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Insight into microturbulence and transport in tokamak plasmas is being sought using linear 

simulations of drift waves near the onset time of an internal transport barrier (ITB) on Alcator C-

Mod. Microturbulence is likely generated by instabilities of drift waves and causes transport of 

heat and particles. This transport is studied because the containment of heat and particles is 

important for the achievement of practical nuclear fusion. We investigate nearness to marginal 

stability of ion temperature gradient (ITG) modes for conditions in the ITB region at the trigger 

time for ITB formation. Data from C-Mod, analyzed by TRANSP (a time dependent transport 

analysis code), is read by the code TRXPL and made into input files for the parallel gyrokinetic 

model code GS2. Temperature and density gradients in these input files are modified to produce 

new input files. Results from these simulations show a weak ITG instability in the barr ier region 

at the time of onset, above marginal stability; the normalized critical temperature gradient is 80% 

of the experimental temperature gradient. The growth rate increases linearly above the critical 

value, with the spectrum of ITG modes remaining parabolic up to a multiplicative factor of 2.  

The effect of varying density gradients is found to be much weaker and causes the fastest 

growing drift mode to change from ITG to trapped electron mode character. Simulations were 

carried out on the NERSC IBM 6000 SP using 4 nodes, 16 processors per node. Predictive 

simulations were examined for converged instability after 10,000-50,000 timesteps in each case. 

Each simulation took approximately 30 minutes to complete on the IBM SP. 
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I. Introduction 
 

Insight into microturbulence and transport in tokamak plasmas is being sought using 

linear simulations of drift waves near the onset time of an internal transport barrier (ITB) on 

Alcator C-Mod [1]. Microturbulence is widely believed to be generated by drift wave 

instabilities causing transport of heat and particles. This transport is studied because the 

containment of heat and particles is important for the achievement of practical nuclear fusion. If 

transport was better understood, then it would be possible to design a better fusion reactor.  

An ITB is a location in the plasma at which there is a sharp decrease in the density and/or 

temperature profiles, indicating that little plasma or heat is being transported through this region. 

Anything that reaches the plasma core will most likely stay in the core. Thus, the ITB region has 

good confinement. The microstability studies were undertaken to learn about the conditions in 

the plasma just before ITB formation, for possible ITB control. 

A drift wave is an oscillation of plasma particle densities and currents and their 

electrostatic and electromagnetic fields. They are caused by particle  drifts due to the electric ( E ) 

and magnetic ( B ) fields in the tokamak plasma, such as the BE × drift of particles (Ref. [2], 

chapter 2). Charged particles move in a helical fashion around magnetic field lines, and in the 

presence of an electric field, they drift out of their helical orbits in a direction perpendicular to 

both E  and B . Drifts can also arise from curvature of magnetic field lines and magnetic field 

gradients.  

 Components of the microturbulent electrostatic and electromagnetic fields may be written 

as { }) (),( t?kxiekS −ω , each mode described by frequencies, ω , and wave vectors, k . ⊥k is 

perpendicular to the magnetic field line which wraps  around a magnetic flux surface. Further 

details about drift wave physics may be found in reference [2], chapter 8.  
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Three types of drift waves are believed to affect plasma confinement: the ion temperature 

gradient (ITG) mode , the trapped electron mode (TEM), and the electron temperature gradient 

(ETG) mode. The normalized wave vectors, sk ρ⊥ , of the ITG are in the range sk ρ⊥ ~0.1-0.8; of 

the TEM, sk ρ⊥ ~1-8; and of the ETG, sk ρ⊥ ~10-80, where 
eB

Tm ei
s ≡ρ . Because the ITG mode 

has the longest wavelength, it is most dangerous for causing plasma transport; such instabilities 

could cause a loss of heat or plasma on a larger scale than would the shorter wavelength modes. 

Therefore, we wish to see if our experiment is a bove or below marginal stability of the ITG, and 

determine the critical temperature gradient so as to compare with standard models used in reactor 

design. 

 The experiment being studied is an off-axis radio frequency (RF) heated H-mode which 

develops an ITB near the time of 0.9 seconds  (Figs. 1-4) [3].  The ITB forms at a radius for 

which the ratio to the minor radius is 45.0/ ≅ar . All of the simulations are based on data taken 

at the ITB trigger time, 0.9 seconds. Table I shows plasma parameters for the experiment. 

II. Materials and Methods 
 

To investigate the drift wave microturbulence, linear simulations of drift wave  stability 

were carried out using the massively parallel code GS2 [4]. The time dependent transport 

analysis code TRANSP [5] was used to analyze data from C-Mod and TRXPL was used to create 

GS2 input files from the TRANSP output. These input files contain such information as the 

plasma equilibrium configuration, the plasma location of interest, and parameters for each of the 

plasma species, including density, temperature, gradients of the density and temperature, and 

collisionalities. The C-Mod plasma was modeled with four species: electrons, deuterons, boron 
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ions, and trace amounts of hydrogen ions. The boron and hydrogen ions are present as impurities 

in the plasma.  

