86	3.29-4.466
WP 3012 0 December 2003			
Specific conductance (µmhos/cm)	578.0	586	513-617

REPORT DISTRIBUTION LIST

Italics indicate Report in hard copy; otherwise, notice of Report availability *via* Web. [#] copies, if more than one.

Domestic External Distribution: Argonne National Laboratory (R. Kolzow) Battelle Pacific Northwest Laboratory (E. Eckert Hickey) Brookhaven National Laboratory (J. Naidu) Congress (Sen. J. Corzine, Sen. F. Lautenberg, Rep. R. Frelinghuysen, Rep. R. Holt) Congressional Information Service (P. Weiss) DOE Chicago Field Operations (*M. Flannigan*) DOE Office of Environmental Audit, EH-24 DOE Office of Environmental Policy and Analysis, EH-55 (R. Natoli) [3] DOE Office of Environmental Guidance, EH-23 DOE Office of NEPA Project Assistance, EH-25 DOE Office of Science, SC-10 (I. Thomas), SC-50 (A. Davies), SC-55 (J. Willis), SC-83 (V.Nguyen) [2] EPA/Region II (J. Kenny, K Malone) DOE Princeton Area Office (J. Balodis) [2] Fermilab (J. D. Cossairt) Forrestal Development Center (R. Wolfe) General Atomics (R. Savercool) Lawrence Livermore National Laboratory (E. B. Hooper, A. Foster) Idaho National Engineering & Environmental Laboratory (L. Cadwallader) Massachusetts Institute of Technology (C. Fiore) Middlesex County Health Department (A. Trimpet) NJDEP, Bureau of Central Enforcement (J. Olko, J. Pritchard) NJDEP, Bureau of Environmental Radiation (G. Nicholls) NJDEP, Bureau of Groundwater Pollution Abatement (G. Nicholas) NJDEP, Bureau of Hazardous Waste Management NJDEP, Bureau of Planning and Site Assessment (L. Adams) NJDEP, Bureau of Standard Permitting (M. Willis, H. Diviney) NJDEP, Bureau of State Case Management (M. Walters) NJOEM, Division of Law & Public Safety (C. Williams) NUS Savannah River (J. Fulmer) Oak Ridge National Laboratory (J. Glowienka) Plainsboro Township (E. Mosley) Plainsboro Township Environmental Advisory Committee Plainsboro Public Library Stony Brook Regional Sewerage Authority (H. McLaughlin) The Princeton Packet (W. Plump) Thomas Jefferson National Accelerator Facility (C. Ficklen)

PPPL/Princeton University Distribution:

G. Ascione		
J. W. Anderson	C. Kircher	J. A. Schmidt
J. T. Bavlish	J. D. Levine	R. Sheneman
W. Blanchard	J. A. Malsbury	R. Shoe
J. De Looper	P. McDonough	T. Stevenson
C. Eisgruber	T. J. McGeachen	S. Suryanarayan
V. L. Finley	G. H. Neilson	W. Tang
C. Gentile	M. Ono	A. White
R. J. Goldston	R. Ortego	M. A. Williams
J. Graham	C. A. Phillips	E. H. Winkler
R. J. Hawryluk	C. A. Potensky	S. J. Zweben
J. C. Hosea	N. R. Sauthoff	PPPL Library

柴

External Distribution

Plasma Research Laboratory, Australian National University, Australia Professor I.R. Jones, Flinders University, Australia Professor João Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil Dr. P.H. Sakanaka, Instituto Fisica, Brazil The Librarian, Culham Laboratory, England Mrs. S.A. Hutchinson, JET Library, England Professor M.N. Bussac, Ecole Polytechnique, France Librarian, Max-Planck-Institut für Plasmaphysik, Germany Jolan Moldvai, Reports Library, Hungarian Academy of Sciences, Central Research Institute for Physics, Hungary Dr. P. Kaw, Institute for Plasma Research, India Ms. P.J. Pathak, Librarian, Institute for Plasma Research, India Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy Dr. G. Grosso, Instituto di Fisica del Plasma, Italy Librarian, Naka Fusion Research Establishment, JAERI, Japan Library, Laboratory for Complex Energy Processes, Institute for Advanced Study, Kyoto University, Japan Research Information Center, National Institute for Fusion Science, Japan Dr. O. Mitarai, Kyushu Tokai University, Japan Dr. Jiangang Li, Institute of Plasma Physics, Chinese Academy of Sciences, People's Republic of China Professor Yuping Huo, School of Physical Science and Technology, People's Republic of China Library, Academia Sinica, Institute of Plasma Physics, People's Republic of China Librarian, Institute of Physics, Chinese Academy of Sciences, People's Republic of China Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2, Komenskeho Univerzita, SK-842 15 Bratislava, Slovakia Dr. G.S. Lee, Korea Basic Science Institute, South Korea Institute for Plasma Research, University of Maryland, USA Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA Librarian, Institute of Fusion Studies, University of Texas, USA Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA Library, General Atomics, USA Plasma Physics Group, Fusion Energy Research Program, University of California at San Diego, USA Plasma Physics Library, Columbia University, USA Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA Mr. Paul H. Wright, Indianapolis, Indiana, USA

The Princeton Plasma Physics Laboratory is operated by Princeton University under contract with the U.S. Department of Energy.

> Information Services Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543

Phone: 609-243-2750 Fax: 609-243-2751 e-mail: pppl_info@pppl.gov Internet Address: http://www.pppl.gov