GS2 solves the perturbed distribution function of the plasma particles, given by 

(1)                ,     

where ),,( xKg µ  satisfies the gyrokinetic equation: 

(2)     



 +−
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 K is the kinetic energy of the particles, φ and ||A  are perturbed potentials, BB/b = , je is the 

charge of the particle j, jjcj mBe /=ω  is the cyclotron frequency of particle j, )(0 zJ and 

)(1 zJ are Bessel functions , ||v and ⊥v are components of the particle velocity, ⊥k is the 

perpendicular wave vector (inversely proportional to the wavelength of the drift wave) , gv is the 

guiding center velocity, and cjkz ω/v⊥⊥=  (reference [2], chapter 2). 

The simulations were carried out on the Department of Energy National Energy Research 

Scientific Computing Center’s (NERSC) IBM 6000 SP, nicknamed Seaborg. Hundreds of linear 

stability simulations were carried out, scaling normalized density and temperature gradients for 

each case. Each simulation used 4 nodes, 16 processors per node and took approximately 30 

minutes to complete on the IBM SP. 

GS2 simulations yield growth rates, γ , and real frequencies, ω , for each wave vector of 

the simulated drift wave. These values were examined for converged instability (positive γ and 

corresponding ω ) after 10,000-50,000 timesteps in each case, and plotted with EXCEL. GS2 also 

calculates eigenfunctions of the electrostatic and electromagnetic fields for each wave vector .  
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III. Results 

A. Instabilities in Three Regions of the Plasma 

For each run, EXCEL was used to plot the growth rates and real frequencies as functions 

of normalized wave vectors , sk ρ⊥ . Wave vectors, which correspond to the ITG, TEM, and ETG 

mode drift waves, were plotted for three locations in the plasma: the plasma core, the ITB region, 

and outside the ITB. Negative growth rates denote damped modes  ( ) tγ−e  and are set to zero in 

the plots. Figures 5 and 7 show the growth rates, γ , and the frequencies, ω , as a function of 

wave vector, sk ρ⊥ , for all three drift wave mode ranges, while Figure 6 shows γ  for  only the 

ITG range of sk ρ⊥  [6]. It was found that there are positive growth rates for ITG and ETG modes 

at and outside the ITB, but no strongly unstable modes inside the plasma core. The real 

frequencies describe  the mode rotation direction around the field line and are typically positive 

when the drift wave is an ITG mode, and negative for TEM and ETG modes.  

B. At the ITB Region: Temperature Gradient Scaling 

Next, the ITG range of wave vectors at the ITB region was considered and the 

normalized temperature gradients ( TTa /∇ , Table I) of all the plasma species were scaled in 

order to obtain the dependence of growth rate on temperature gradient. The gradient was varied 

by factors of 0.1 to 10. Figure 8 shows γ  versus sk ρ⊥  for each case. From this, the maximum 

growth rate for each case was plotted as a function of the scaling factor on the normalized 

temperature gradient (Fig. 10). The real frequencies, ω ,  versus sk ρ⊥  are shown in Figure 9, and 

the real frequency corresponding to the maximum growth rate per run is plotted as a function of 

scaling factor in Figure 11.  
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C. At the ITB Region: Density Gradient Scaling 

 Next, the normalized density gradients ( nna /∇ , Table I) of all the plasma species were 

scaled to examine the ITG growth rate dependence on normalized density gradient. The scaling 

factors of the density gradient ranged from 1/6 to 10. Figures 12 and 13 shows γ  and ω  versus 

sk ρ⊥  and Figures 14 and 15 show the maximum γ  and the corresponding ω  as functions of the 

scaling factor of the density gradients.  

IV. Discussion and Conclusions 

A. Instabilities in Three Regions of the Plasma 

  GS2 solutions of the gyrokinetic equation were examined for drift wave instability, that 

is, a positive growth rate. If the simulated modes are stable, then no transport would be driven by 

these modes. All drift wave modes were stable in the plasma core [6, 7] (Fig. 5). In the ITB 

region, however, the ITG is unstable, which could cause some transport of heat and particles. 

However, Figure 5 shows that the ITG instability in the barrier region is significantly weaker 

than that found outside the ITB. This is likely the cause of the developing good confinement (i.e., 

lack of transport) within the barrier region. There are also strong ETG instabilities both at and 

outside of the ITB, but because the ETG has the shortest wavelengths of the drift wave modes, it 

is unlikely that it will have much effect on ion transport. ETG is thought to be important in heat 

transport mediated by electrons. 

B. At the ITB Region: Temperature Gradient Scaling 

 Figure 10 indicates that at small normalized temperature gradients,  the ITG is stable in 

the ITB region until the temperature gradient reaches a critical value, then it becomes 

approximately linearly unstable. The bump in the linear region of the graph, which corresponds 

to the dip in Figure 11, is due to the fact that the value of sk ρ⊥  at which the maximum growth 
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rate occurs changes from 0.2 to 0.3, as can be seen in Figure 8. The simulations’ critical 

temperature gradient is 0.80 of the experimental value. Thus, the experiment is well above 

marginal stability; recall that the ITG was found to be unstable in this region (Fig. 6).  

C. At the ITB Region: Density Gradient Scaling 

 The GS2 simulations showed that the ITG growth rates cannot be made zero in the 

barrier region by scaling the  normalized density gradients (Fig. 14). The growth rate has a 

relatively weak dependence on normalized density gradient—the experimental gradient had to be 

scaled by a factor of ten to increase the growth rate by a factor of about nine, as opposed to the 

temperature gradient, which only had to be scaled by a factor of two to increase the growth rate 

by a factor of eight.  

 There is a transition in the character of the most unstable ITG range drift waves as the 

normalized density gradient increases. Compare the real frequencies as a function of scaling 

factor in Figure 15 with the real frequencies for our base cases of ITG, TEM, and ETG modes in 

Figure 7. The most unstable drift wave starts as an ITG mode, but then shifts to a TEM mode at  

about 6.5 times the normalized experimental dens ity gradient, as seen by the real frequency 

becoming negative and a development of discontinuity in the slope of the growth rate. This is to 

be expected from the stability diagram in  Figure 16, showing the effects of the temperature and 

density gradients on drift wave instability [8]. A high enough shift in the normalized density 

gradient changes the mode from ITG-like to TEM-like.  

Much of the study described here will appear in a forthcoming publication [7]. 

V. Future Research 

 Many lines of future research would be interesting. For example, future research could 

include investigation of marginal stability conditions in the plasma core and outside the ITB 
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region, as well as the effect on the critical temperature of density and temperature perturbations 

for each species separately. Critical gradients can be compared to standard models [9].  In 

addition, nonlinear ITG studies in the barrier region would deepen our understanding of ITB 

formation; shifts in critical temperatures have been found from nonlinear microturbulence 

studies[10]. 
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Table I. Plasma parameters for C-Mod simulations at 0.9 sec. The ratios of densities are: nd/ne = 

0.8, nb/ne=0.03, nh/ne=0.04, and  aref=0.22m.   

Parameter    r/a~0.25 0.45  0.65 

q     0.99  1.32  2.00 

ˆ s      0.51  0.96  1.48 

Td/Te= Tb/Te    0.99  1.16  1.06 

Th/Te     1.30  3.96  1.59 

-aref∇ne/ne=-aref∇ns/ns   0.71  0.42  0.04    

-aref∇Te/Te    1.47  2.35  2.83 

-aref∇Td/Td=-aref∇Tb/Tb  0.67  2.75  3.41 

-aref∇Th/Th     -3.13  2.75  3.41 

νe/νd     29.9  38.4  33.3 

νb/νd      7.12  7.12  7.12 

νh/νd      1.10  0.30  0.93 

Tref (keV)=Te    1.15  0.77  0.45 

nref = ne  (m-3)    3.1x1020 2.8x1020 2.7x1020 

βref                                                       0.75%                  0.45%            0.25% 

Freq norm=(Tref/mref)0.5/aref  (sec-1)     1.07x106               0.88x106       0.67x10 
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Figure 1. Electron density profile for the C-Mod experiment. Electron density for radial locations 
in the plasma, given in ≡ar /  the radial distance, r, from plasma magnetic axis divided by the 
minor radius, a. Simulations were carried out at the ITB trigger time, 0.9 seconds; the ITB forms 
at 45.0/ ≅ar .  
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Figures 2. and 3. Temperature profiles for electrons and ions vs. ar / . Notice that the 
temperature profiles do not change much with time.  
 
 
 
 
 

 
Figure 4. Time dependent behavior of some parameters for the C-Mod experiment. The plasma 
was heated initially with off-axis radio frequency (RF) heating; at 1.25 seconds on-axis RF 
heating is added. PlasmaW  is the stored energy of the plasma, en is line averaged electron density, 

DDR  is the rate of production D-D of neutrons , 0iT is the ion temperature, and torv  is the toroidal 
velocity (it goes through zero at the time of interest, 0.9 seconds). [Figure from S. Wukitch, R. L. 
Boivin, P. T. Bonoli, et al., Phys. Plas. 9 , 2149 (2002) , used with permission.] 
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Figure 5. Growth rates of ITG, TEM, and ETG drift wave modes as a function of normalized 
wave vector, for the three regions of interest. 
 
 

 
 
Figure 6. ITG growth rate as a function of normalized wave vector, for three regions in the 
plasma. 
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Figure 7. ITG, TEM, and ETG real frequencies as a function of normalized wave vectors at three 
regions in the plasma. 
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Figure 8. ITG growth rates at the ITB region. 
 

 
 
Figure 9. ITG real frequencies at the ITB region. 
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Figure 10. ITG growth rate as a function of normalized temperature gradient.  
 
 
 
 
 

 
 
Figure 11. ITG real frequency as a function of normalized temperature gradient.  
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Figure 12. Drift wave mode growth rates at the ITB region. 
 

 
 
Figure 13. Drift wave mode real frequencies at the ITB region. 
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Figure 14. Drift wave mode growth rate as a function of normalized density gradient.  
 
 

 
Figure 15. Drift wave mode real frequency as a function of normalized density gradient. 
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Figure 16. Stability diagram for ITG/TEM modes. Figure based on Fig. 1. of [8]. 
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